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Abstract

In this paper, we focus on a smectic-A liquid crystal model in 3D domains, and obtain
three main results: the proof of an adequate Lojasiewicz-Simon inequality by using an
abstract result; the rigorous proof (via a Galerkin approach) of the existence of global in-
time weak solutions that become strong (and unique) in long-time; and its convergence to
equilibrium of the whole trajectory as time goes to infinity. Given any regular initial data,
the existence of a unique global in-time regular solution (bounded up to infinite time) and
the convergence to an equilibrium have been previously proved under the constraint of
a sufficiently high level of viscosity. Here, all results are obtained without imposing said

constraint.

Keywords: Liquid crystals, Navier-Stokes equations, Ginzburg-Landau potential, energy

dissipation, convergence to equilibrium, Lojasiewicz-Simon’s inequalities.

1 Introduction

We consider the following equations ([5]), which model a smectic-A liquid crystal confined

in an open bounded domain © C IR? with boundary 9§ within the time interval (0, +oc0):

du+ (u-V)u—vAu— AwVe + Vg =0, (1)
V-u=0, (2)

*This work has been partially financed by DGI-MEC (Spain), Grants MTM2009-12927 and MTM2012-
32325.
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op+u-Vo+~yw =0, (3)

AQ(P -V fs(v@) —w=0, (4)
where
1
fo(n) =VnpF.(n)= ?(lnlz ~1)n, VneR?
1
and F.(n) = (|n)> — 1)? is the Ginzburg-Landau potential. Here, u : Q x [0, +-00) — R?

4¢?
is the flow velocity; p :  x [0,+00) — R describes a potential function (dependent of the
fluid pressure); ¢ : Q x [0, +00) — R is the layer variable, whose level sets represent the layer
structure; and w = A%p — V - £.(V) is a variable related to the equilibrium equation with

respect to the (smectic) elastic energy

B) = [ (51868 + F(90)) )

The constants v > 0, A > 0, and v > 0 are some coefficients which depend on the viscosity,
the elasticity and the time relaxation, respectively. The system (1)-(4) is completed with the
(Dirichlet) boundary conditions

ulpo =0, @loa =¢1, Ohploa = ¢2, (6)

where 1 and @2 are given time-independent functions, and the initial conditions
w0) = uw,  9(0)=py in Q. (7)

For compatibility, we assume ug|gq = 0 with V - ug = 0 and ¢p|sn = @1, Onpolaa = o.

The first mathematical results of problem (1)-(7) were obtained in [10]. For three-
dimensional domains and time-independent boundary conditions, both the existence of global
in-time weak solutions for the smectic-A problem (1)-(7) and pioneering research into its long-
time behaviour are jointly studied in [10], and convergence of u(t) and w(t) to zero as t — +oo
is attained, although the uniqueness of limit for the trajectories ¢(t) as t 1 oo is not assured.
The regularity and time-periodicity of solutions of the problem (1)-(7) with time-dependent
boundary conditions is studied in [3]. These results were previously studied for nematic liquid
crystals in [9] and [1].

The convergence in infinite time of the whole trajectory was first solved in [14] for a
nematic model with Dirichlet boundary conditions, thereby obtaining the convergence of
the director vector d(t) (an average of preferential orientation of molecules) as t — +oo
towards an equilibrium of the elastic energy. In [15], a similar problem with stretching terms
and periodic boundary conditions of d is treated. For these convergence results, suitable

Lojasiewicz-Simon inequalities are used. In both cases above, in order to obtain a global



in-time regular solution, a uniform in-time Gronwall theorem is used (see [13]), requiring
either a sufficiently high viscosity coefficient or initial conditions sufficiently near to a global
minimizer.

The long-time behaviour of a nematic liquid crystal model with time-dependent boundary
conditions and external forces is studied in [6], while also imposing a high level of viscosity.
For nematic models including stretching terms, in the recent paper [11], the authors show that
any weak solution has a w-limit set containing a single steady solution, thereby circumventing
the use of the strong regularity (hence the viscosity constraint is rendered unnecessary).

Returning to the smectic-A problem (1)-(7), its long-time behaviour has already been
studied in [12], where the imposition of both a high level of viscosity and periodic boundary
conditions plays a main role. On the other hand, the convergence of the whole trajectory to
equilibrium for a smectic-A model modified by penalization is given in [4], without imposing
constraints for the viscosity.

Consequently, with respect to the above results, the main contribution that we will present
in this paper is the identification of a unique critical point as the limit of the trajectory of
©(t) as t approaches to infinity, for each global weak solution of the smectic-A model (1)-(7)
that is strong over long periods, without imposing a high level of viscosity. Moreover, we

consider of remarkable interest the following facts:

1. The proof of an adequate Lojasiewicz-Simon inequality by means of an abstract result

given in [8] (see Theorem 4 below).

2. The rigorous proof, via a Galerkin approach, of the existence of weak solutions of the

smectic-A problem (1)-(7), which are strong solutions in the case of long periods.

1.1 Notation

e In general, the notation will be abridged: LP = LP(Q), p > 1, H} = H(Q), etc.
If X = X(9) is a space of functions defined in the open set 2, then LP(X) denotes
the Banach space LP(0,T; X (2)). Moreover, boldface letters will be used for vectorial

spaces, for instance L? = L?(Q)3.

e The LP-norm is denoted by |- |, 1 < p < oo, and the H™-norm by | - ||, (in particular
|-]2=1|"1lo). The inner product of L?(2) is denoted by (-,-). The boundary H?*(9)-

norm is denoted by || - ||s.00-

e The space formed by all fields u € C§°()3 satisfying V - u = 0 is set as V. The closure
of Vin L? and H' are denoted as H and V, which are Hilbert spaces for the norms |- |



and | - ||1, respectively. Furthermore,
H={uc L’ V-u=0, u-n=0on 9N}, V={uec H; V-u=0, u=0on dQ}.
Note that if u € H, since u € L? and V-u € L?, therefore u-n = 0 holds in H~'/2(99).

e We will consider a sufficiently regular €2 in order to have the following equivalent norms:

lells = [Vela + lleloalli/zan = IVel2 + lle1lli200 (8)
lelle = [Aple + [leloalls/zan = 1A¢l2 + l¢1lls/2:00 9)
lella = |A%0l2 + lle1ll7/200 + lle2lls/200 (10)

e In the following, C, K > 0 will denote several constants, which depend only on the fixed
data of the problem.

e For the sake of simplicity, henceforth we will consider v, A,y = 1.

2 Some preliminary results

2.1 Long-time behaviour

Assume the following starting point:

Let E,® € L} (0,+00) be two positive functions with E € H'(0,T) VT > 0, satisfying

loc
E'(t)+®(t) <0, ae. te(0,+00). (11)
Therefore, F is a decreasing function with E € L*(0,+00) and

3 lim E(t) = Ex > 0. (12)

t—+o00

Moreover, by integrating (11), one has ® € L'(0, +00).

The following result is proved in [2].

Lemma 1 Let ® € L'(0,+00) be a positive function such that ® € H*(0,T) VYT > 0, which
satisfies

'(t) < Co(®(2)® +1). (13)

Therefore, there exists a sufficiently large T* > 0 such that ® € L>°(T*, +00) and

3 lim ®(t) =0.

t——+o0

We will extend this result for function sequences in order to uniformly bound them with

respect to the index of sequence. Specificly,



Theorem 2 Let @™, E™, be two positive function sequences, which satisfy (11) and (13) for
some constant Cy > 0 independent of m. Let E(t) = ml—lg—loo E™(t) a.e. t € (0,400). There-
fore, for each e € (0,1), there exists a sufficiently large time T* = T*(e) > 0, independent of
m, such that

D] Loo (7 400) < €-

Proof.

By construction, F(t) is a decreasing positive function which satisfies (12) for a certain
Ey > 0.

Let R* and t be two times such that R* < t. By integrating (11) in [R*,¢] and taking the
limit as m — 400,

/t &M (s)ds < E™(R*) — E™(t) —s BE(R") — E(t) < B(R") — En.

*

For each § > 0 given, we can choose a sufficiently large R* = R*(J), such that F(R*) — Ex <
0/2. Therefore, there exists a sufficiently large number mg(d) € N such that

t
/fl)m(s)dng(R*)Eoo+5/2§5, Vit > R*, ¥Ym > mg(9).

Taking t — +o00, we have

+oo
/ D" (s)ds < 0, (14)

*(9)

where R*(d) does not depend on m. Starting from (13) and (14), we are going to finish the

proof of this theorem, using the lines provided in [2]. Indeed, from (14),

1 t+T1

- / (1) dt <

t

T

S e

. Yr>0, Vt>RY(6). (15)

Lemma 2.1 of [2] implies that, V¢ > R*(§) and V7 > 0, there exist times ¢ € [¢,t + 7] such
that:
26
d™(f) < =, (16)
T

On the other hand, from (13), Lemma 2.2 of [2] implies that for any ¢ < 1, if ™ (o) < /3,

then ®™(t) < e Vt € [to, to + S*(¢)], where S*(¢) = % (that is independent of m).
2

2 *
By using (15) and (16) for § = © _ andrT= & (E), Theorem 2.3 of [2] gives
36Co 2
m ) 5*(e) _ £ "
" (t) <e, Vt>R*()+ =R*(6) + — =T"(e). (17)
2 6C5

Observe that bound (17) does not depend on m. Therefore, for each ¢ < 1, there exists a

sufficiently large T* = T (¢) such that ||®™ || feo(7+ 4o0) < €. [ ]



2.2 Lojasiewicz-Simon inequality

It is standard procedure to use appropriate Lojasiewicz-Simon inequalities to study the
convergence of trajectories in infinite time. It is not easy to find in the literature a demon-
stration of these types of inequalities associated to various Euler-Lagrange equations. Here, a
particular Lojasiewicz-Simon inequality associated to the critical points of the elastic energy
(5) is deduced, by using the abstract Theorem 4 presented below (Theorem 4.2 of [8]). Some
extensions of this Lojasiewicz-Simon inequality are commented in the Remark 6 below.

We begin by recalling the following definitions:

Definition 3 A bounded linear operator L : X1 +— Xo between two Banach spaces X1 and Xo
is called a Fredholm operator of index zero if L has a closed range R(L), a finite dimensional
kernel N(L) and dim N(L) = dim (X3/R(L)) < co. A C* map M : U C X1 +— Xy is called a
Fredholm map of index zero if its Fréchet differential at each point are Fredholm operators of

index zero.

For instance, an invertible operator plus a compact operator is a Fredholm operator of index

ZETO.
Theorem 4 Assume the following hypotheses:

e Let H be a Hilbert space and A : D(A) C H — H a linear self-adjoint and positive
definite operator. In particular, Hy = (D(A),(-,)a) is a Hilbert space endowed with
the scalar product (u,v) 4 = (Au, Av) g for all u,v € D(A).

e Let X and X be two Banach spaces such that the embeddings X — Ha and X < H

are continuous. Moreover, X — X is also a continuous embedding.
o Let £: X — R be a Fréchet-differentiable functional.
e Let M=¢E":X — X be an analytic gradient map with the following properties:

— M is a Fredholm map of index zero; i.e., for each uw € X the bounded linear

operator M'(u) € L(X,X) is a Fredholm operator of index zero.

— For each fized u € X, the bounded linear symmetric operator M'(u) : X X has
an extension Mi(u) : Hy — H, which is a symmetric Fredholm operator of index

ZET0.

— The map R :u € X — My(u)A~t € L(H) is continuous.

Therefore, if u € X is a critical point of £, i.e. £'(a) = 0, then positive constants C, B1 and
o€ [1/2,1) exist such that

E(w) — E@|° < CNE' Wy Yue X with |u—a|x < pi.



This theorem is now going to be applied to the smectic-A model, by using strong norms.

Lemma 5 (Strong Lojasiewicz-Simon inequality for smectic-A problems) Let S be

the following set of equilibrium points related to the elastic energy Eo(¢) = [, (%|Ag@|2 + F:(Vy)):

S={pe H4(Q) : A2g0 — V- -£.(Ve)=0aeinQ, ¢laa =1, Onploa = w2}

If ¢ € S, there are three positive constants C, 3, and 0 € (0,1/2) which depend on @, such
that for all o € H* with v|aq = ©1, Onplaq = @2 and || — @l < B, then

|Ee(¢) = Ee(@)|' " < Clwls (18)
where w = w(p) := A2p — V- £ (Vo).
Proof. The proof is divided into two steps.

Step 1 (Application of Theorem 4): 3 51,C > 0 such that if || ¢ —P||4 < (i1, then (18) holds.

Let ¢ € H*(Q2) be the “lifting” function defined as the (strong) solution of the problem:

A’p=0inQ, ¢log=p1, Ohdloa = (19)
Theorem 4 is going to be applied for the following spaces and operators:
H=X=1%Q), X=Hy=HQ)nHQ),
A=A’ €€ X A6 = A% € H and (€, )4 = (A%, A%),2 V,£,9 € D(A),
1
Ei6eX @ = Ble+0)= [ (GIAE+OP+RTE+)) eR
M=E":¢€ X — H, such that M(£) = A2 -~V - £(V(E+ ¢)),

and My (§) = M'(€), where for each £ € X,

M) € X = M) = A% = V- (1) (V(E+¢))VY) € H.

Indeed, M’(€) is a Fredholm operator of index zero, because M'(€) is the sum of the invertible
operator A and the compact operator ¥ € X — =V - ((£.)(V({+ ¢))VY) € H.

Moreover, the map R : £ € X — M'(§)A~1 € L(H) is well-posed because A~ € L(H; X)
and M’'(§) € L(X;H). It remains to be proved that R is (sequentially) continuous. Let

& — £ in X as n — oco. Therefore,

IR(&) =R(El ey = M (&) AT =M () AT |y < 1M (€0) =M ()l x| A carix)



and

M) - MOl = sup EIW - MO
pex\{0} 191l x
) V- ()T + ) = (1) (T(n + ) V) |
" pexvo) [0l
e s NEVTEL6) — (1) (V(E+6) V)
 wex\{0} [141l4
< CILY (T +6)) = (£ (V& + 01

By taking into account that ||(£.)(V({+¢)) — (£.) (V(én+¢)))|gr = 0asn — oo if & — &
in H*, then the continuity of the operator R has been proved.

In order to apply Theorem 4, the boundary conditions must be lifted by using the function
¢ given in (19). In fact, function £ = $—¢ (recall that @ € S) satisfies £|9q = 0 and 9,€|spn = 0
and represents a critical point of £(¢). Let ¢ € H*(Q) with p|asn = 1, Onplon = @2 and
llo —®lla < B1 (B1 > 0 given in Theorem 4). If we define £ = ¢ — ¢ € X, then || — £[|4 < By

and, owing to Theorem 4:

|Ee(¢) = E(@)]'" = [£() = €@ < CIE"(E)n
= CIA% = V- £(V(E+9))]2 = C lw(p)]2-

Hence (18) holds.

Step 2: (Relaxing the local approximation || — |4 < 8 by |[¢ —@|ls < 8) There exits 3 > 0
and C > 0 such that if o € H(Q) and ||¢ — p||3 < 8, then (18) holds.

In this step, a similar argument is followed to that in Lemma 4.4 of [12]. Since p—p = £—¢,
this is reduced to the homogeneous functions &, . From (10), there exists M > 0 such that

1€ = €lla < M|A*(€ =€)

and by using Sovolev’s embeddings and ||£[|3 < || €]|s + 8 < C, we obtain

V- (£(V(E+¢) = £(VE+9))]2 < CB) |IE — Ells,
E€) —E@)IP <cB) e —€ls? <cB) e —€l?

where C(f3) depends on 3 (and [|£]|3). In particular, since ||¢ — £[|3 < 3, then
V- (£(VE+ ) — LVE+ D) +IEE) — €@ < CB)(B+5").

Therefore, there exists a (sufficiently small) 8 € (0, 1] independent of £, such that

B

CB)B+8") < b



For any ¢ € H*(Q) satisfying ||€—&||3 < 3 (that is, for any ¢ € H*(Q) satisfying ||o—2|3 < 3),
there are only two possibilities: either ||¢ — |4 < 81 and then (18) holds by using Step 1; or
|€ — €]|l4 > Bi. In this latter case,

w(e)l> = A€~ &) ~ V- (1Y +6)) ~ £VE+ o))
> e~ 8l V- (RV(E +6) ~ £TVE+ )

B B B om0 _ _E.(E)10
>M—m—m>’5(f) EQTT7 =[Ee(§) — Ee(E 7,

and hence (18) holds. |

Remark 6 The Lojasiewicz-Simon inequality given in Lemma 5 has been formulated in a
“strong sense”. However, other versions are also possible. For example, Theorem 2.1 of [7] for
homogeneous Dirichlet conditions and the comments given in [14] for the non-homogeneous
Dirichlet case show a “weak” version where, if | — @|1 < B, then |E.(p) — E.(@)|'~? <
Cllw||—2 holds. Futhermore, an “intermediate” version has been applied in [12] for periodic

boundary conditions, where |E.(¢) — Eo(2)|* 0 < C|lwl||_1 if || — B2 < B.

3 The Smectic Model
Definition 7 A pair (u, ) is said to be a global weak solution of (1)-(7) in (0,+00) if

u € L0, +00; L*(Q)) N L2(0, +o00; V), w € L*(0, +o0; L*(Q)),

(20)
p € L>(0, +o00; H*(Q)),
V-u=0inQ, us=0, o¢lz=p1, Ohpls= 2,
u(0) =w, ¢(0)=¢o inf,
and it satisfies the variational formulation:
(Oru, @) + ((u- V)u,w) + (Vu, V) — (wVe,u) =0 YueV, (21)
(O, 0) + (u- Ve, w) + (w, @) =0, VYwe L (22)

Moreover, from the weak regularity of (¢, w) given in (20), (23) and (10), it can be deduced
that ¢ € L2 (0,400; H*) whenever ¢; € H/2(0Q) and @y € H2(0Q), i.e. ¢ € L*(0,T; H*)

loc

for all T" > 0.



Definition 8 A weak solution (u, ) is said to be a strong solution of (1)-(7) in (0, +00) if

u € L>®(0, +oo; H'(Q)) N L}

loc

Opp € L*(0, 400; LQ(Q)) N L2

loc

(0,+00; H()),  Oyu € L3, (0, +00; L*(92)),

loc

) (24)
(0, +o0; H*(Q2)),

and it satisfies the fully differential system (1)-(3) point-wise in (0, +00) X €.
Moreover, for regular domains, one has
@ € L0, 4+00; HYY N L2 (0, +00; HY),  w € L™®(0, +o0; L*) N L2, (0, +-00; H?)

whenever p; € H'/2(9Q) and ¢, € HY?(9Q).

3.1 Energy Equality and Weak Estimates

If (u, p,w) is a regular enough solution of (1)-(4), (6), (7), then by taking v = u, w = w
and @ = Jyp as a test function in (21), (22) and (23) respectively, one has

1d
ialu!% +|Vaul3 — (w Ve, u) =0,
d (1
% (31808 + [ (90 - w.a0) =0

Q
Through adding these three equalities, the term (w, d;p) is cancelled and the nonlinear con-

vective term (u- Vi, w) plus the elastic term —(w Vi, u) also vanish, thereby yielding at the

following energy equality:

d
B ), 0(#) + [Vl + [w]3 = 0. (25)
This energy equality illustrates the dissipative character of the model with respect to the
total free energy E(u, ) = Ey(u) + Ec(p), where Ey(u) = 1 [, |uf? is the kinetic energy and
E.(y) is the elastic energy defined in (5). Moreover, assuming the initial estimate |ug|3 < C

and ||¢ol|3 < C, the following uniform bounds at the infinite time interval (0, 4oc) hold:
win L>(0, +00; H) N L*(0,400; V), w in L*(0, +oo; L?), ¢ in L>(0,400; H?). (26)
In particular, from the bound of w in L?(0, +o0o; L?) and (10), one has the finite time bound
@ in L?(0,T; HY), VT > 0.

For instance, weak solutions furnished by a limit of Galerkin approximate solutions which
satisfy the corresponding energy inequality (by replacing the equality = 0 with the inequality

< 01in (25)) can be obtained, which suffices to rigorously prove all previous estimates.

10



3.2 Strong Estimates

From (23) and (10), we have for each ¢t € (0, 4+00):

le@®lla < Clllerllz/zo0 + lle2lls/200 + lw(t)l2 + IV - f(Ve(t))l2). (27)

By using weak estimates ||p(t)[|2 < C and

V- £(Vo(t))l2 < CIVaf(Vo(t))ls D*e(t)]s < Clip(t)lls, (28)

we obtain

le@)lls < Clle@)lly ey < ¢+ [wt)y? + ey

Hence
o)z < C(L + |w(t)]y?). (29)

On the other hand, from (3), it follows that
w(t)]2 < CUp(t)]2 + [u(t)[s]Vo(®)]s) < C1Bp(t)]a + [[ult)]}). (30)
Hence, from (29) and (30)
le®)lls < CL+ Bre®)y + [[ult) ). (31)

By means of taking —Au+ dyu as a test function in the u-system (1) (A being the Stokes

operator), and by applying Holder and Young’s inequalities and the interpolation inequality

1/2 1/2
lellwiee < Clelly el

we attain:

d
%IVUE +[Auff + [Brufs < O (|(u- V)ulz + [(Vo)wlz) (|Aulz + |0puls)

< O (Juls|Vuls + [Voloo|wl2) (1ull2 + |0rul2)

3/2 3/2 3/2 1/2 1/2 1/2
< C (Il 1l + ¥ el Druls + ol o115 ol + Oreal) )

1 1
< Slullz + 510vulz + C (lullf + lellslwl3)

Therefore, by using (30) and (31), we obtain

d 1 1 1/2 1/4
Sl + Sl + Sl < (Il + 1+ 19l + lall )03 + ) . (32)

On the other hand, by deriving the w-equation (3) and ¢-equation (4) with respect to ¢,

taking Oy as a test function in both these derivations, adding, and taking into account that

11



(u- Vo, drp) = 0 and also the term (Jyw, dyp) is cancelled, we then have:

1d
5@@9@@ +Adp|3 = —(Dyu- Vi, 8i0) + (1Y - £.(V)), Brp)

< |0l elolaels + (IVafe (Vs V20rplz + V2L (V)6 V2Ll V ls ) 191l
< C(|0ul2|0uely 0ol + 10spll2 | Beplls + 1ol % 10rely”)

1 1
< g’atu\% + 5!@@@ + C0yl3,

(33)

where (28) and ||0xp||2 = |Ad:p|2 have been applied (because Orp|sq = 0). Therefore, from
(33)

d 2 o 1 2 2

5 19l2 + 10l < 7 10ulz + Cloels. (34)

From the addition of (32) and (34), it follows that:

d 1 1
a(”“’ﬁ +|0ipl3) + 5”“”3 + 1|8tu|§ + [10rl13

(35)
< C (Nl + (1 + 12r0l3 + il ) 10el3 + ul))
By denoting
B(1) = lullt + g, W) = 5l + 1ol + 9l
then (35) can be rewritten as
O+ U< D+ @+ Y2+ &V 4 0¥ 4 0%8) < (0% +1). (36)

Observe that ® € L1(0, +00) since |0yp|2 € L?(0,+00). Indeed, from the w-equation (3):
9rl2 < C(Jwls + w1 1Vells) < C(wlz + [lulls )

and |w|a + |lull; € L?(0,+00).
Therefore, the entire hypothesis of Theorem 2 holds, then there exists a sufficiently large
T, > 0 such that the following (regular) estimates hold in (T7%, , +00):

reg = reg»
ue L®(Tr,, +oo0; HY), Opp € L®(TF,,, +00; L?).

regr reg’

By integrating (36) in [0, ¢] for all ¢ > 0, the following local (regular) estimates in (T}, +00)

reg’

are obtained:
uc L%OC(T:BQ’ +00; Hz)’ du € L%OC(T:eg’ +00; L2)7 8,5@ € L%OC(T:BQ? +00; H2)

By using the w-equation (3), one has, for each ¢t € (0, +00):

[w(t)l2 < C(10xp()]2 + [[u®)]1), (37)

12



hence

w € L®(T},,, +00; L?)
and from (29),

¢ € L®(Tr,,, +oo; H?).

reg’

Futhermore, from (3), we have

lw(@®)ll2 < C19kp(B)]2 + [u®)[[2lle@)]3),

hence
w € L7 (Tr.,, +o0; H?).

reg’

Observe that, through combining (3) and (4), ¢(t) is the solution of the bilaplacian problem

A2(10 =V fa(V(p) —w in Q,
vlag = v1, Ohploa = @2 on ON.

By means of using the H* and H® regularity of this problem and bounding the right-hand-side
terms, and from the weak regularity and the strong regularity of ¢ and w previously proved,
we have

@ € L®(T%,,, +oo; HY)Y N LE (T, +00; HY).

reg’ regr

3.3 Existence of global weak solutions with long-time strong regularity

The existence of solutions of (1)-(7) can be justified by the Galerkin Method [3]. Given
some fixed regular basis (w'); and (¢7); of the spaces V and HZ(R), respectively, let V™ and

W™ be the finite-dimensional subspaces spanned by

{wh, ..., w"} and {¢',...,¢™}

respectively. Given uy € H and ¢y € H?, for each m > 1, we seek an approximate solution
(U, ©m), such that u,, : [0,7] — V™ and ¢, = ¢ + @, where ¢ is an adequate lifting
function of the boundary data ¢1,p2 and @, : [0,7] — W™, which satisfies the following
variational formulation a.e. t € (0,7):

;

(Ot (1), o) + (i (£) - V)t (£), v ) + v(Vtem (£), Vo)
—(wm () Vo (t),vm) =0 Vo, € V"
(8t(pm<t)7 em) + (um(t) : v@m(t)y em) + (wm(t)a em) (38)

= (Orom(t),em), Vem, e W™,

U (0) = o = Pn(w),  @m(0) = pom = Qm(po) in €

13



Here, Py, : H+— V™ denotes the projection from H onto V™; Q,, : L? — W™ the projection
from L? onto W™; and the Euler-Lagrange equation A%, — V - f{Vp,,) has been projected
into W™ by taking

Wi 1= QA0 — V- f(Voi)).-

In particular, ug,, — uo in L? and g, — o in H? (as m — 0). If we write
Un(t) =Y &mw'  and  @n(t) = Gm(t)e,
i=1 j=1

then (38) can be rewritten as a first-order ordinary differential system (in normal form),
associated to the unknowns (&; ,,,(t), (jm(t)). By proceeding in an analogous way to [10] and
[3] (local existence, a priori estimates, and tending towards the limit where the nonlinear
terms are controlled by compactness), the existence of weak solutions (u, ) of (1)-(7) in
(0,+00) can be proved, which are also strong solutions (and unique) in (7}, +00) for a
sufficiently long-time 77, > 0. Observe that T}, can be obtained by applying Theorem
2 to ®™(t) = ||[u™||? + |0rp™|3, and by taking into account that T* given in Theorem 2 is

independent of m.

Remark 9 The differential inequality (36)has been obtained with ® depending on w and Oyp.
Another possibility could be to deduce a similar differential inequality for a ® depending on
u and w (instead of for Oyp). To this end, the computations could be: take Opw as a test
function in the w-equation (3), derive the p-equation (4) with respect to t and take Opp as a
test function. Adding both equalities to (32) the term (Oyp, Oyw) is cancelled, thereby arriving
at the following inequality instead of (33):

1d

5@@!3 +10A¢3 = —(u- Vo, dw) + (8if.(Ve), 0V p). (39)

Nevertheless, we do not know how to estimate the convective term (u- Vi, dyw) in order to

deduce a differential inequality such as in (36).

3.4 Convergence at infinite time

We recall the definition of the elastic energy:

Eo(0) = [ (318007 + F(Tel0)

and the kinetic and total energy is also defined as:

Buu(t) = 5 [ [OF,  Bu(t). ¢(0) = Bu(u(t) + Felelt)
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Theorem 10 Assume that (ug, o) € H x H?. Let (u(t), o(t),w(t)) be a weak solution of
(1)-(7) in (0,400) which is a strong solution in (1),,,+00) for some T}, > 0, then there

reg» reg

exists a number Es, > 0 such that the total energy satisfies
E(u(t),p(t)) \y Foo in IR ast 1 +oo. (40)
Moreover, the following convergences hold:
u(t) = 0 in HY and w(t) —0in L*> ast? +oo. (41)

Proof. The (decreasing) convergence of the energy given in (40) is easy to deduce from
energy equality (25) (observe (12)). By applying Lemma 1 for ®(¢) := ||u||? + |0i¢|3, we
obtain u(t) — 0 in Hj and 0yp(t) — 0 in L2. Finally; from (37), w(t) — 0 in L? holds. ]

Let S be the set of equilibrium points of (1)-(4):
$={(0,9): P HY(Q), A" = V- £(VP) =0, Ploa = ¢1, 0uPlon = po}-

On the other hand, the w-limit set of a global weak solution, (u, ), associated to the initial

data, (up, o) € H x H?, is defined as follows:
W(UO,WO) = {(uoo;@oo) € Vx H*: El{tn} 1 +oo s.t. (u(tn)v@(tn)) - (u0079000) in H' x H4}‘

Theorem 11 Under the assumptions of Theorem 10, w(ug, vo) is non-empty and w(ug, po) C
S. Moreover, for any (0,%) € S such that (0,%) € w(uy, o), then E.(p) = E holds.

Proof. The proof is divided into two steps.

Step 1: It can been seen that w(ug, o) # 0 and w(ug, o) C S.

From weak estimates, (u,¢) € L°(0,+o00; H x H?), hence there exists {t,} T +oo and
(Uso; Poo) € H x H? such that (u(tn),o(tn)) = (Uso, Poo) weakly in H x H?. From (41),
Uso = 0 and u(t,) — 0 in H). On the other hand, . will be a weak solution of the
equilibrium equation A%p., — V- £.(Vpoo) = 0. Indeed, since Vio(t,) — Voo a.e. in Q, then

F(Vo(tn)) = £-(Ves) ae. in Q

and, by using the weak estimate ||¢(t,)|l2 < C, then

V- £(Vo(ta))loss < C(IVe(ta)lg + 1ID*0(tn)l2 < Cllle(tn)l3 + Dlip(ta)ll2 < C,

hence
V- £(Voltn) = V- £.(Vo) weakly in LS/5(0Q).
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By taking into account that ¢(t,) — ¢oo weakly in H? and w(t) — 0 (strongly) in L? as
t — 400, it suffices to take limits in (23) as {t,,} T 400 to illustrate that ¢ is a weak solution
of the equilibrium equation

A%ps — V- £.(Vipso) = 0. (42)

This step finishes by proving the convergence p(t,) — oo in H*. Indeed, from (4), (10)
and (23), it is now that

leta)lla < C(IA%p(ta)|2 +1) < CUV - £(Vep(tn))l2 + [w(tn)]2 + 1). (43)
On the other hand, by using the interpolation inequalities |V|s < H‘PH;HWPH;,/Q and ||¢lls <
/2 11/2

llells “llelly’ ", and the weak estimate ||¢(ty,)]|2 < C, we obtain

V- £(Veolta)la < Cllletn) 2l t)lls + Dliea) s < Cliea)ll* +1) < dllo(ta)lla+C/s.

The application of the latter inequality for a sufficiently small § > 0 in (43) yields

le(tn)lla < C. (44)

Moreover, from the weak estimates and (44), it is easy to attain the bound

IV - £ (Ve(tn))lL < C.

By compactness, V - f.(V(t,)) converges strongly in L?(Q2), for at least an equally labelled

subsequence. Therefore, by again using (23), A2p(t,) — A2p(t,) converges strongly in

L?(£2), and hence ¢(t,) — oo converges strongly in H*(Q).

Step 2: If (0,%) € w(ug, ¢o) then E(0,p) = E¢(¥) = Ex (Ex given in Theorem 10).
From the definition of w(uo, o), there exists {t,,} T +o0o such that (u(t,),¢(tn)) = (0,%)

in H' x H* as n 1 +oo. In particular,

lim E(u(ts), ¢(ta)) = E.().

n—+400
Finally, from (40) and the uniqueness of the limit, one has F.(¢) = Ex. ]

Although the set of critical points ¥ (with the same elastic energy) might even be a continuum

of functions, the uniqueness of limit of the whole trajectory of ¢(t) can be deduced.

Theorem 12 Under the hypotheses of Theorem 11, there exists o € H* such that p(t) — ©
in H* as t T 400, i.e. w(ug, o) = {(0,9)}.

Proof. Let (0,%) € w(ug,¢o) C S, i.e, there exists ¢, 1 +oco such that u(t,) — 0 in H' and
o(tn) — @ in H.
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from the energy equality (25) for each t > ¢,
E(u(t),¢(t)) = E(0,9), |Vu(t)3=0 and |w(t)3=0.

Therefore, u(t) = 0 and w(t) = 0. In particular, by using the w-equation, then dyp(t) = 0,
and hence ¢(t) = @ for each ¢t > t. In this situation the convergence of the g-trajectory is
trivial.

The proof is now divided into three steps.

Step 1: Assuming there exists t, > T, such that

reg
lo(t) —Plls <8 and |u(t)s <1 Vt>t,

where the solution is strong in (T:eg, +00) and > 0 is the constant appearing in Lemma 5

(of Lojasiewicz-Simon’s type), then the following inequalities hold:

@ ((Blutt), o(1)) — BO,2)) + CO(Vald)s +hu)]) <0, V>t (43)
[ el < S Bt o) - BB vzt (10

where 6 € (0,1/2] is the constant appearing in Lemma 5.

Indeed, the energy equality (25) can be written as

d

%(E(u(t), o(t)) — Ex) +C (|Vu(t)]% + \w(t)lg) =0.

Therefore, by taking the time derivative of the (strictly positive) function

we obtain

dH (t)
dt
On the other hand, by recalling that the unique critical point of the kinetic energy is u = 0,

1
and by taking into account that | Ej(u) — E(0)| = §\u|% and since 2(1—0) > 1 and |u(t)]2 < 1,

+O(E(u(t), o(t)) — Exo)’ ' C(|Vu(®) 3 + [w(t)) = 0. (47)

then
1 _
|Ep(u(t)) — Ep(0)]"0 = 21—_0|u(7f)|§(1 D < Clut)y Vit > t..

Therefore, by using the Lojasiewicz-Simon inequality (given in Lemma 5):
(B(u(t), o(t)) = Boo)' ™" < |E(u(t)) = Ex(0)]' " +| Ee(() = Ee(@)|' " < C(lut)2+|w(t)]2),
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and hence, by using the Poincare inequality:
(B(u(t),o(t) = Ex)’"! = C(Vult)lz + [w(t)2) ™ V>t (48)

From (47) and (48), we obtain

dH (t
dt() +0C(Vul)s + w(t)2) <0, V>t

and (45) is proved. Integrating (45) into [to,¢1] (for any ¢ > tg > t,) yields

(B(u(tr), ¢(t1) = Bx)’ +6C t 1(|Vu(t)|2 + [w(t)l2)dt < (E(ult), p(to)) — Ex)’.  (49)

On the other hand, since dyp + V - (u ® ¢) — w = 0, then, by using the weak estimate
llp(t)]|2 < C, it can be deduced that

0ol < C(lu® @l + wl2) < C(IVuly + [w]2)

By applying this inequality in (49), we obtain (46).

Step 2: There exists a sufficiently large ng such that t,, > T}, and |[¢(t) — Pl < 8 and
|u(t)|o <1 for all t > ty,.

The bound |u(t)|2 < 1 is based on u(t) — 0 in H} given in (41). We now focus on the
bound for [|p(t) — P||3. Since ¢(t,) — P in H* and E(u(t,), ¢(tn)) = Ex = E.(®), then for
any € € (0, 3), there exists an integer N (&) such that, for all n > N(e),

1
lo(tn) —Plls <& and S (Be(ultn), o(tn)) — Bx)” < e (50)
For each n > N(e), we define

ty i =sup{t:t > tn, [|@p(s) —Plls < B Vs € [tn,t)}.

It suffices to prove that ¢,, = +oo for some ng. Assume by contradiction that ¢, < t,, < 400
for all n. Observe that ||p(t,) — @[3 = 8 and ||¢(t) — P||s < B for all t € [t,,t,). From Step
1, for all ¢ € [ty, t,], from (46) and (50) we obtain

tn
/ Bpla < Ce, V> N(e).
tn

Therefore,
tn
0(En) — Bl < |o(tn) — B2 + / 0ol < (14 C)e.
tn

which implies that lim, 1 |@(fn) — @l2 = 0. Since ¢ is bounded in L*®(t*, +o00; H),

(o(t))t>t+ is relatively compact in H3. Therefore, there exists a subsequence of ¢(t,),
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which is still denoted as ¢(%,), that converges to » in H3. Hence, for a sufficiently large

n, ||e(tn) — @lls < B, which contradicts the definition of .

Step 3: There exists a unique @ such that ¢(t) — @ in H* as t T +oo.

By using Steps 1 and 2, from (46) it is deduced that, for all t; > tg > t,,,

t1
’(,0(751) — go(to)|2 < / ‘8,5@0’2 — 0, as tg,t1 — +o0.

to

Therefore, (¢(t))t>1,, is a Cauchy sequence in L? as ¢ 1 +00, and hence the L*-convergence

of the whole trajectory is deduced, i.e. there exists a unique % € L? such that ¢(t) — @ in

L? as t T +oo. Finally, the strong H*-convergence by sequences of ((t) proved in Step 1 of

Theorem 11, yields ¢(t) — @ in H*. ]
References
[1] B. Climent-Ezquerra, F. Guillén-Gonzélez, M.J Moreno-Iraberte, Regularity and Time-

2]

3]

periodicity for a Nematic Liquid Crystal model, Nonlinear Analysis, 71, (2009), 539-549

B. Climent-Ezquerra, F. Guillén-Gonzélez, M.A. Rodriguez-Bellido, Stability for Nematic
Liquid Crystals with Stretching Terms, International Journal of Bifurcations and Chaos,
20, (2010), 2937-2942.

B. Climent-Ezquerra, F. Guillén-Gonzalez, Global in-time solutions and time-periodicity
for a Smectic-A liquid crystal model, Communications on Pure and Applied Analysis, 9
(2010), 1473-1493.

B. Climent-Ezquerra, F. Guillén-Gonzélez, On a double penalized smectic-A model, Dis-
crete and Continuous Dynamical Systems-A, Vol. 32, no. 12, (2012) 4171-4182.

W. E, Nonlinear Continuum Theory of Smectic-A Liquid Crystals, Arch. Rat. Mech.
Anal., 137, 2 (1997), 159-175.

M. Grasselli, H. Wu, Long-time behavior for a nematic liquid crystal model with asymp-
totic stabilizing boundary condition and external force, STAM J. Math. Anal., 45(3)
(2013), 965-1002.

A. Haraux, M.A. Jendoubi, Convergence of bounded weak solutions of the wave equation

with dissipation and analytic nonlinearity, Cal. Var., 9 (1999), 95-124.

19



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S.Z. Huang, Gradient Inequalities: with Applications to Asymptotic Behavior and Sta-
bility of Gradient-like Systems, Mathematical Surveys and Monographs, vol. 126 AMS
(2006)

F.H. Lin, C. Liu, Non-parabolic dissipative systems modeling the flow of liquid crystals,
Comm. Pure Appl. Math., 4 (1995), 501-537.

C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Ezistence and Reg-
ularity, Discrete and Continuous Dynamical Systems 6, 3 (2000), 591-608.

H. Petzeltova, E. Rocca, G. Schimperna, On the long-time behavior of some mathematical
models for nematic liquid crystal, Cal. Var. 46 (2013), 623-639. DOI 10.1007 /s00526-012-
0496-1

A. Segatti, H. Wu, Finite dimensional reduction and convergence to equilibrium for in-
compressible Smectic-A liquid crystal flows, STAM J. Math. Anal., 43(6) (2011), 2445-
2481

R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl.
Math. Sci., 68, Springer-Verlag, New York, 1988.

H. Wu, Long-time behavior for monlinear hydrodynamic system modeling the nematic

liquid crystal flows, Discrete and Continuous Dynamical System, 26, 1, (2010), 379-396.

H. Wu, X. Xu, C. Liu, Asymptotic behavior for a nematic liquid crystal model with dif-
ferent kinematic transport properties, Calc. Var. Partial Differential Equations, 45(3&4)
(2012), 319-345.

20



