Convergence to equilibrium for smectic-A liquid crystals in $3 D$ domains without constraints for the viscosity*

Blanca Climent-Ezquerra, Francisco Guillén-González
Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain.
E-mails: bcliment@us.es, guillen@us.es

October 17, 2015

Abstract

In this paper, we focus on a smectic-A liquid crystal model in $3 D$ domains, and obtain three main results: the proof of an adequate Lojasiewicz-Simon inequality by using an abstract result; the rigorous proof (via a Galerkin approach) of the existence of global intime weak solutions that become strong (and unique) in long-time; and its convergence to equilibrium of the whole trajectory as time goes to infinity. Given any regular initial data, the existence of a unique global in-time regular solution (bounded up to infinite time) and the convergence to an equilibrium have been previously proved under the constraint of a sufficiently high level of viscosity. Here, all results are obtained without imposing said constraint.

Keywords: Liquid crystals, Navier-Stokes equations, Ginzburg-Landau potential, energy dissipation, convergence to equilibrium, Lojasiewicz-Simon's inequalities.

1 Introduction

We consider the following equations ([5]), which model a smectic-A liquid crystal confined in an open bounded domain $\Omega \subset \mathbb{R}^{3}$ with boundary $\partial \Omega$ within the time interval $(0,+\infty)$:

$$
\begin{array}{r}
\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\nu \Delta \boldsymbol{u}-\lambda w \nabla \varphi+\nabla q=0, \\
\nabla \cdot \boldsymbol{u}=0, \tag{2}
\end{array}
$$

[^0]\[

$$
\begin{array}{r}
\partial_{t} \varphi+\boldsymbol{u} \cdot \nabla \varphi+\gamma w=0, \\
\Delta^{2} \varphi-\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla \varphi)-w=0, \tag{4}
\end{array}
$$
\]

where

$$
\boldsymbol{f}_{\varepsilon}(\boldsymbol{n})=\nabla \boldsymbol{n} F_{\varepsilon}(\boldsymbol{n})=\frac{1}{\varepsilon^{2}}\left(|\boldsymbol{n}|^{2}-1\right) \boldsymbol{n}, \quad \forall \boldsymbol{n} \in \mathbb{R}^{3}
$$

and $F_{\varepsilon}(\boldsymbol{n})=\frac{1}{4 \varepsilon^{2}}\left(|\boldsymbol{n}|^{2}-1\right)^{2}$ is the Ginzburg-Landau potential. Here, $\boldsymbol{u}: \Omega \times[0,+\infty) \mapsto \mathbb{R}^{3}$ is the flow velocity; $p: \Omega \times[0,+\infty) \mapsto \mathbb{R}$ describes a potential function (dependent of the fluid pressure); $\varphi: \Omega \times[0,+\infty) \mapsto \mathbb{R}$ is the layer variable, whose level sets represent the layer structure; and $w=\Delta^{2} \varphi-\nabla \cdot f_{\varepsilon}(\nabla \varphi)$ is a variable related to the equilibrium equation with respect to the (smectic) elastic energy

$$
\begin{equation*}
E_{e}(\varphi)=\int_{\Omega}\left(\frac{1}{2}|\Delta \varphi|^{2}+F_{\varepsilon}(\nabla \varphi)\right) . \tag{5}
\end{equation*}
$$

The constants $\nu>0, \lambda>0$, and $\gamma>0$ are some coefficients which depend on the viscosity, the elasticity and the time relaxation, respectively. The system (1)-(4) is completed with the (Dirichlet) boundary conditions

$$
\begin{equation*}
\left.\boldsymbol{u}\right|_{\partial \Omega}=0,\left.\quad \varphi\right|_{\partial \Omega}=\varphi_{1},\left.\quad \partial_{\mathrm{n}} \varphi\right|_{\partial \Omega}=\varphi_{2}, \tag{6}
\end{equation*}
$$

where φ_{1} and φ_{2} are given time-independent functions, and the initial conditions

$$
\begin{equation*}
\boldsymbol{u}(0)=\boldsymbol{u}_{0}, \quad \varphi(0)=\varphi_{0} \quad \text { in } \Omega . \tag{7}
\end{equation*}
$$

For compatibility, we assume $\left.\boldsymbol{u}_{0}\right|_{\partial \Omega}=0$ with $\nabla \cdot \boldsymbol{u}_{0}=0$ and $\left.\varphi_{0}\right|_{\partial \Omega}=\varphi_{1},\left.\partial_{\mathrm{n}} \varphi_{0}\right|_{\partial \Omega}=\varphi_{2}$.
The first mathematical results of problem (1)-(7) were obtained in [10]. For threedimensional domains and time-independent boundary conditions, both the existence of global in-time weak solutions for the smectic-A problem (1)-(7) and pioneering research into its longtime behaviour are jointly studied in [10], and convergence of $\boldsymbol{u}(t)$ and $w(t)$ to zero as $t \rightarrow+\infty$ is attained, although the uniqueness of limit for the trajectories $\varphi(t)$ as $t \uparrow \infty$ is not assured. The regularity and time-periodicity of solutions of the problem (1)-(7) with time-dependent boundary conditions is studied in [3]. These results were previously studied for nematic liquid crystals in [9] and [1].

The convergence in infinite time of the whole trajectory was first solved in [14] for a nematic model with Dirichlet boundary conditions, thereby obtaining the convergence of the director vector $\boldsymbol{d}(t)$ (an average of preferential orientation of molecules) as $t \rightarrow+\infty$ towards an equilibrium of the elastic energy. In [15], a similar problem with stretching terms and periodic boundary conditions of \boldsymbol{d} is treated. For these convergence results, suitable Lojasiewicz-Simon inequalities are used. In both cases above, in order to obtain a global
in-time regular solution, a uniform in-time Gronwall theorem is used (see [13]), requiring either a sufficiently high viscosity coefficient or initial conditions sufficiently near to a global minimizer.

The long-time behaviour of a nematic liquid crystal model with time-dependent boundary conditions and external forces is studied in [6], while also imposing a high level of viscosity. For nematic models including stretching terms, in the recent paper [11], the authors show that any weak solution has a ω-limit set containing a single steady solution, thereby circumventing the use of the strong regularity (hence the viscosity constraint is rendered unnecessary).

Returning to the smectic-A problem (1)-(7), its long-time behaviour has already been studied in [12], where the imposition of both a high level of viscosity and periodic boundary conditions plays a main role. On the other hand, the convergence of the whole trajectory to equilibrium for a smectic-A model modified by penalization is given in [4], without imposing constraints for the viscosity.

Consequently, with respect to the above results, the main contribution that we will present in this paper is the identification of a unique critical point as the limit of the trajectory of $\varphi(t)$ as t approaches to infinity, for each global weak solution of the smectic-A model (1)-(7) that is strong over long periods, without imposing a high level of viscosity. Moreover, we consider of remarkable interest the following facts:

1. The proof of an adequate Lojasiewicz-Simon inequality by means of an abstract result given in [8] (see Theorem 4 below).
2. The rigorous proof, via a Galerkin approach, of the existence of weak solutions of the smectic-A problem (1)-(7), which are strong solutions in the case of long periods.

1.1 Notation

- In general, the notation will be abridged: $L^{p}=L^{p}(\Omega), p \geq 1, H_{0}^{1}=H_{0}^{1}(\Omega)$, etc. If $X=X(\Omega)$ is a space of functions defined in the open set Ω, then $L^{p}(X)$ denotes the Banach space $L^{p}(0, T ; X(\Omega))$. Moreover, boldface letters will be used for vectorial spaces, for instance $\mathbf{L}^{2}=L^{2}(\Omega)^{3}$.
- The L^{p}-norm is denoted by $|\cdot|_{p}, 1 \leq p \leq \infty$, and the H^{m}-norm by $\|\cdot\|_{m}$ (in particular $\left.|\cdot|_{2}=\|\cdot\|_{0}\right)$. The inner product of $L^{2}(\Omega)$ is denoted by (\cdot, \cdot). The boundary $H^{s}(\partial \Omega)$ norm is denoted by $\|\cdot\|_{s ; \partial \Omega}$.
- The space formed by all fields $\boldsymbol{u} \in C_{0}^{\infty}(\Omega)^{3}$ satisfying $\nabla \cdot \boldsymbol{u}=0$ is set as \mathcal{V}. The closure of \mathcal{V} in \boldsymbol{L}^{2} and \boldsymbol{H}^{1} are denoted as \boldsymbol{H} and \boldsymbol{V}, which are Hilbert spaces for the norms $|\cdot|_{2}$
and $\|\cdot\|_{1}$, respectively. Furthermore,

$$
\boldsymbol{H}=\left\{\boldsymbol{u} \in \boldsymbol{L}^{2} ; \nabla \cdot \boldsymbol{u}=0, \boldsymbol{u} \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\}, \quad \boldsymbol{V}=\left\{\boldsymbol{u} \in \boldsymbol{H}^{1} ; \nabla \cdot \boldsymbol{u}=0, \boldsymbol{u}=0 \text { on } \partial \Omega\right\} .
$$

Note that if $\boldsymbol{u} \in \boldsymbol{H}$, since $\boldsymbol{u} \in \boldsymbol{L}^{2}$ and $\nabla \cdot \boldsymbol{u} \in \boldsymbol{L}^{2}$, therefore $\boldsymbol{u} \cdot \mathbf{n}=0$ holds in $\boldsymbol{H}^{-1 / 2}(\partial \Omega)$.

- We will consider a sufficiently regular Ω in order to have the following equivalent norms:

$$
\begin{gather*}
\|\varphi\|_{1} \approx|\nabla \varphi|_{2}+\left\|\left.\varphi\right|_{\partial \Omega}\right\|_{1 / 2 ; \partial \Omega}=|\nabla \varphi|_{2}+\left\|\varphi_{1}\right\|_{1 / 2 ; \partial \Omega} \tag{8}\\
\|\varphi\|_{2} \approx|\Delta \varphi|_{2}+\left\|\left.\varphi\right|_{\partial \Omega}\right\|_{3 / 2 ; \partial \Omega}=|\Delta \varphi|_{2}+\left\|\varphi_{1}\right\|_{3 / 2 ; \partial \Omega} \tag{9}\\
\|\varphi\|_{4} \approx\left|\Delta^{2} \varphi\right|_{2}+\left\|\varphi_{1}\right\|_{7 / 2 ; \partial \Omega}+\left\|\varphi_{2}\right\|_{5 / 2 ; \partial \Omega} \tag{10}
\end{gather*}
$$

- In the following, $C, K>0$ will denote several constants, which depend only on the fixed data of the problem.
- For the sake of simplicity, henceforth we will consider $\nu, \lambda, \gamma=1$.

2 Some preliminary results

2.1 Long-time behaviour

Assume the following starting point:
Let $E, \Phi \in L_{l o c}^{1}(0,+\infty)$ be two positive functions with $E \in H^{1}(0, T) \forall T>0$, satisfying

$$
\begin{equation*}
E^{\prime}(t)+\Phi(t) \leq 0, \quad \text { a.e. } t \in(0,+\infty) . \tag{11}
\end{equation*}
$$

Therefore, E is a decreasing function with $E \in L^{\infty}(0,+\infty)$ and

$$
\begin{equation*}
\exists \lim _{t \rightarrow+\infty} E(t)=E_{\infty} \geq 0 \tag{12}
\end{equation*}
$$

Moreover, by integrating (11), one has $\Phi \in L^{1}(0,+\infty)$.
The following result is proved in [2].
Lemma 1 Let $\Phi \in L^{1}(0,+\infty)$ be a positive function such that $\Phi \in H^{1}(0, T) \forall T>0$, which satisfies

$$
\begin{equation*}
\Phi^{\prime}(t) \leq C_{2}\left(\Phi(t)^{3}+1\right) \tag{13}
\end{equation*}
$$

Therefore, there exists a sufficiently large $T^{*} \geq 0$ such that $\Phi \in L^{\infty}\left(T^{*},+\infty\right)$ and

$$
\exists \lim _{t \rightarrow+\infty} \Phi(t)=0 .
$$

We will extend this result for function sequences in order to uniformly bound them with respect to the index of sequence. Specificly,

Theorem 2 Let Φ^{m}, E^{m}, be two positive function sequences, which satisfy (11) and (13) for some constant $C_{2}>0$ independent of m. Let $E(t)=\lim _{m \rightarrow+\infty} E^{m}(t)$ a.e. $t \in(0,+\infty)$. Therefore, for each $\varepsilon \in(0,1)$, there exists a sufficiently large time $T^{*}=T^{*}(\varepsilon) \geq 0$, independent of m, such that

$$
\left\|\Phi^{m}\right\|_{L^{\infty}\left(T^{*},+\infty\right)} \leq \varepsilon
$$

Proof.

By construction, $E(t)$ is a decreasing positive function which satisfies (12) for a certain $E_{\infty} \geq 0$.

Let R^{*} and t be two times such that $R^{*}<t$. By integrating (11) in $\left[R^{*}, t\right]$ and taking the limit as $m \rightarrow+\infty$,

$$
\int_{R^{*}}^{t} \Phi^{m}(s) d s \leq E^{m}\left(R^{*}\right)-E^{m}(t) \longrightarrow E\left(R^{*}\right)-E(t) \leq E\left(R^{*}\right)-E_{\infty}
$$

For each $\delta>0$ given, we can choose a sufficiently large $R^{*}=R^{*}(\delta)$, such that $E\left(R^{*}\right)-E_{\infty} \leq$ $\delta / 2$. Therefore, there exists a sufficiently large number $m_{0}(\delta) \in \mathbb{N}$ such that

$$
\int_{R^{*}}^{t} \Phi^{m}(s) d s \leq E\left(R^{*}\right)-E_{\infty}+\delta / 2 \leq \delta, \quad \forall t \geq R^{*}, \quad \forall m \geq m_{0}(\delta)
$$

Taking $t \rightarrow+\infty$, we have

$$
\begin{equation*}
\int_{R^{*}(\delta)}^{+\infty} \Phi^{m}(s) d s \leq \delta, \tag{14}
\end{equation*}
$$

where $R^{*}(\delta)$ does not depend on m. Starting from (13) and (14), we are going to finish the proof of this theorem, using the lines provided in [2]. Indeed, from (14),

$$
\begin{equation*}
\frac{1}{\tau} \int_{t}^{t+\tau} \Phi^{m}(t) d t \leq \frac{\delta}{\tau}, \quad \forall \tau>0, \quad \forall t \geq R^{*}(\delta) \tag{15}
\end{equation*}
$$

Lemma 2.1 of [2] implies that, $\forall t \geq R^{*}(\delta)$ and $\forall \tau>0$, there exist times $\bar{t} \in[t, t+\tau]$ such that:

$$
\begin{equation*}
\Phi^{m}(\bar{t}) \leq \frac{2 \delta}{\tau} \tag{16}
\end{equation*}
$$

On the other hand, from (13), Lemma 2.2 of [2] implies that for any $\varepsilon<1$, if $\Phi^{m}\left(t_{0}\right) \leq \varepsilon / 3$, then $\Phi^{m}(t) \leq \varepsilon \forall t \in\left[t_{0}, t_{0}+S^{*}(\varepsilon)\right]$, where $S^{*}(\varepsilon)=\frac{\varepsilon}{3 C_{2}}$ (that is independent of m).

By using (15) and (16) for $\delta=\frac{\varepsilon^{2}}{36 C_{2}}$ and $\tau=\frac{S^{*}(\varepsilon)}{2}$, Theorem 2.3 of [2] gives

$$
\begin{equation*}
\Phi^{m}(t) \leq \varepsilon, \quad \forall t \geq R^{*}(\delta)+\frac{S^{*}(\varepsilon)}{2}=R^{*}(\delta)+\frac{\varepsilon}{6 C_{2}}:=T^{*}(\varepsilon) . \tag{17}
\end{equation*}
$$

Observe that bound (17) does not depend on m. Therefore, for each $\varepsilon<1$, there exists a sufficiently large $T^{*}=T^{*}(\varepsilon)$ such that $\left\|\Phi^{m}\right\|_{L^{\infty}\left(T^{*},+\infty\right)} \leq \varepsilon$.

2.2 Lojasiewicz-Simon inequality

It is standard procedure to use appropriate Lojasiewicz-Simon inequalities to study the convergence of trajectories in infinite time. It is not easy to find in the literature a demonstration of these types of inequalities associated to various Euler-Lagrange equations. Here, a particular Lojasiewicz-Simon inequality associated to the critical points of the elastic energy (5) is deduced, by using the abstract Theorem 4 presented below (Theorem 4.2 of [8]). Some extensions of this Lojasiewicz-Simon inequality are commented in the Remark 6 below.

We begin by recalling the following definitions:
Definition 3 A bounded linear operator $L: X_{1} \mapsto X_{2}$ between two Banach spaces X_{1} and X_{2} is called a Fredholm operator of index zero if L has a closed range $R(L)$, a finite dimensional kernel $N(L)$ and $\operatorname{dim} \mathrm{N}(\mathrm{L})=\operatorname{dim}\left(\mathrm{X}_{2} / \mathrm{R}(\mathrm{L})\right)<\infty$. A C^{1} map $\mathcal{M}: U \subset X_{1} \mapsto X_{2}$ is called a Fredholm map of index zero if its Frèchet differential at each point are Fredholm operators of index zero.

For instance, an invertible operator plus a compact operator is a Fredholm operator of index zero.

Theorem 4 Assume the following hypotheses:

- Let H be a Hilbert space and $A: D(A) \subset H \mapsto H$ a linear self-adjoint and positive definite operator. In particular, $H_{A} \equiv\left(D(A),\langle\cdot, \cdot\rangle_{A}\right)$ is a Hilbert space endowed with the scalar product $\langle u, v\rangle_{A} \equiv(A u, A v)_{H}$ for all $u, v \in D(A)$.
- Let X and \widetilde{X} be two Banach spaces such that the embeddings $X \hookrightarrow H_{A}$ and $\widetilde{X} \hookrightarrow H$ are continuous. Moreover, $X \hookrightarrow \widetilde{X}$ is also a continuous embedding.
- Let $\mathcal{E}: X \mapsto \mathbb{R}$ be a Fréchet-differentiable functional.
- Let $\mathcal{M}=\mathcal{E}^{\prime}: X \mapsto \widetilde{X}$ be an analytic gradient map with the following properties:
$-\mathcal{M}$ is a Fredholm map of index zero; i.e., for each $u \in X$ the bounded linear operator $\mathcal{M}^{\prime}(u) \in \mathcal{L}(X, \widetilde{X})$ is a Fredholm operator of index zero.
- For each fixed $u \in X$, the bounded linear symmetric operator $\mathcal{M}^{\prime}(u): X \mapsto \widetilde{X}$ has an extension $\mathcal{M}_{1}(u): H_{A} \mapsto H$, which is a symmetric Fredholm operator of index zero.
- The map $\mathcal{R}: u \in X \mapsto \mathcal{M}_{1}(u) A^{-1} \in \mathcal{L}(H)$ is continuous.

Therefore, if $\bar{u} \in X$ is a critical point of \mathcal{E}, i.e. $\mathcal{E}^{\prime}(\bar{u})=0$, then positive constants C, β_{1} and $\sigma \in[1 / 2,1)$ exist such that

$$
|\mathcal{E}(u)-\mathcal{E}(\bar{u})|^{\sigma} \leq C\left\|\mathcal{E}^{\prime}(u)\right\|_{H} \quad \forall u \in X \text { with }\|u-\bar{u}\|_{X}<\beta_{1} .
$$

This theorem is now going to be applied to the smectic-A model, by using strong norms.
Lemma 5 (Strong Lojasiewicz-Simon inequality for smectic-A problems) Let \mathcal{S} be the following set of equilibrium points related to the elastic energy $E_{e}(\varphi)=\int_{\Omega}\left(\frac{1}{2}|\Delta \varphi|^{2}+F_{\varepsilon}(\nabla \varphi)\right)$:

$$
\mathcal{S}=\left\{\varphi \in H^{4}(\Omega): \Delta^{2} \varphi-\nabla \cdot f_{\varepsilon}(\nabla \varphi)=0 \text { a.e in } Q,\left.\varphi\right|_{\partial \Omega}=\varphi_{1},\left.\partial_{\mathrm{n}} \varphi\right|_{\partial \Omega}=\varphi_{2}\right\} .
$$

If $\bar{\varphi} \in \mathcal{S}$, there are three positive constants C, β, and $\theta \in(0,1 / 2)$ which depend on $\bar{\varphi}$, such that for all $\varphi \in H^{4}$ with $\left.\varphi\right|_{\partial \Omega}=\varphi_{1},\left.\partial_{\mathrm{n}} \varphi\right|_{\partial \Omega}=\varphi_{2}$ and $\|\varphi-\bar{\varphi}\|_{3} \leq \beta$, then

$$
\begin{equation*}
\left|E_{e}(\varphi)-E_{e}(\bar{\varphi})\right|^{1-\theta} \leq C|w|_{2} \tag{18}
\end{equation*}
$$

where $w=w(\varphi):=\Delta^{2} \varphi-\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla \varphi)$.
Proof. The proof is divided into two steps.
Step 1 (Application of Theorem 4): $\exists \beta_{1}, C>0$ such that if $\|\varphi-\bar{\varphi}\|_{4} \leq \beta_{1}$, then (18) holds.
Let $\phi \in H^{4}(\Omega)$ be the "lifting" function defined as the (strong) solution of the problem:

$$
\begin{equation*}
\Delta^{2} \phi=0 \text { in } \Omega,\left.\quad \phi\right|_{\partial \Omega}=\varphi_{1},\left.\quad \partial_{\mathrm{n}} \phi\right|_{\partial \Omega}=\varphi_{2} . \tag{19}
\end{equation*}
$$

Theorem 4 is going to be applied for the following spaces and operators:

$$
\begin{gathered}
H \equiv \widetilde{X}=L^{2}(\Omega), \quad X \equiv H_{A}=H_{0}^{2}(\Omega) \cap H^{4}(\Omega), \\
A=\Delta^{2}: \xi \in X \mapsto A \xi=\Delta^{2} \xi \in H \text { and }\langle\xi, \psi\rangle_{A}=\left(\Delta^{2} \xi, \Delta^{2} \psi\right)_{L^{2}} \quad \forall, \xi, \psi \in D(A), \\
\left.\mathcal{E}: \xi \in X \mapsto \mathcal{E}(\xi)=E_{e}(\xi+\phi)=\int_{\Omega}\left(\frac{1}{2}|\Delta(\xi+\phi)|^{2}+F_{\varepsilon}(\nabla(\xi+\phi))\right)\right) \in \mathbb{R}, \\
\mathcal{M}=\mathcal{E}^{\prime}: \xi \in X \mapsto H, \text { such that } \mathcal{M}(\xi)=\Delta^{2} \xi-\nabla \cdot f_{\varepsilon}(\nabla(\xi+\phi)),
\end{gathered}
$$

and $\mathcal{M}_{1}(\xi)=\mathcal{M}^{\prime}(\xi)$, where for each $\xi \in X$,

$$
\mathcal{M}^{\prime}(\xi): \psi \in X \mapsto \mathcal{M}^{\prime}(\xi)(\psi)=\Delta^{2} \psi-\nabla \cdot\left(\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}(\nabla(\xi+\phi)) \nabla \psi\right) \in H
$$

Indeed, $\mathcal{M}^{\prime}(\xi)$ is a Fredholm operator of index zero, because $\mathcal{M}^{\prime}(\xi)$ is the sum of the invertible operator A and the compact operator $\psi \in X \rightarrow-\nabla \cdot\left(\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}(\nabla(\xi+\phi)) \nabla \psi\right) \in H$.

Moreover, the map $\mathcal{R}: \xi \in X \mapsto \mathcal{M}^{\prime}(\xi) A^{-1} \in \mathcal{L}(H)$ is well-posed because $A^{-1} \in \mathcal{L}(H ; X)$ and $\mathcal{M}^{\prime}(\xi) \in \mathcal{L}(X ; H)$. It remains to be proved that \mathcal{R} is (sequentially) continuous. Let $\xi_{n} \rightarrow \xi$ in X as $n \rightarrow \infty$. Therefore,
$\left\|\mathcal{R}\left(\xi_{n}\right)-\mathcal{R}(\xi)\right\|_{\mathcal{L}(H)}=\left\|\mathcal{M}^{\prime}\left(\xi_{n}\right) A^{-1}-\mathcal{M}^{\prime}(\xi) A^{-1}\right\|_{\mathcal{L}(H)} \leq\left\|\mathcal{M}^{\prime}\left(\xi_{n}\right)-\mathcal{M}^{\prime}(\xi)\right\|_{\mathcal{L}(X ; H)}\left\|A^{-1}\right\|_{\mathcal{L}(H ; X)}$
and

$$
\begin{aligned}
& \left\|\mathcal{M}^{\prime}\left(\xi_{n}\right)-\mathcal{M}^{\prime}(\xi)\right\|_{\mathcal{L}(X ; H)}=\sup _{\psi \in X \backslash\{0\}} \frac{\left\|\mathcal{M}^{\prime}\left(\xi_{n}\right)(\psi)-\mathcal{M}^{\prime}(\xi)(\psi)\right\|_{H}}{\|\psi\|_{X}} \\
& \quad=\sup _{\psi \in X \backslash\{0\}} \frac{\left|\nabla \cdot\left(\left(\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}(\nabla(\xi+\phi))-\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}\left(\nabla\left(\xi_{n}+\phi\right)\right)\right) \nabla \psi\right)\right|_{2}}{\|\psi\|_{4}} \\
& \quad \leq \sup _{\psi \in X \backslash\{0\}} \frac{\left.\|\left(\left(\boldsymbol{f}_{\boldsymbol{\varepsilon}}\right)^{\prime}(\nabla(\xi+\phi))-\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}\left(\nabla\left(\xi_{n}+\phi\right)\right)\right) \nabla \psi\right) \|_{1}}{\|\psi\|_{4}} \\
& \quad \leq C\left\|\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}(\nabla(\xi+\phi))-\left(\boldsymbol{f}_{\boldsymbol{\varepsilon}}\right)^{\prime}\left(\nabla\left(\xi_{n}+\phi\right)\right)\right\|_{1}
\end{aligned}
$$

By taking into account that $\left.\|\left(\boldsymbol{f}_{\varepsilon}\right)^{\prime}(\nabla(\xi+\phi))-\left(\boldsymbol{f}_{\boldsymbol{\varepsilon}}\right)^{\prime}\left(\nabla\left(\xi_{n}+\phi\right)\right)\right) \|_{H^{1}} \rightarrow 0$ as $n \rightarrow \infty$ if $\xi_{n} \rightarrow \xi$ in H^{4}, then the continuity of the operator \mathcal{R} has been proved.

In order to apply Theorem 4, the boundary conditions must be lifted by using the function ϕ given in (19). In fact, function $\bar{\xi}=\bar{\varphi}-\phi$ (recall that $\bar{\varphi} \in \mathcal{S}$) satisfies $\left.\bar{\xi}\right|_{\partial \Omega}=0$ and $\left.\partial_{\mathrm{n}} \bar{\xi}\right|_{\partial \Omega}=0$ and represents a critical point of $\mathcal{E}(\xi)$. Let $\varphi \in H^{4}(\Omega)$ with $\left.\varphi\right|_{\partial \Omega}=\varphi_{1},\left.\partial_{\mathrm{n}} \varphi\right|_{\partial \Omega}=\varphi_{2}$ and $\|\varphi-\bar{\varphi}\|_{4} \leq \beta_{1}\left(\beta_{1}>0\right.$ given in Theorem 4). If we define $\xi=\varphi-\phi \in X$, then $\|\xi-\bar{\xi}\|_{4} \leq \beta_{1}$ and, owing to Theorem 4:

$$
\begin{aligned}
& \left|E_{e}(\varphi)-E_{e}(\bar{\varphi})\right|^{1-\theta}=|\mathcal{E}(\xi)-\mathcal{E}(\bar{\xi})|^{1-\theta} \leq C\left\|\mathcal{E}^{\prime}(\xi)\right\|_{H} \\
& \quad=C\left|\Delta^{2} \xi-\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla(\xi+\phi))\right|_{2}=C|w(\varphi)|_{2} .
\end{aligned}
$$

Hence (18) holds.
Step 2: (Relaxing the local approximation $\|\varphi-\bar{\varphi}\|_{4} \leq \beta$ by $\|\varphi-\bar{\varphi}\|_{3} \leq \beta$) There exits $\beta>0$ and $C>0$ such that if $\varphi \in H^{4}(\Omega)$ and $\|\varphi-\bar{\varphi}\|_{3} \leq \beta$, then (18) holds.

In this step, a similar argument is followed to that in Lemma 4.4 of [12]. Since $\varphi-\bar{\varphi}=\xi-\bar{\xi}$, this is reduced to the homogeneous functions $\xi, \bar{\xi}$. From (10), there exists $M>0$ such that

$$
\|\xi-\bar{\xi}\|_{4} \leq M\left|\Delta^{2}(\xi-\bar{\xi})\right|_{2}
$$

and by using Sovolev's embeddings and $\|\xi\|_{3} \leq\|\bar{\xi}\|_{3}+\beta \leq C$, we obtain

$$
\begin{aligned}
& \left|\nabla \cdot\left(\boldsymbol{f}_{\varepsilon}(\nabla(\xi+\phi))-\boldsymbol{f}_{\varepsilon}(\nabla(\bar{\xi}+\phi))\right)\right|_{2} \leq C(\beta)\|\xi-\bar{\xi}\|_{3}, \\
& |\mathcal{E}(\xi)-\mathcal{E}(\bar{\xi})|^{1-\theta} \leq C(\beta)\|\xi-\bar{\xi}\|_{2}^{1-\theta} \leq C(\beta)\|\xi-\bar{\xi}\|_{3}^{1-\theta}
\end{aligned}
$$

where $C(\beta)$ depends on β (and $\|\bar{\xi}\|_{3}$). In particular, since $\|\xi-\bar{\xi}\|_{3}<\beta$, then

$$
\left|\nabla \cdot\left(\boldsymbol{f}_{\boldsymbol{\varepsilon}}(\nabla(\xi+\phi))-\boldsymbol{f}_{\varepsilon}(\nabla(\bar{\xi}+\phi))\right)\right|_{2}+|\mathcal{E}(\xi)-\mathcal{E}(\bar{\xi})|^{1-\theta}<C(\beta)\left(\beta+\beta^{1-\theta}\right) .
$$

Therefore, there exists a (sufficiently small) $\beta \in(0,1]$ independent of ξ, such that

$$
C(\beta)\left(\beta+\beta^{1-\theta}\right)<\frac{\beta_{1}}{2 M} .
$$

For any $\xi \in H^{4}(\Omega)$ satisfying $\|\xi-\bar{\xi}\|_{3}<\beta$ (that is, for any $\varphi \in H^{4}(\Omega)$ satisfying $\|\varphi-\bar{\varphi}\|_{3}<\beta$), there are only two possibilities: either $\|\xi-\bar{\xi}\|_{4}<\beta_{1}$ and then (18) holds by using Step 1; or $\|\xi-\bar{\xi}\|_{4}>\beta_{1}$. In this latter case,

$$
\begin{aligned}
|w(\varphi)|_{2} & =\left|\Delta^{2}(\xi-\bar{\xi})-\nabla \cdot\left(\boldsymbol{f}_{\varepsilon}(\nabla(\xi+\phi))-\boldsymbol{f}_{\varepsilon}(\nabla(\bar{\xi}+\phi))\right)\right|_{2} \\
& \geq \frac{1}{M}\|\xi-\bar{\xi}\|_{4}-\left|\nabla \cdot\left(\boldsymbol{f}_{\varepsilon}(\nabla(\xi+\phi))-\boldsymbol{f}_{\varepsilon}(\nabla(\bar{\xi}+\phi))\right)\right|_{2} \\
& >\frac{\beta_{1}}{M}-\frac{\beta_{1}}{2 M}=\frac{\beta_{1}}{2 M}>|\mathcal{E}(\xi)-\mathcal{E}(\bar{\xi})|^{1-\theta}=\left|E_{e}(\xi)-E_{e}(\bar{\xi})\right|^{1-\theta},
\end{aligned}
$$

and hence (18) holds.

Remark 6 The Lojasiewicz-Simon inequality given in Lemma 5 has been formulated in a "strong sense". However, other versions are also possible. For example, Theorem 2.1 of [7] for homogeneous Dirichlet conditions and the comments given in [14] for the non-homogeneous Dirichlet case show a "weak" version where, if $\|\varphi-\bar{\varphi}\|_{1} \leq \beta$, then $\left|E_{e}(\varphi)-E_{e}(\bar{\varphi})\right|^{1-\theta} \leq$ $C\|w\|_{-2}$ holds. Futhermore, an "intermediate" version has been applied in [12] for periodic boundary conditions, where $\left|E_{e}(\varphi)-E_{e}(\bar{\varphi})\right|^{1-\theta} \leq C\|w\|_{-1}$ if $\|\varphi-\bar{\varphi}\|_{2} \leq \beta$.

3 The Smectic Model

Definition 7 A pair $(\boldsymbol{u}, \varphi)$ is said to be a global weak solution of (1)-(7) in $(0,+\infty)$ if

$$
\begin{gather*}
\boldsymbol{u} \in L^{\infty}\left(0,+\infty ; \boldsymbol{L}^{2}(\Omega)\right) \\
\varphi L^{2}(0,+\infty ; \boldsymbol{V}), \quad w \in L^{2}\left(0,+\infty ; L^{2}(\Omega)\right), \tag{20}\\
\varphi \in L^{\infty}\left(0,+\infty ; H^{2}(\Omega)\right), \\
\nabla \cdot \boldsymbol{u}=0 \text { in } Q,\left.\quad \boldsymbol{u}\right|_{\Sigma}=0,\left.\quad \varphi\right|_{\Sigma}=\varphi_{1},\left.\quad \partial_{\mathrm{n}} \varphi\right|_{\Sigma}=\varphi_{2}, \\
\boldsymbol{u}(0)=\boldsymbol{u}_{0}, \quad \varphi(0)=\varphi_{0} \quad \text { in } \Omega,
\end{gather*}
$$

and it satisfies the variational formulation:

$$
\begin{array}{rr}
\left\langle\partial_{t} \boldsymbol{u}, \overline{\boldsymbol{u}}\right\rangle+((\boldsymbol{u} \cdot \nabla) \boldsymbol{u}, \overline{\boldsymbol{u}})+(\nabla \boldsymbol{u}, \nabla \overline{\boldsymbol{u}})-(w \nabla \varphi, \overline{\boldsymbol{u}})=0 & \forall \overline{\boldsymbol{u}} \in \boldsymbol{V}, \\
\left\langle\partial_{t} \varphi, \bar{w}\right\rangle+(\boldsymbol{u} \cdot \nabla \varphi, \bar{w})+(w, \bar{w})=0, & \forall \bar{w} \in L^{2} \\
(\Delta \varphi, \Delta \bar{\varphi})-\left(\nabla \cdot \boldsymbol{f}_{\boldsymbol{\varepsilon}}(\nabla \varphi), \bar{\varphi}\right)-(w, \bar{\varphi})=0, & \forall \bar{\varphi} \in H^{2} . \tag{23}
\end{array}
$$

Moreover, from the weak regularity of (φ, w) given in (20), (23) and (10), it can be deduced that $\varphi \in L_{\text {loc }}^{2}\left(0,+\infty ; H^{4}\right)$ whenever $\varphi_{1} \in H^{7 / 2}(\partial \Omega)$ and $\varphi_{2} \in H^{5 / 2}(\partial \Omega)$, i.e. $\varphi \in L^{2}\left(0, T ; H^{4}\right)$ for all $T>0$.

Definition 8 A weak solution $(\boldsymbol{u}, \varphi)$ is said to be a strong solution of (1)-(7) in $(0,+\infty)$ if

$$
\begin{gather*}
\boldsymbol{u} \in L^{\infty}\left(0,+\infty ; \boldsymbol{H}^{1}(\Omega)\right) \cap L_{l o c}^{2}\left(0,+\infty ; \boldsymbol{H}^{2}(\Omega)\right), \quad \partial_{t} \boldsymbol{u} \in L_{l o c}^{2}\left(0,+\infty ; \boldsymbol{L}^{2}(\Omega)\right), \tag{24}\\
\partial_{t} \varphi \in L^{\infty}\left(0,+\infty ; L^{2}(\Omega)\right) \cap L_{l o c}^{2}\left(0,+\infty ; H^{2}(\Omega)\right),
\end{gather*}
$$

and it satisfies the fully differential system (1)-(3) point-wise in $(0,+\infty) \times \Omega$.
Moreover, for regular domains, one has

$$
\varphi \in L^{\infty}\left(0,+\infty ; H^{4}\right) \cap L_{l o c}^{2}\left(0,+\infty ; H^{6}\right), \quad w \in L^{\infty}\left(0,+\infty ; L^{2}\right) \cap L_{l o c}^{2}\left(0,+\infty ; H^{2}\right)
$$

whenever $\varphi_{1} \in H^{11 / 2}(\partial \Omega)$ and $\varphi_{2} \in H^{9 / 2}(\partial \Omega)$.

3.1 Energy Equality and Weak Estimates

If $(\boldsymbol{u}, \varphi, w)$ is a regular enough solution of (1)-(4), (6), (7), then by taking $\overline{\boldsymbol{u}}=\boldsymbol{u}, \bar{w}=\boldsymbol{w}$ and $\bar{\varphi}=\partial_{t} \varphi$ as a test function in (21), (22) and (23) respectively, one has

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}|\boldsymbol{u}|_{2}^{2}+|\nabla \boldsymbol{u}|_{2}^{2}-(w \nabla \varphi, \boldsymbol{u})=0, \\
\left(\partial_{t} \varphi, w\right)+(\boldsymbol{u} \cdot \nabla \varphi, w)+|w|_{2}^{2}=0, \\
\frac{d}{d t}\left(\frac{1}{2}|\Delta \varphi|_{2}^{2}+\int_{\Omega} F_{\varepsilon}(\nabla \varphi)\right)-\left(w, \partial_{t} \varphi\right)=0 .
\end{gathered}
$$

Through adding these three equalities, the term $\left(w, \partial_{t} \varphi\right)$ is cancelled and the nonlinear convective term $(\boldsymbol{u} \cdot \nabla \varphi, w)$ plus the elastic term $-(w \nabla \varphi, \boldsymbol{u})$ also vanish, thereby yielding at the following energy equality:

$$
\begin{equation*}
\frac{d}{d t} E(\boldsymbol{u}(t), \varphi(t))+|\nabla \boldsymbol{u}|_{2}^{2}+|w|_{2}^{2}=0 \tag{25}
\end{equation*}
$$

This energy equality illustrates the dissipative character of the model with respect to the total free energy $E(\boldsymbol{u}, \varphi)=E_{k}(\boldsymbol{u})+E_{e}(\varphi)$, where $E_{k}(\boldsymbol{u})=\frac{1}{2} \int_{\Omega}|\boldsymbol{u}|^{2}$ is the kinetic energy and $E_{e}(\varphi)$ is the elastic energy defined in (5). Moreover, assuming the initial estimate $\left|\boldsymbol{u}_{0}\right|_{2}^{2} \leq C$ and $\left\|\varphi_{0}\right\|_{2}^{2} \leq C$, the following uniform bounds at the infinite time interval $(0,+\infty)$ hold:

$$
\begin{equation*}
\boldsymbol{u} \text { in } L^{\infty}(0,+\infty ; \boldsymbol{H}) \cap L^{2}(0,+\infty ; \boldsymbol{V}), \quad w \text { in } L^{2}\left(0,+\infty ; L^{2}\right), \quad \varphi \text { in } L^{\infty}\left(0,+\infty ; H^{2}\right) . \tag{26}
\end{equation*}
$$

In particular, from the bound of w in $L^{2}\left(0,+\infty ; L^{2}\right)$ and (10), one has the finite time bound

$$
\varphi \text { in } L^{2}\left(0, T ; H^{4}\right), \quad \forall T>0 .
$$

For instance, weak solutions furnished by a limit of Galerkin approximate solutions which satisfy the corresponding energy inequality (by replacing the equality $=0$ with the inequality ≤ 0 in (25)) can be obtained, which suffices to rigorously prove all previous estimates.

3.2 Strong Estimates

From (23) and (10), we have for each $t \in(0,+\infty)$:

$$
\begin{equation*}
\|\varphi(t)\|_{4} \leq C\left(\left\|\varphi_{1}\right\|_{7 / 2 ; \partial \Omega}+\left\|\varphi_{2}\right\|_{5 / 2 ; \partial \Omega}+|w(t)|_{2}+\left|\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla \varphi(t))\right|_{2}\right) \tag{27}
\end{equation*}
$$

By using weak estimates $\|\varphi(t)\|_{2} \leq C$ and

$$
\begin{equation*}
\left|\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla \varphi(t))\right|_{2} \leq C\left|\nabla_{n} f_{\varepsilon}(\nabla \varphi(t))\right|_{3}\left|D^{2} \varphi(t)\right|_{6} \leq C\|\varphi(t)\|_{3} \tag{28}
\end{equation*}
$$

we obtain

$$
\|\varphi(t)\|_{3} \leq C\|\varphi(t)\|_{2}^{1 / 2}\|\varphi(t)\|_{4}^{1 / 2} \leq C\left(1+|w(t)|_{2}^{1 / 2}+\|\varphi(t)\|_{3}^{1 / 2}\right) .
$$

Hence

$$
\begin{equation*}
\|\varphi(t)\|_{3} \leq C\left(1+|w(t)|_{2}^{1 / 2}\right) \tag{29}
\end{equation*}
$$

On the other hand, from (3), it follows that

$$
\begin{equation*}
|w(t)|_{2} \leq C\left(\left|\partial_{t} \varphi(t)\right|_{2}+|\boldsymbol{u}(t)|_{3}|\nabla \varphi(t)|_{6}\right) \leq C\left(\left|\partial_{t} \varphi(t)\right|_{2}+\|\boldsymbol{u}(t)\|_{1}^{1 / 2}\right) . \tag{30}
\end{equation*}
$$

Hence, from (29) and (30)

$$
\begin{equation*}
\|\varphi(t)\|_{3} \leq C\left(1+\left|\partial_{t} \varphi(t)\right|_{2}^{1 / 2}+\|\boldsymbol{u}(t)\|_{1}^{1 / 4}\right) \tag{31}
\end{equation*}
$$

By means of taking $-A \boldsymbol{u}+\partial_{t} \boldsymbol{u}$ as a test function in the \boldsymbol{u}-system (1) (A being the Stokes operator), and by applying Hölder and Young's inequalities and the interpolation inequality

$$
\|\varphi\|_{W^{1, \infty}} \leq C\|\varphi\|_{2}^{1 / 2}\|\varphi\|_{3}^{1 / 2}
$$

we attain:

$$
\begin{gathered}
\frac{d}{d t}|\nabla \boldsymbol{u}|_{2}^{2}+|A \boldsymbol{u}|_{2}^{2}+\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2} \leq C\left(|(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}|_{2}+|(\nabla \varphi) w|_{2}\right)\left(|A \boldsymbol{u}|_{2}+\left|\partial_{t} \boldsymbol{u}\right|_{2}\right) \\
\leq C\left(|\boldsymbol{u}|_{6}|\nabla \boldsymbol{u}|_{3}+|\nabla \varphi|_{\infty}|w|_{2}\right)\left(\|\boldsymbol{u}\|_{2}+\left|\partial_{t} \boldsymbol{u}\right|_{2}\right) \\
\leq C\left(\|\boldsymbol{u}\|_{1}^{3 / 2}\|\boldsymbol{u}\|_{2}^{3 / 2}+\|\boldsymbol{u}\|_{1}^{3 / 2}\|\boldsymbol{u}\|_{2}^{1 / 2}\left|\partial_{t} \boldsymbol{u}\right|_{2}+\|\varphi\|_{2}^{1 / 2}\|\varphi\|_{3}^{1 / 2}|w|_{2}\left(\|\boldsymbol{u}\|_{2}+\left|\partial_{t} \boldsymbol{u}\right|_{2}\right)\right) \\
\leq \frac{1}{2}\|\boldsymbol{u}\|_{2}^{2}+\frac{1}{2}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2}+C\left(\|\boldsymbol{u}\|_{1}^{6}+\|\varphi\|_{3}|w|_{2}^{2}\right) .
\end{gathered}
$$

Therefore, by using (30) and (31), we obtain

$$
\begin{equation*}
\frac{d}{d t}\|\boldsymbol{u}\|_{1}^{2}+\frac{1}{2}\|\boldsymbol{u}\|_{2}^{2}+\frac{1}{2}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2} \leq C\left(\|\boldsymbol{u}\|_{1}^{6}+\left(1+\left|\partial_{t} \varphi\right|_{2}^{1 / 2}+\|\boldsymbol{u}\|_{1}^{1 / 4}\right)\left(\left|\partial_{t} \varphi\right|_{2}^{2}+\|\boldsymbol{u}\|_{1}\right)\right) . \tag{32}
\end{equation*}
$$

On the other hand, by deriving the w-equation (3) and φ-equation (4) with respect to t, taking $\partial_{t} \varphi$ as a test function in both these derivations, adding, and taking into account that
$\left(\boldsymbol{u} \cdot \nabla \partial_{t} \varphi, \partial_{t} \varphi\right)=0$ and also the term $\left(\partial_{t} w, \partial_{t} \varphi\right)$ is cancelled, we then have:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left|\partial_{t} \varphi\right|_{2}^{2}+\left|\Delta \partial_{t} \varphi\right|_{2}^{2}=-\left(\partial_{t} \boldsymbol{u} \cdot \nabla \varphi, \partial_{t} \varphi\right)+\left(\partial_{t}\left(\nabla \cdot \boldsymbol{f}_{\varepsilon}(\nabla \varphi)\right), \partial_{t} \varphi\right) \\
& \leq\left|\partial_{t} \boldsymbol{u}\right|_{2}|\nabla \varphi|_{6}\left|\partial_{t} \varphi\right|_{3}+\left(\left|\nabla_{n} \boldsymbol{f}_{\varepsilon}(\nabla \varphi)\right|_{3}\left|\nabla^{2} \partial_{t} \varphi\right|_{2}+\left|\nabla_{n}^{2} \boldsymbol{f}_{\varepsilon}(\nabla \varphi)\right|_{6}\left|\nabla^{2} \varphi\right|_{2}\left|\partial_{t} \nabla \varphi\right|_{6}\right)\left|\partial_{t} \varphi\right|_{6} \tag{33}\\
& \leq C\left(\left|\partial_{t} \boldsymbol{u}\right|_{2}\left|\partial_{t} \varphi\right|_{2}^{1 / 2}\left\|\partial_{t} \varphi\right\|_{1}^{1 / 2}+\left\|\partial_{t} \varphi\right\|_{2}\left\|\partial_{t} \varphi\right\|_{1}+\left\|\partial_{t} \varphi\right\|_{2}^{3 / 2}\left|\partial_{t} \varphi\right|_{2}^{1 / 2}\right) \\
& \leq \frac{1}{8}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2}+\frac{1}{2}\left\|\partial_{t} \varphi\right\|_{2}^{2}+C\left|\partial_{t} \varphi\right|_{2}^{2},
\end{align*}
$$

where (28) and $\left\|\partial_{t} \varphi\right\|_{2}=\left|\Delta \partial_{t} \varphi\right|_{2}$ have been applied (because $\left.\partial_{t} \varphi\right|_{\partial \Omega}=0$). Therefore, from

$$
\begin{equation*}
\frac{d}{d t}\left|\partial_{t} \varphi\right|_{2}^{2}+\left\|\partial_{t} \varphi\right\|_{2}^{2} \leq \frac{1}{4}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2}+C\left|\partial_{t} \varphi\right|_{2}^{2} \tag{33}
\end{equation*}
$$

From the addition of (32) and (34), it follows that:

$$
\begin{align*}
& \frac{d}{d t}\left(\|\boldsymbol{u}\|_{1}^{2}+\left|\partial_{t} \varphi\right|_{2}^{2}\right)+\frac{1}{2}\|\boldsymbol{u}\|_{2}^{2}+\frac{1}{4}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2}+\left\|\partial_{t} \varphi\right\|_{2}^{2} \tag{35}\\
& \quad \leq C\left(\|\boldsymbol{u}\|_{1}^{6}+\left(1+\left|\partial_{t} \varphi\right|_{2}^{1 / 2}+\|\boldsymbol{u}\|_{1}^{1 / 4}\right)\left(\left|\partial_{t} \varphi\right|_{2}^{2}+\|\boldsymbol{u}\|_{1}\right)\right)
\end{align*}
$$

By denoting

$$
\Phi(t):=\|\boldsymbol{u}\|_{1}^{2}+\left|\partial_{t} \varphi\right|_{2}^{2}, \quad \Psi(t):=\frac{1}{2}\|\boldsymbol{u}\|_{2}^{2}+\frac{1}{4}\left|\partial_{t} \boldsymbol{u}\right|_{2}^{2}+\left\|\partial_{t} \varphi\right\|_{2}^{2}
$$

then (35) can be rewritten as

$$
\begin{equation*}
\Phi^{\prime}+\Psi \leq C\left(\Phi^{3}+\Phi+\Phi^{1 / 2}+\Phi^{5 / 4}+\Phi^{3 / 4}+\Phi^{9 / 8}\right) \leq C\left(\Phi^{3}+1\right) . \tag{36}
\end{equation*}
$$

Observe that $\Phi \in L^{1}(0,+\infty)$ since $\left|\partial_{t} \varphi\right|_{2} \in L^{2}(0,+\infty)$. Indeed, from the w-equation (3):

$$
\left|\partial_{t} \varphi\right|_{2} \leq C\left(|w|_{2}+\|\boldsymbol{u}\|_{1}\|\nabla \varphi\|_{1}\right) \leq C\left(|w|_{2}+\|\boldsymbol{u}\|_{1}\right)
$$

and $|w|_{2}+\|\boldsymbol{u}\|_{1} \in L^{2}(0,+\infty)$.
Therefore, the entire hypothesis of Theorem 2 holds, then there exists a sufficiently large $T_{\text {reg }}^{*} \geq 0$ such that the following (regular) estimates hold in $\left(T_{\text {reg }}^{*},+\infty\right)$:

$$
\boldsymbol{u} \in L^{\infty}\left(T_{r e g}^{*},+\infty ; \boldsymbol{H}^{1}\right), \quad \partial_{t} \varphi \in L^{\infty}\left(T_{r e g}^{*},+\infty ; L^{2}\right)
$$

By integrating (36) in $[0, t]$ for all $t>0$, the following local (regular) estimates in $\left(T_{r e g}^{*},+\infty\right)$ are obtained:

$$
\boldsymbol{u} \in L_{l o c}^{2}\left(T_{r e g}^{*},+\infty ; \boldsymbol{H}^{2}\right), \quad \partial_{t} \boldsymbol{u} \in L_{l o c}^{2}\left(T_{r e g}^{*},+\infty ; \boldsymbol{L}^{2}\right), \quad \partial_{t} \varphi \in L_{l o c}^{2}\left(T_{r e g}^{*},+\infty ; H^{2}\right)
$$

By using the w-equation (3), one has, for each $t \in(0,+\infty)$:

$$
\begin{equation*}
|w(t)|_{2} \leq C\left(\left|\partial_{t} \varphi(t)\right|_{2}+\|\boldsymbol{u}(t)\|_{1}\right) \tag{37}
\end{equation*}
$$

hence

$$
w \in L^{\infty}\left(T_{r e g}^{*},+\infty ; L^{2}\right)
$$

and from (29),

$$
\varphi \in L^{\infty}\left(T_{r e g}^{*},+\infty ; H^{3}\right)
$$

Futhermore, from (3), we have

$$
\|w(t)\|_{2} \leq C\left(\left\|\partial_{t} \varphi(t)\right\|_{2}+\|\boldsymbol{u}(t)\|_{2}\|\varphi(t)\|_{3}\right)
$$

hence

$$
w \in L_{l o c}^{2}\left(T_{r e g}^{*},+\infty ; H^{2}\right)
$$

Observe that, through combining (3) and (4), $\varphi(t)$ is the solution of the bilaplacian problem

$$
\left\{\begin{array}{l}
\Delta^{2} \varphi=\nabla \cdot f_{\varepsilon}(\nabla \varphi)-w \quad \text { in } \Omega, \\
\left.\varphi\right|_{\partial \Omega}=\varphi_{1},\left.\quad \partial_{\mathrm{n}} \varphi\right|_{\partial \Omega}=\varphi_{2} \quad \text { on } \partial \Omega .
\end{array}\right.
$$

By means of using the H^{4} and H^{6} regularity of this problem and bounding the right-hand-side terms, and from the weak regularity and the strong regularity of φ and w previously proved, we have

$$
\varphi \in L^{\infty}\left(T_{\text {reg }}^{*},+\infty ; H^{4}\right) \cap L_{\text {loc }}^{2}\left(T_{\text {reg }}^{*},+\infty ; H^{6}\right)
$$

3.3 Existence of global weak solutions with long-time strong regularity

The existence of solutions of (1)-(7) can be justified by the Galerkin Method [3]. Given some fixed regular basis $\left(\boldsymbol{w}^{i}\right)_{i}$ and $\left(\phi^{j}\right)_{j}$ of the spaces \boldsymbol{V} and $H_{0}^{2}(\Omega)$, respectively, let \boldsymbol{V}^{m} and W^{m} be the finite-dimensional subspaces spanned by

$$
\left\{\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{m}\right\} \quad \text { and } \quad\left\{\phi^{1}, \ldots, \phi^{m}\right\}
$$

respectively. Given $\boldsymbol{u}_{0} \in \boldsymbol{H}$ and $\varphi_{0} \in H^{2}$, for each $m \geq 1$, we seek an approximate solution $\left(\boldsymbol{u}_{m}, \varphi_{m}\right)$, such that $\boldsymbol{u}_{m}:[0, T] \mapsto \boldsymbol{V}^{m}$ and $\varphi_{m}=\widetilde{\varphi}+\widehat{\varphi}_{m}$, where $\widetilde{\varphi}$ is an adequate lifting function of the boundary data φ_{1}, φ_{2} and $\widehat{\varphi}_{m}:[0, T] \mapsto W^{m}$, which satisfies the following variational formulation a.e. $t \in(0, T)$:

$$
\left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{u}_{m}(t), \boldsymbol{v}_{m}\right)+\left(\left(\boldsymbol{u}_{m}(t) \cdot \nabla\right) \boldsymbol{u}_{m}(t), \boldsymbol{v}_{m}\right)+\nu\left(\nabla \boldsymbol{u}_{m}(t), \nabla \boldsymbol{v}_{m}\right) \tag{38}\\
\quad-\left(w_{m}(t) \nabla \varphi_{m}(t), \boldsymbol{v}_{m}\right)=0 \quad \forall \boldsymbol{v}_{m} \in \boldsymbol{V}^{m}, \\
\left(\partial_{t} \varphi_{m}(t), e_{m}\right)+\left(\boldsymbol{u}_{m}(t) \cdot \nabla \varphi_{m}(t), e_{m}\right)+\left(w_{m}(t), e_{m}\right) \\
=\left(\partial_{t} \varphi_{m}(t), e_{m}\right), \quad \forall e_{m} \in W^{m} \\
\boldsymbol{u}_{m}(0)=\boldsymbol{u}_{0 m}=P_{m}\left(\boldsymbol{u}_{0}\right), \quad \varphi_{m}(0)=\varphi_{0 m}=Q_{m}\left(\varphi_{0}\right) \quad \text { in } \Omega
\end{array}\right.
$$

Here, $P_{m}: \boldsymbol{H} \mapsto \boldsymbol{V}^{m}$ denotes the projection from \boldsymbol{H} onto $\boldsymbol{V}^{m} ; Q_{m}: L^{2} \mapsto W^{m}$ the projection from L^{2} onto W^{m}; and the Euler-Lagrange equation $\Delta^{2} \varphi_{m}-\nabla \cdot \boldsymbol{f}\left(\nabla \varphi_{m}\right)$ has been projected into W^{m} by taking

$$
w_{m}:=Q_{m}\left(\Delta^{2} \varphi_{m}-\nabla \cdot \boldsymbol{f}\left(\nabla \varphi_{m}\right)\right)
$$

In particular, $\boldsymbol{u}_{0 m} \rightarrow \boldsymbol{u}_{0}$ in \boldsymbol{L}^{2} and $\varphi_{0 m} \rightarrow \varphi_{0}$ in $H^{2}($ as $m \rightarrow 0)$. If we write

$$
\boldsymbol{u}_{m}(t)=\sum_{i=1}^{m} \xi_{i, m}(t) \boldsymbol{w}^{i} \quad \text { and } \quad \varphi_{m}(t)=\sum_{j=1}^{m} \zeta_{j, m}(t) \phi^{j}
$$

then (38) can be rewritten as a first-order ordinary differential system (in normal form), associated to the unknowns $\left(\xi_{i, m}(t), \zeta_{j, m}(t)\right)$. By proceeding in an analogous way to [10] and [3] (local existence, a priori estimates, and tending towards the limit where the nonlinear terms are controlled by compactness), the existence of weak solutions ($\boldsymbol{u}, \varphi)$ of (1)-(7) in $(0,+\infty)$ can be proved, which are also strong solutions (and unique) in ($T_{\text {reg }}^{*},+\infty$) for a sufficiently long-time $T_{\text {reg }}^{*} \geq 0$. Observe that $T_{\text {reg }}^{*}$ can be obtained by applying Theorem 2 to $\Phi^{m}(t)=\left\|\boldsymbol{u}^{m}\right\|_{1}^{2}+\left|\partial_{t} \varphi^{m}\right|_{2}^{2}$, and by taking into account that T^{*} given in Theorem 2 is independent of m.

Remark 9 The differential inequality (36)has been obtained with Φ depending on \boldsymbol{u} and $\partial_{t} \varphi$. Another possibility could be to deduce a similar differential inequality for a Φ depending on \boldsymbol{u} and w (instead of for $\partial_{t} \varphi$). To this end, the computations could be: take $\partial_{t} w$ as a test function in the w-equation (3), derive the φ-equation (4) with respect to t and take $\partial_{t} \varphi$ as a test function. Adding both equalities to (32) the term $\left(\partial_{t} \varphi, \partial_{t} w\right)$ is cancelled, thereby arriving at the following inequality instead of (33):

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|w|_{2}^{2}+\left|\partial_{t} \Delta \varphi\right|_{2}^{2}=-\left(\boldsymbol{u} \cdot \nabla \varphi, \partial_{t} w\right)+\left(\partial_{t} \boldsymbol{f}_{\varepsilon}(\nabla \varphi), \partial_{t} \nabla \varphi\right) \tag{39}
\end{equation*}
$$

Nevertheless, we do not know how to estimate the convective term $\left(\boldsymbol{u} \cdot \nabla \varphi, \partial_{t} w\right)$ in order to deduce a differential inequality such as in (36).

3.4 Convergence at infinite time

We recall the definition of the elastic energy:

$$
E_{e}(\varphi(t))=\int_{\Omega}\left(\frac{1}{2}|\Delta \varphi(t)|^{2}+F_{\varepsilon}(\nabla \varphi(t))\right)
$$

and the kinetic and total energy is also defined as:

$$
E_{k}(\boldsymbol{u}(t))=\frac{1}{2} \int_{\Omega}|\boldsymbol{u}(t)|^{2}, \quad E(\boldsymbol{u}(t), \varphi(t))=E_{k}(\boldsymbol{u}(t))+E_{e}(\varphi(t))
$$

Theorem 10 Assume that $\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \in \boldsymbol{H} \times H^{2}$. Let $(\boldsymbol{u}(t), \varphi(t), w(t))$ be a weak solution of (1)-(7) in $(0,+\infty)$ which is a strong solution in $\left(T_{\text {reg }}^{*},+\infty\right)$ for some $T_{\text {reg }}^{*}>0$, then there exists a number $E_{\infty} \geq 0$ such that the total energy satisfies

$$
\begin{equation*}
E(\boldsymbol{u}(t), \varphi(t)) \searrow E_{\infty} \text { in } \mathbb{R} \quad \text { as } t \uparrow+\infty . \tag{40}
\end{equation*}
$$

Moreover, the following convergences hold:

$$
\begin{equation*}
\boldsymbol{u}(t) \rightarrow 0 \text { in } \boldsymbol{H}_{0}^{1} \quad \text { and } \quad w(t) \rightarrow 0 \text { in } L^{2} \quad \text { as } t \uparrow+\infty . \tag{41}
\end{equation*}
$$

Proof. The (decreasing) convergence of the energy given in (40) is easy to deduce from energy equality (25) (observe (12)). By applying Lemma 1 for $\Phi(t):=\|\boldsymbol{u}\|_{1}^{2}+\left|\partial_{t} \varphi\right|_{2}^{2}$, we obtain $\boldsymbol{u}(t) \rightarrow 0$ in \boldsymbol{H}_{0}^{1} and $\partial_{t} \varphi(t) \rightarrow 0$ in L^{2}. Finally; from (37), $w(t) \rightarrow 0$ in L^{2} holds.

Let S be the set of equilibrium points of (1)-(4):

$$
S=\left\{(0, \bar{\varphi}): \bar{\varphi} \in H^{4}(\Omega), \Delta^{2} \bar{\varphi}-\nabla \cdot f_{\varepsilon}(\nabla \bar{\varphi})=0,\left.\bar{\varphi}\right|_{\partial \Omega}=\varphi_{1},\left.\partial_{\mathrm{n}} \bar{\varphi}\right|_{\partial \Omega}=\varphi_{2}\right\}
$$

On the other hand, the ω-limit set of a global weak solution, $(\boldsymbol{u}, \varphi)$, associated to the initial data, $\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \in \boldsymbol{H} \times H^{2}$, is defined as follows:
$\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)=\left\{\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}\right) \in \boldsymbol{V} \times H^{4}: \exists\left\{t_{n}\right\} \uparrow+\infty\right.$ s.t. $\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right) \rightarrow\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}\right)$ in $\left.\boldsymbol{H}^{1} \times H^{4}\right\}$.
Theorem 11 Under the assumptions of Theorem 10, $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)$ is non-empty and $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \subset$ S. Moreover, for any $(0, \bar{\varphi}) \in S$ such that $(0, \bar{\varphi}) \in \omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)$, then $E_{e}(\bar{\varphi})=E_{\infty}$ holds.

Proof. The proof is divided into two steps.
Step 1: It can been seen that $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \neq \emptyset$ and $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \subset S$.
From weak estimates, $(\boldsymbol{u}, \varphi) \in L^{\infty}\left(0,+\infty ; \boldsymbol{H} \times H^{2}\right)$, hence there exists $\left\{t_{n}\right\} \uparrow+\infty$ and $\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}\right) \in \boldsymbol{H} \times H^{2}$ such that $\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right) \rightarrow\left(\boldsymbol{u}_{\infty}, \varphi_{\infty}\right)$ weakly in $\boldsymbol{H} \times H^{2}$. From (41), $\boldsymbol{u}_{\infty}=0$ and $\boldsymbol{u}\left(t_{n}\right) \rightarrow 0$ in \boldsymbol{H}_{0}^{1}. On the other hand, φ_{∞} will be a weak solution of the equilibrium equation $\Delta^{2} \varphi_{\infty}-\nabla \cdot f_{\varepsilon}\left(\nabla \varphi_{\infty}\right)=0$. Indeed, since $\nabla \varphi\left(t_{n}\right) \rightarrow \nabla \varphi_{\infty}$ a.e. in Ω, then

$$
\boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right) \rightarrow \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi_{\infty}\right) \text { a.e. in } \Omega
$$

and, by using the weak estimate $\left\|\varphi\left(t_{n}\right)\right\|_{2} \leq C$, then

$$
\left|\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right)\right|_{6 / 5} \leq C\left(\left|\nabla \varphi\left(t_{n}\right)\right|_{6}^{2}+1\right)\left|D^{2} \varphi\left(t_{n}\right)\right|_{2} \leq C\left(\left\|\varphi\left(t_{n}\right)\right\|_{2}^{2}+1\right)\left\|\varphi\left(t_{n}\right)\right\|_{2} \leq C,
$$

hence

$$
\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right) \rightarrow \nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi_{\infty}\right) \text { weakly in } L^{6 / 5}(\Omega)
$$

By taking into account that $\varphi\left(t_{n}\right) \rightarrow \varphi_{\infty}$ weakly in H^{2} and $w(t) \rightarrow 0$ (strongly) in L^{2} as $t \rightarrow+\infty$, it suffices to take limits in (23) as $\left\{t_{n}\right\} \uparrow+\infty$ to illustrate that φ_{∞} is a weak solution of the equilibrium equation

$$
\begin{equation*}
\Delta^{2} \varphi_{\infty}-\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi_{\infty}\right)=0 \tag{42}
\end{equation*}
$$

This step finishes by proving the convergence $\varphi\left(t_{n}\right) \rightarrow \varphi_{\infty}$ in H^{4}. Indeed, from (4), (10) and (23), it is now that

$$
\begin{equation*}
\left\|\varphi\left(t_{n}\right)\right\|_{4} \leq C\left(\left|\Delta^{2} \varphi\left(t_{n}\right)\right|_{2}+1\right) \leq C\left(\left|\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right)\right|_{2}+\left|w\left(t_{n}\right)\right|_{2}+1\right) \tag{43}
\end{equation*}
$$

On the other hand, by using the interpolation inequalities $|\nabla \varphi|_{\infty} \leq\|\varphi\|_{2}^{1 / 2}\|\varphi\|_{3}^{1 / 2}$ and $\|\varphi\|_{3} \leq$ $\|\varphi\|_{2}^{1 / 2}\|\varphi\|_{4}^{1 / 2}$, and the weak estimate $\left\|\varphi\left(t_{n}\right)\right\|_{2} \leq C$, we obtain
$\left|\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right)\right|_{2} \leq C\left(\left\|\varphi\left(t_{n}\right)\right\|_{2}\left\|\varphi\left(t_{n}\right)\right\|_{3}+1\right)\left\|\varphi\left(t_{n}\right)\right\|_{2} \leq C\left(\left\|\varphi\left(t_{n}\right)\right\|_{4}^{1 / 2}+1\right) \leq \delta\left\|\varphi\left(t_{n}\right)\right\|_{4}+C / \delta$.

The application of the latter inequality for a sufficiently small $\delta>0$ in (43) yields

$$
\begin{equation*}
\left\|\varphi\left(t_{n}\right)\right\|_{4} \leq C \tag{44}
\end{equation*}
$$

Moreover, from the weak estimates and (44), it is easy to attain the bound

$$
\left\|\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right)\right\|_{1} \leq C
$$

By compactness, $\nabla \cdot \boldsymbol{f}_{\varepsilon}\left(\nabla \varphi\left(t_{n}\right)\right)$ converges strongly in $L^{2}(\Omega)$, for at least an equally labelled subsequence. Therefore, by again using (23), $\Delta^{2} \varphi\left(t_{n}\right) \rightarrow \Delta^{2} \varphi\left(t_{n}\right)$ converges strongly in $L^{2}(\Omega)$, and hence $\varphi\left(t_{n}\right) \rightarrow \varphi_{\infty}$ converges strongly in $H^{4}(\Omega)$.

Step 2: If $(0, \bar{\varphi}) \in \omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)$ then $E(0, \bar{\varphi})=E_{e}(\bar{\varphi})=E_{\infty}\left(E_{\infty}\right.$ given in Theorem 10).
From the definition of $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)$, there exists $\left\{t_{n}\right\} \uparrow+\infty$ such that $\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right) \rightarrow(0, \bar{\varphi})$ in $\boldsymbol{H}^{1} \times H^{4}$ as $n \uparrow+\infty$. In particular,

$$
\lim _{n \rightarrow+\infty} E\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right)=E_{e}(\bar{\varphi})
$$

Finally, from (40) and the uniqueness of the limit, one has $E_{e}(\bar{\varphi})=E_{\infty}$.
Although the set of critical points $\bar{\varphi}$ (with the same elastic energy) might even be a continuum of functions, the uniqueness of limit of the whole trajectory of $\varphi(t)$ can be deduced.

Theorem 12 Under the hypotheses of Theorem 11, there exists $\bar{\varphi} \in H^{4}$ such that $\varphi(t) \rightarrow \bar{\varphi}$ in H^{4} as $t \uparrow+\infty$, i.e. $\omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right)=\{(0, \bar{\varphi})\}$.

Proof. Let $(0, \bar{\varphi}) \in \omega\left(\boldsymbol{u}_{0}, \varphi_{0}\right) \subset S$, i.e, there exists $t_{n} \uparrow+\infty$ such that $\boldsymbol{u}\left(t_{n}\right) \rightarrow 0$ in \boldsymbol{H}^{1} and $\varphi\left(t_{n}\right) \rightarrow \bar{\varphi}$ in H^{4}.

Without any loss of generality, it can be assumed that $E(\boldsymbol{u}(t), \varphi(t))>E(0, \bar{\varphi})\left(=E_{\infty}\right)$ for all t, because otherwise, if there some $\widetilde{t}>0$ exists such that $E(\boldsymbol{u}(\widetilde{t}), \varphi(\widetilde{t}))=E(0, \bar{\varphi})$, then, from the energy equality (25) for each $t \geq \widetilde{t}$,

$$
E(\boldsymbol{u}(t), \varphi(t))=E(0, \bar{\varphi}), \quad|\nabla \boldsymbol{u}(t)|_{2}^{2}=0 \quad \text { and } \quad|w(t)|_{2}^{2}=0 .
$$

Therefore, $\boldsymbol{u}(t)=0$ and $w(t)=0$. In particular, by using the w-equation, then $\partial_{t} \varphi(t)=0$, and hence $\varphi(t)=\bar{\varphi}$ for each $t \geq \widetilde{t}$. In this situation the convergence of the φ-trajectory is trivial.

The proof is now divided into three steps.
Step 1: Assuming there exists $t_{\star}>T_{\text {reg }}^{*}$ such that

$$
\|\varphi(t)-\bar{\varphi}\|_{3} \leq \beta \quad \text { and } \quad|\boldsymbol{u}(t)|_{2} \leq 1 \quad \forall t \geq t_{\star}
$$

where the solution is strong in $\left(T_{\text {reg }}^{*},+\infty\right)$ and $\beta>0$ is the constant appearing in Lemma 5 (of Lojasiewicz-Simon's type), then the following inequalities hold:

$$
\begin{gather*}
\frac{d}{d t}\left((E(\boldsymbol{u}(t), \varphi(t))-E(0, \bar{\varphi}))^{\theta}\right)+C \theta\left(|\nabla \boldsymbol{u}(t)|_{2}+|w(t)|_{2}\right) \leq 0, \quad \forall t \geq t_{\star} \tag{45}\\
\left.\int_{t_{0}}^{t_{1}}\left|\partial_{t} \varphi\right|_{2} \leq \frac{C}{\theta}\left(E\left(\boldsymbol{u}\left(t_{0}\right), \varphi\left(t_{0}\right)\right)-E(0, \bar{\varphi})\right)\right)^{\theta}, \quad \forall t_{1}>t_{0} \geq t_{\star}, \tag{46}
\end{gather*}
$$

where $\theta \in(0,1 / 2]$ is the constant appearing in Lemma 5 .
Indeed, the energy equality (25) can be written as

$$
\frac{d}{d t}\left(E(\boldsymbol{u}(t), \varphi(t))-E_{\infty}\right)+C\left(|\nabla \boldsymbol{u}(t)|_{2}^{2}+|w(t)|_{2}^{2}\right)=0
$$

Therefore, by taking the time derivative of the (strictly positive) function

$$
H(t):=\left(E(\boldsymbol{u}(t), \varphi(t))-E_{\infty}\right)^{\theta}>0
$$

we obtain

$$
\begin{equation*}
\frac{d H(t)}{d t}+\theta\left(E(\boldsymbol{u}(t), \varphi(t))-E_{\infty}\right)^{\theta-1} C\left(|\nabla \boldsymbol{u}(t)|_{2}^{2}+|w(t)|_{2}^{2}\right)=0 \tag{47}
\end{equation*}
$$

On the other hand, by recalling that the unique critical point of the kinetic energy is $\boldsymbol{u}=0$, and by taking into account that $\left|E_{k}(\boldsymbol{u})-E_{k}(0)\right|=\frac{1}{2}|\boldsymbol{u}|_{2}^{2}$ and since $2(1-\theta)>1$ and $|\boldsymbol{u}(t)|_{2} \leq 1$, then

$$
\left|E_{k}(\boldsymbol{u}(t))-E_{k}(0)\right|^{1-\theta}=\frac{1}{2^{1-\theta}}|\boldsymbol{u}(t)|_{2}^{2(1-\theta)} \leq C|\boldsymbol{u}(t)|_{2} \quad \forall t \geq t_{\star} .
$$

Therefore, by using the Lojasiewicz-Simon inequality (given in Lemma 5):
$\left(E(\boldsymbol{u}(t), \varphi(t))-E_{\infty}\right)^{1-\theta} \leq\left|E_{k}(\boldsymbol{u}(t))-E_{k}(0)\right|^{1-\theta}+\left|E_{e}(\varphi(t))-E_{e}(\bar{\varphi})\right|^{1-\theta} \leq C\left(|\boldsymbol{u}(t)|_{2}+|w(t)|_{2}\right)$,
and hence, by using the Poincare inequality:

$$
\begin{equation*}
\left(E(\boldsymbol{u}(t), \varphi(t))-E_{\infty}\right)^{\theta-1} \geq C\left(|\nabla \boldsymbol{u}(t)|_{2}+|w(t)|_{2}\right)^{-1} \quad \forall t \geq t_{\star} \tag{48}
\end{equation*}
$$

From (47) and (48), we obtain

$$
\frac{d H(t)}{d t}+\theta C\left(|\nabla \boldsymbol{u}(t)|_{2}+|w(t)|_{2}\right) \leq 0, \quad \forall t \geq t_{\star}
$$

and (45) is proved. Integrating (45) into $\left[t_{0}, t_{1}\right]$ (for any $t_{1}>t_{0} \geq t_{\star}$) yields

$$
\begin{equation*}
\left(E\left(\boldsymbol{u}\left(t_{1}\right), \varphi\left(t_{1}\right)\right)-E_{\infty}\right)^{\theta}+\theta C \int_{t_{0}}^{t_{1}}\left(|\nabla \boldsymbol{u}(t)|_{2}+|w(t)|_{2}\right) d t \leq\left(E\left(\boldsymbol{u}\left(t_{0}\right), \varphi\left(t_{0}\right)\right)-E_{\infty}\right)^{\theta} . \tag{49}
\end{equation*}
$$

On the other hand, since $\partial_{t} \varphi+\nabla \cdot(\boldsymbol{u} \otimes \varphi)-w=0$, then, by using the weak estimate $\|\varphi(t)\|_{2} \leq C$, it can be deduced that

$$
\left|\partial_{t} \varphi\right|_{2} \leq C\left(\|\boldsymbol{u} \otimes \varphi\|_{1}+|w|_{2}\right) \leq C\left(|\nabla \boldsymbol{u}|_{2}+|w|_{2}\right)
$$

By applying this inequality in (49), we obtain (46).
Step 2: There exists a sufficiently large n_{0} such that $t_{n_{0}} \geq T_{\text {reg }}^{*}$ and $\|\varphi(t)-\bar{\varphi}\|_{3} \leq \beta$ and $|\boldsymbol{u}(t)|_{2} \leq 1$ for all $t \geq t_{n_{0}}$.

The bound $|\boldsymbol{u}(t)|_{2} \leq 1$ is based on $\boldsymbol{u}(t) \rightarrow 0$ in \boldsymbol{H}_{0}^{1} given in (41). We now focus on the bound for $\|\varphi(t)-\bar{\varphi}\|_{3}$. Since $\varphi\left(t_{n}\right) \rightarrow \bar{\varphi}$ in H^{4} and $E\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right) \rightarrow E_{\infty}=E_{e}(\bar{\varphi})$, then for any $\varepsilon \in(0, \beta)$, there exists an integer $N(\varepsilon)$ such that, for all $n \geq N(\varepsilon)$,

$$
\begin{equation*}
\left\|\varphi\left(t_{n}\right)-\bar{\varphi}\right\|_{3} \leq \varepsilon \quad \text { and } \quad \frac{1}{\theta}\left(E_{e}\left(\boldsymbol{u}\left(t_{n}\right), \varphi\left(t_{n}\right)\right)-E_{\infty}\right)^{\theta} \leq \varepsilon \tag{50}
\end{equation*}
$$

For each $n \geq N(\varepsilon)$, we define

$$
\bar{t}_{n}:=\sup \left\{t: t>t_{n},\|\varphi(s)-\bar{\varphi}\|_{3}<\beta \quad \forall s \in\left[t_{n}, t\right)\right\}
$$

It suffices to prove that $\bar{t}_{n_{0}}=+\infty$ for some n_{0}. Assume by contradiction that $t_{n}<\bar{t}_{n}<+\infty$ for all n. Observe that $\left\|\varphi\left(\bar{t}_{n}\right)-\bar{\varphi}\right\|_{3}=\beta$ and $\|\varphi(t)-\bar{\varphi}\|_{3}<\beta$ for all $t \in\left[t_{n}, \bar{t}_{n}\right)$. From Step 1 , for all $t \in\left[t_{n}, \bar{t}_{n}\right]$, from (46) and (50) we obtain

$$
\int_{t_{n}}^{\bar{t}_{n}}\left|\partial_{t} \varphi\right|_{2} \leq C \varepsilon, \quad \forall n \geq N(\varepsilon)
$$

Therefore,

$$
\left|\varphi\left(\bar{t}_{n}\right)-\bar{\varphi}\right|_{2} \leq\left|\varphi\left(t_{n}\right)-\bar{\varphi}\right|_{2}+\int_{t_{n}}^{\bar{t}_{n}}\left|\partial_{t} \varphi\right|_{2} \leq(1+C) \varepsilon
$$

which implies that $\lim _{n \rightarrow+\infty}\left|\varphi\left(\bar{t}_{n}\right)-\bar{\varphi}\right|_{2}=0$. Since φ is bounded in $L^{\infty}\left(t^{*},+\infty ; H^{4}\right)$, $(\varphi(t))_{t \geq t^{*}}$ is relatively compact in H^{3}. Therefore, there exists a subsequence of $\varphi\left(\bar{t}_{n}\right)$,
which is still denoted as $\varphi\left(\bar{t}_{n}\right)$, that converges to $\bar{\varphi}$ in H^{3}. Hence, for a sufficiently large $n,\left\|\varphi\left(\bar{t}_{n}\right)-\bar{\varphi}\right\|_{3}<\beta$, which contradicts the definition of \bar{t}_{n}.

Step 3: There exists a unique $\bar{\varphi}$ such that $\varphi(t) \rightarrow \bar{\varphi}$ in H^{4} as $t \uparrow+\infty$.
By using Steps 1 and 2, from (46) it is deduced that, for all $t_{1}>t_{0} \geq t_{n_{0}}$,

$$
\left|\varphi\left(t_{1}\right)-\varphi\left(t_{0}\right)\right|_{2} \leq \int_{t_{0}}^{t_{1}}\left|\partial_{t} \varphi\right|_{2} \rightarrow 0, \quad \text { as } t_{0}, t_{1} \rightarrow+\infty
$$

Therefore, $(\varphi(t))_{t \geq t_{n_{0}}}$ is a Cauchy sequence in L^{2} as $t \uparrow+\infty$, and hence the L^{2}-convergence of the whole trajectory is deduced, i.e. there exists a unique $\bar{\varphi} \in L^{2}$ such that $\varphi(t) \rightarrow \bar{\varphi}$ in L^{2} as $t \uparrow+\infty$. Finally, the strong H^{4}-convergence by sequences of $\varphi(t)$ proved in Step 1 of Theorem 11, yields $\varphi(t) \rightarrow \bar{\varphi}$ in H^{4}.

References

[1] B. Climent-Ezquerra, F. Guillén-González, M.J Moreno-Iraberte, Regularity and Timeperiodicity for a Nematic Liquid Crystal model, Nonlinear Analysis, 71, (2009), 539-549
[2] B. Climent-Ezquerra, F. Guillén-González, M.A. Rodríguez-Bellido, Stability for Nematic Liquid Crystals with Stretching Terms, International Journal of Bifurcations and Chaos, 20, (2010), 2937-2942.
[3] B. Climent-Ezquerra, F. Guillén-González, Global in-time solutions and time-periodicity for a Smectic-A liquid crystal model, Communications on Pure and Applied Analysis, 9 (2010), 1473-1493.
[4] B. Climent-Ezquerra, F. Guillén-González, On a double penalized smectic-A model, Discrete and Continuous Dynamical Systems-A, Vol. 32, no. 12, (2012) 4171-4182.
[5] W. E, Nonlinear Continuum Theory of Smectic-A Liquid Crystals, Arch. Rat. Mech. Anal., 137, 2 (1997), 159-175.
[6] M. Grasselli, H. Wu, Long-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force, SIAM J. Math. Anal., 45(3) (2013), 965-1002.
[7] A. Haraux, M.A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Cal. Var., 9 (1999), 95-124.
[8] S.Z. Huang, Gradient Inequalities: with Applications to Asymptotic Behavior and Stability of Gradient-like Systems, Mathematical Surveys and Monographs, vol. 126 AMS (2006)
[9] F.H. Lin, C. Liu, Non-parabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 4 (1995), 501-537.
[10] C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity, Discrete and Continuous Dynamical Systems 6, 3 (2000), 591-608.
[11] H. Petzeltova, E. Rocca, G. Schimperna, On the long-time behavior of some mathematical models for nematic liquid crystal, Cal. Var. 46 (2013), 623-639. DOI 10.1007/s00526-012-0496-1
[12] A. Segatti, H. Wu, Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows, SIAM J. Math. Anal., 43(6) (2011), 24452481
[13] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988.
[14] H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete and Continuous Dynamical System, 26, 1, (2010), 379-396.
[15] H. Wu, X. Xu, C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var. Partial Differential Equations, 45(3\&4) (2012), 319-345.

[^0]: *This work has been partially financed by DGI-MEC (Spain), Grants MTM2009-12927 and MTM201232325.

