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Abstract

A Poiseuille flow in a 3D cylindrical domain is considered for a non-newtonian fluid of

Oldroyd type.

We prove existence (and uniqueness) of a global (in time) weak solution. Moreover, this

weak solution is an strong solution when data are more regular. These results has already

been obtained in the case of two concentrical cylinders ([3]).

Now, we consider an extension to an unique cylinder. Then, a mixed parabolic-hyperbolic

PDE’s system appears but the parabolic equation is of degenerate type. The key of the proofs

is to estimate in appropriate Sobolev weighted spaces (and to obtain strong convergence in

weak norms by means of a Cauchy argument).
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1 Introduction

In this paper we consider a Poiseuille flow for an incompressible viscoelastic tridimensional fluid

satisfying the Oldroyd constitutive law ([1],[6]). Then, we consider the fluid confined in a cylinder

Ω(0, R) = {(r, ϕ, z) : 0 < r < R, 0 ≤ ϕ < 2π, z ∈ IR},

in which an axisymmetric motion is assumed.

If one use cylindrical coordinates, after some simplifications, one can reduce the problem in

Ω(0, R)×(0, T ) to the follow differential system in (0, R)×(0, T ) (see [7],[3] for details of derivation

of the model):

Re ∂tv − (1− α)r−1(rvr)r = r−1(rσ2)r + f, (1)

∂tσ1 + We−1σ1 = (1− a2)σ2vr, (2)

∂tσ2 + We−1σ2 = αWe−1vr − σ1vr. (3)

Here, ∂t denotes the t-partial derivate whereas the r-partial derivate will we denoted by the

subindex r. Re is the reynolds number (the ratio between inertial and viscous forces acting on

the fluid) and We is the Weissenberg number (a messure of the elasticity of the fluid). The con-

stants α and a verify 0 < α < 1, |a| < 1. We will complete (1)–(3) with appropriate boundary

and initial conditions. The unknows are v, σ1 and σ2 which depend on the independent variables

(r, t) ∈ (0, R) × (0, T ). The velocity of the fluid in the z-direction is modelled by v = v(r, t),

whereas σ1, σ2 represent linear combinations of the some extra-stress tensor components.

Theoretical results for the general 3D Oldroyd model (and other viscoelastic models) can be

viewed in [8], [4], [3]. Global existence and uniqueness for the 2D Poiseuille flow has been proved

in [5]. With respect to 3D case, in [3] is deduced the global existence in time and uniqueness of the

problem (1)–(3) in (R1, R2)× (0, T ), whenever 0 < R1 < r < R2 (i.e., the fluid is confined between

two concentrical cylinders) jointly homogeneous boundary conditions on r = R1 and r = R2. Now,

the main difficulty is that we have not an upper bound for r−1. In this sense, (1) is a parabolic

equation of degenarate type. Moreover, it is not clear which boundary condition on r = 0 must be

imposed (it will appear a Neumann condition).

The main task in this paper is to solve (1)–(3) in (0, T ) × (0, R) together with the following

boundary and initial conditions:

v(R, t) = 0, vr(0, t) = 0 for t ∈ (0, T ), (4)

v|t=0 = v0, σi|t=0 = σi,0 (i = 1, 2) in (0, R). (5)

This paper is organized as follows. In Section 2, we enonce the two main results of this paper,

existence and uniqueness of weak solution of (1)–(3) (Theorem 1) and regularity of this weak

solution when data are more regular (Theorem 2). In Section 3, we prove technical results about

some weighted space of functions, where we will find the solution. The proof of Theorem 2 is made
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in Section 4, using a semi-Galerkin approach together with strong estimates that let us pass to the

limit by compactness. Finally, in Section 5 we prove Theorem 1, obtaining strong convergence in

weak norms of a sequence of approximate regular solutions (furnished by Theorem 2) by means of

a Cauchy argument.

2 The main results

To give a variational formulation of problem (1)–(5), we define the following Hilbert spaces

H1
R = {v : v ∈ H1(0, R), v(R) = 0},

H = {v : r−1/2v ∈ L2(0, R)},

V = {v : r1/2v ∈ L2(0, R), r1/2vr ∈ L2(0, R), v(R) = 0},

W = {σ : r−1/2σ ∈ L2(0, R), r−1/2(rσ)r ∈ L2(0, R)}.

We will denote H−1R , H ′, and V ′, as the dual space of H1
R, H and V , respectively. The norm and the

scalar product in L2(0, R) will be denoted by ‖·‖ and (·, ·), respectively. The notation for the space

of functions will be abreged. For instance, L2 = L2(0, R) or H1 = H1(0, R). Whenever X(0, R)

is a Banach space formed by functions depend on (0, R), Lp(X) stands for Lp(0, T ;X(0, R)) and

C(X) stands for C([0, T ];X(0, R)).

Theorem 1 (Existence and uniqueness of weak solution) Assume that T > 0, |a| < 1,

0 < α < 1. If v0 ∈ H, σi,0 ∈ L∞ (i = 1, 2) and rf ∈ L2(V ′), then (1)–(5) possesses one unique

weak solution {v, σ1, σ2} in (0, R)× (0, T ), that is

v ∈ L2(V ), r1/2v ∈ L∞(L2), ∂t(r
1/2v) ∈ L2(H−1R ),

σi ∈ L∞(L∞), ∂t(r
1/2σi) ∈ L2(L2) i = 1, 2,

equation (1) and the Neumann boundary condition on r = 0 of (4) are satisfied in the following

weak sense:

Re (∂t(r
1/2v), r1/2w) + (1− α)(r1/2vr, r

1/2wr)

= −(r1/2σ2, r
1/2wr) + 〈rf, w〉V ′,V ∀w ∈ V, a.e. in (0, T ),

equations (2)–(3) are satisfied a.e. in (0, R)× (0, T ) and the initial conditions (5) are satisfied as

(r1/2v)|t=0 = r1/2v0, (r1/2σi)|t=0 = r1/2σi,0 (i = 1, 2).

tu

Notice that, the above initial conditions have a sens, because the (weak) regularity of r1/2v and

r1/2σi implies in particular:

r1/2v ∈ C([0, T ], H−1R ), r1/2σi ∈ C([0, T ], L2) (i = 1, 2).
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Theorem 2 (Regularity) Under hyphotesis of Theorem 1, if moreover v0 ∈ V , σi,0 ∈ W (i =

1, 2) and r1/2f ∈ L2(L2), then the weak solution {v, σ1, σ2} of (1)–(5) is also a strong solution,

that is, one has the additional regularity properties:

r1/2vr ∈ L∞(L2) ∩ L2(H1), vr ∈ L2(W ), ∂tv ∈ L2(H ′),

σi ∈ L∞(W ), ∂t(r
−1/2σi) ∈ L2(L2), (i = 1, 2),

equation (1) is verified a.e. in (0, R) × (0, T ), the Neumann boundary condition on r = 0 has the

following sens of trace (r1/2vr)|r=0 = 0, and one verifies the initial conditions v|t=0 = v0 and

σi|t=0 = σi,0 (now, v ∈ C(H ′) and σi ∈ C(L2)). tu

Remark: H and V are spaces of velocities (v) and W is the space of tensors (vr, σ1 and σ2).

3 Some technical results

Lemma 3 V is a Hilbert space endowed with the scalar product (r1/2vr, r
1/2wr), which is equiv-

alent to the scalar product (r1/2v, r1/2w) + (r1/2vr, r
1/2wr). In fact, the embedding V ↪→ L2(0, R)

is continuous, verifying

‖v‖ ≤ 2 ‖rvr‖ ∀v ∈ V (6)

(in particular, ‖r1/2v‖ ≤ R1/2‖v‖ ≤ 2R1/2‖rvr‖ ≤ 2R ‖r1/2vr‖). Moreover, if v ∈ V then

rv ∈ H1 (and therefore, v(R) = 0 has a sens of trace).

Proof:

We can write

v(r)2 = −2

∫ R

r

v(s)vr(s) ds.

Integrating in r ∈ (0, R) and using Fubini’s Theorem and Hölder’s inequality, we obtain

‖v‖2 = −2

∫ R

0

v(s) s vr(s) ds ≤ 2 ‖v‖ · ‖rvr‖.

Therefore, (6) holds. The rest of conclusions of Lemma are easy to obtain. tu

Lemma 4 W is a Hilbert space endowed with the scalar product

(r−1/2(rσ)r, r
−1/2(rχ)r),

which is equivalent to the scalar product

(r−1/2σ, r−1/2χ) + (r−1/2(rσ)r, r
−1/2(rχ)r).

In fact, one has

‖r−1/2σ‖ ≤ ‖r−1/2(rσ)r‖ ∀σ ∈W. (7)
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Moreover, if σ ∈W , then r1/2σr ∈ L2 and r1/2σ ∈ H1, verifying

‖r1/2σr‖ ≤ 2 ‖r−1/2(rσ)r‖, (8)

‖(r1/2σ)r‖ ≤ 3 ‖r−1/2(rσ)r‖. (9)

Proof:

We write

(r−1/2σ(r))2 = (R−1/2σ(R))2 − 2

∫ R

r

s−1/2σ(s)(s−1/2σ(s))s ds.

Integrating in (0, R), applying Fubini’s Theorem and using that

r(r−1/2σ)r = r−1/2(rσ)r −
3

2
r−1/2σ

we obtain

2 ‖r−1/2σ‖2 = −(σ(R))2 + 2

∫ R

0

r−1/2σ(r) r−1/2(rσ(r))r dr.

Therefore (7) holds. Taking into account that

r1/2σr = r−1/2(rσ)r − r−1/2σ,

it follows (8) thanks to (7). ¿From (7) and (8), we have (9). tu

Finally, the following regularity result we will also be used.

Lemma 5 If (rσ)r ∈ L2(0, R) then σ ∈ L2(0, R) and

‖σ‖ ≤ 2 ‖(rσ)r‖. (10)

Proof:

We can write

σ(r)2 = σ(R)2 − 2

∫ R

r

σ(s)σr(s) ds

Integrating in r ∈ (0, R) and applying Fubini’s Theorem, we obtain

‖σ‖2 = Rσ(R)2 − 2

∫ R

0

rσ(r)σr(r) dr.

Using that rσσr = (rσ)rσ − σ2, then

‖σ‖2 = Rσ(R)2 + 2‖σ‖2 − 2

∫ R

0

(rσ)rσ dr.

This implies

‖σ‖2 ≤ 2

∫ R

0

(rσ)rσ dr

and thanks to Hölder’s inequality, we obtain ‖σ‖2 ≤ 2 ‖(rσ)r‖ · ‖σ‖ and (10) holds. tu

First, we will prove Theorem 2. Afterwards, this result will be used in the proof of Theorem 1.
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4 The proof of Theorem 2

In the sequel, C, C1, C2 denote different constants which depend only on the data. We split the

proof in three steps: the choice of a special basis of V , construction of a family of aproximate

solutions by a Galerkin method and finally, the pass to the limit by compactness.

First step: The choice of a special basis of V .

Let us consider the eigenvalue problem:
Obtain λ ∈ IR and v ∈ V (v 6= 0), such that

r−1(rvr)r = λv in (0, R),

vr(0) = 0, v(R) = 0.

(11)

A variational formulation of (11) is (see [2]): Obtain λ ∈ IR and v ∈ V (v 6= 0), such that

(r1/2vr, r
1/2wr) = λ(r1/2v, r1/2w) ∀w ∈ V.

(12)

¿From Lemma 3, the bilinear form defined by

(r1/2ur, r
1/2vr) ∀u, v ∈ V

defines in V an scalar product, that it will be denoted by (·, ·)V (and by ‖ · ‖V his corresponding

norm).

For a fixed u ∈ V , the map v ∈ V 7→ (r1/2u, r1/2v) ∈ R is a continuous linear functional on V .

So that, by the Riesz-Fréchet representation Theorem, there is a unique function in V , that it will

be denoted by Tu, such that

(Tu, v)V = (r1/2u, r1/2v) ∀v ∈ V.

Clearly T : V 7→ V is linear, symmetric and bounded (in fact, ‖Tu‖V ≤ ‖u‖V ). Moreover, T

is compact. Indeed, let un be a bounded sequence in V , then in particular by Lemma 3, run is

bounded in H1. Therefore, we may extract a subsequence, such that run → ru strongly in L2.

Then,

‖T (un − u)‖2V = (r(un − u), T (un − u)) ≤ ‖r(un − u)‖ · ‖T (un − u)‖,

which implies that Tun → Tu strongly in V .

Variational problem (12) may be rewritten as

(u, v)V = λ(Tu, v)V ∀v ∈ V.

Therefore, the problem is equivalent to

Obtain µ ∈ IR ( µ = 1/λ) and u ∈ V such that Tu = µu.
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Now, we can apply Hilbert-Schmidt’s Theorem to obtain a sequence (µn) of eigenvalues of T (with

µn > 0 and µn ↗ ∞) and an orthonormal basis (un) formed by eigenfunctions of V . Therefore,

we have that the sequence λn = 1/µn (λn > 0 and λn ↘ 0), is formed by “eigenvalues” of problem

(12) associated to the same orthonormal basis (un) of V

Second step: Construction of a family of approximate solutions.

We use a Galerkin approximation for v, remaining problems for σ1, σ2 at infinity dimension (this

can be called a semi-Galerkin method) .

The finite dimensional space spanned by {u1, u2, ..., um} will be denoted by V m. For each

m ≥ 1, we define (vm, σm1 , σ
m
2 ) as an m-th approximate solution if

vm ∈ C1([0, T ], V m),

(
i.e. vm(t) =

m∑
i=1

βi(t)u
i with βi ∈ C1[0, T ]

)
,

σmi ∈ C([0, T ], L∞(0, R)) ∩ C1([0, T ], L2(0, R)) i = 1, 2,

verifying the (approximate) problem:

Re(∂t(r
1/2vm), r1/2w) + (1− α)(r1/2vmr , r

1/2wr)

= −(r1/2σm2 , r
1/2wr) + (r1/2fm, r

1/2w) ∀w ∈ V m, (13)

∂tσ
m
1 + We−1σm1 = (1− a2)σm2 v

m
r , (14)

∂tσ
m
2 + We−1σm2 = αWe−1vmr − σm1 vmr , (15)

vm|t=0 = vm0 , σmi |t=0 = σi,0, i = 1, 2, (16)

where fm ∈ C([0, T ], L2) such that r1/2fm → r1/2f in L2(L2). In (16), vm0 = Pm(v0), taking

Pm : L2(0, R) 7→ V m as the orthogonal projector onto V m. Observe that vm0 → v0 in L2 (since

v0 ∈ V , in particular v0 ∈ L2, thanks to Lemma 3).

Now, for each m ≥ 1, we are going to prove the existence of a solution (vm, σm1 , σ
m
2 ) of (13)–(16),

by means of a fixed point argument (using linearisation of (13)–(16)).

Given vm ∈ C([0, T ], V m), we stand the following linear differential problem in (0, T )× (0, R):

Obtain (σm1 , σ
m
2 ) ∈ C1([0, T ];L2) such that

∂tσ
m
1 + We−1σm1 = (1− a2)σm2 v

m
r , (17)

∂tσ
m
2 + We−1σm2 = αWe−1vmr − σm1 vmr (18)

σmi |t=0 = σi,0, i = 1, 2. (19)
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This problem can be written as the following Cauchy problem, associated to the linear differencial

system respect to t:  ∂tσ
m +Aσm = b, t ∈ (0, T ), a.e. r ∈ (0, R),

σm|t=0 = σ0, i = 1, 2,

where

σm =

(
σm1

σm2

)
, A =

(
We−1 −(1− a2)vmr

vmr We−1

)
, b =

(
0

αWe−1vmr

)
.

As vm is generated by {u1, u2, ..., um}, in particular we have that (rvmr )r ∈ C([0, T ];L2), hence

Lemma 5 says us that vmr ∈ C(L2). So that, A, b ∈ C([0, T ];L2) and we can deduce that (17)–(18)

possesses one unique maximal solution in C1([0, T ];L2).

Now, given vm ∈ C(V m) and σmi ∈ C1(L2), i = 1, 2, the solution of (17)–(19), we stand the

linear variational problem: Obtain vm ∈ C1([0, T ], V m) such that
Re(∂t(r

1/2vm), r1/2w) + (1− α)(r1/2vmr , r
1/2wr) = −(r1/2σm2 , r

1/2wr)

+(r1/2fm, r
1/2w) ∀w ∈ V m,

vm(0) = vm0 .

(20)

Putting vm =

m∑
j=1

βj(t)u
j and w = ui for i = 1, 2, ...,m, (20) is equivalent to the linear differential

system respect to t: 
Re
dβ

dt
= −(1− α)A−1Bβ −A−1d,

βi(0) = (v0, u
i), i = 1, ...,m

(21)

where, we have denoted

A = (ai,j)
m
i,j=1, B = (bi,j)

m
i,j=1, d = (di)

m
i=1, β = (βi)

m
i=1

with

ai,j = (r1/2uj , r1/2ui), bi,j = (r1/2ujr, r
1/2uir),

di = (r1/2σm2 , r
1/2uir)− (r1/2fm, r

1/2ui).

Notice that A is symmetric and positive defined, because of

m∑
i,j=1

ai,jξiξj ≥
m∑
i=1

1

λi
|ξi|2 ≥

1

λm

∑
i

|ξi|2 ∀ξ ∈ IRm.

Since (1−α)A−1B ∈ IRm×m and A−1d ∈ C([0, T ])m, there exists a unique solution β ∈ C1([0, T ])m

of (21) and, therefore, a unique solution vm of (20) (which depends continuously on vm, σm1 and

σm2 ).
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Then, we have rewritten (13)–(16) as the fixed point equation:

vm ∈ C([0, T ];V m) 7→ (σm1 , σ
m
2 ) ∈ C1([0, T ];L2) 7→ vm ∈ C1([0, T ];V m).

To check hypotheses of Schauder’s Theorem, we have to obtain some estimates of vm (independent

of vm). First, we are going to obtain some estimates for σm1 , σm2 (independent of vmr and m).

Computing (
(17)− αWe−2

) (
σm1 − αWe−1

)
+ (18)(1− a2)σm2 ,

we find:

d

dt
Ψ(r, t) + 2 We−1Ψ(r, t) = −2αWe−2(σm1 − αWe−1) ≤ α2We−3 + We−1Ψ(r, t)

where Ψ(r, t) = (σm1 − αWe−1)2 + (1− a2)(σm2 )2. Then,

d

dt
Ψ(r, t) + We−1Ψ(r, t) ≤ α2We−3,

hence

Ψ(r, t) ≤ Ψ(r, 0)e−t/We + α2We−2(1− e−t/We), ∀t ∈ [0, T ], a.e. r ∈ (0, R).

Consequently,

‖σmi ‖L∞(L∞) ≤ C for i = 1, 2, (22)

where C = C(α, a,We, ‖σi,0‖L∞) > 0, but C is independent of vm (and also of m).

Now, we can find estimates for vm (independent of vm). Indeed, taking w = vm in (20), one

finds
Re

2

d

dt
‖r1/2vm‖2 + (1− α)‖r1/2vmr ‖2 = −(r1/2σm2 , r

1/2vr) + (r1/2fm, r
1/2v).

This, together with (22), leads to the following estimate:

‖r1/2vm‖L∞(L2) + ‖r1/2vmr ‖L2(L2) ≤ C. (23)

Here C depends on α, Re, We, ‖σmi ‖L∞L∞ , ‖r1/2v0‖, ‖rf‖L2(V ′), but is independent of vm (and

m).

Since
1

λm

m∑
j=1

|βj(t)|2 ≤ ‖r1/2vm(t)‖2,

using (23) we deduce that (βj) is bounded (respect to vm) in C([0, T ]) and, in particular,

vm is bounded in C([0, T ], V m). (24)

Using the above estimate in (21), we have

m∑
j=1

ai,j
dβj
dt

is bounded in C([0, T ]), for 1 ≤ i ≤ m.
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Since A is symmetric and defined positive (uniformly respect to vm), then

(
dβj
dt

)
is bounded in

C([0, T ]) for 1 ≤ j ≤ m. So that

∂tv
m is bounded in C([0, T ], V m). (25)

¿From (24) and (25), we deduce that vm is bounded in C1([0, T ], V m).

Now, we can apply Schauder’s Theorem. Indeed, there exists C > 0 (independent of vm ∈
C([0, T ], V m)) such that

‖vm‖C1(Vm) ≤ C.

If we denote B (resp. B1) the closed ball in C([0, T ], V m) (resp. C1([0, T ], V m)) with radius C, then

the map vm ∈ B 7→ vm ∈ B1 is well defined and continuous. Thanks to Ascoli-Arzelá Theorem,

the map vm ∈ B 7→ vm ∈ B is continuous and compact. Therefore, there exists a fixed point vm,

and consequently (vm, σm1 , σ
m
2 ) is an m-th approximate solution.

Third step: Pass to the limit in (13)–(16) (by compactness).

First, we are going to obtain estimates for (vm, σm1 , σ
m
2 ), independent of m. We have already

obtained estimates (22) and (23) in the above step, but these estimates are not suffice to control

the pass to the limit, in the nonlinear terms vmr σ
m
i (i = 1, 2). To solve this, one possibility is to

find better bounds.

We denote the r-derivative of an equation with the index r. Now, we compute(
((14)× r)r, r−1(rσm1 )r

)
+
(
((15)× r)r, (1− a2)r−1(rσm2 )r

)
. (26)

On the other hand, writing (13) as

(Re ∂t(rv
m)− (1− α)(rvmr )r, w) = 〈(rσm2 )r, w〉+ (r1/2fm, r

1/2w) ∀w ∈ V m, (27)

we compute (
(27),−α(1− a2)

We
r−1(rvmr )r

)
+

(
(27),

α(1− a2)

We
∂tv

m

)
. (28)

Notice that r−1(rvmr )r ∈ V m, thanks to the choice of the special basis.
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Adding (26) and (28), many important terms “difficult to handle” are cancelled and we obtain

1

2

d

dt

{
1− a2

We
α(2− α)‖r1/2vmr ‖2 + ‖r−1/2(rσm1 )r‖2 + (1− a2)‖r−1/2(rσm2 )r‖2

}
+

1− a2

We
α(1− α)‖r−1/2(rvmr )r‖2 +

1− a2

We
αRe‖r1/2∂tvm‖2

+
1

We
‖r−1/2(rσm1 )r‖2 +

1− a2

We
‖r−1/2(rσm2 )r‖2

= −1− a2

We
α(r1/2fm, r−1/2(rvmr )r) + (1− a2)(r1/2σm2 v

m
rr, r

−1/2(rσm1 )r)

− (1− a2)(r1/2σm1 v
m
rr, r

−1/2(rσm2 )r) +
1− a2

We
α(r−1/2(rσm2 )r, r

1/2∂tv
m)

+
1− a2

We
α(r1/2fm, r1/2∂tv

m).

Using (8) and (22), the right-hand side of the above equality can be bounded by

1− a2

2We
α(1− α)‖r−1/2(rvmr )r‖2 +

1− a2

2We
αRe‖r1/2∂tvm‖2

+C
(
‖r−1/2(rσm1 )r‖2 + ‖r−1/2(rσm2 )r‖2 + ‖r1/2fm‖2

)
.

Thanks to Gronwall’s Lemma, since r1/2fm is bounded in L2(L2) and r1/2(vm0 )r and r−1/2(rσi,0)r

are bounded in L2 (because v0 ∈ V and σi,0 ∈ W , i = 1, 2), we deduce that there exists C > 0

such that

‖r1/2vmr ‖L∞(L2) ≤ C, (29)

‖r−1/2(rvmr )r‖L2(L2) ≤ C (i.e. ‖vmr ‖L2(W ) ≤ C), (30)

‖r1/2∂tvm‖L2(L2) ≤ C (i.e. ‖∂t(r1/2vm)‖L2(L2) ≤ C) (31)

and

‖r−1/2(rσmi )r‖L∞(L2) ≤ C (i.e. ‖σmi ‖L∞(W ) ≤ C) i = 1, 2. (32)

Thanks to Lemma 4, (30) and (32) imply

‖r−1/2vmr ‖L2(L2) ≤ C, ‖r−1/2σmi ‖L∞(L2) ≤ C, i = 1, 2, (33)

‖r1/2vmr ‖L2(H1) ≤ C and ‖r1/2σmi ‖L∞(H1) ≤ C, i = 1, 2, (34)

Moreover, multiplying (14) and (15) by r−1/2 and taking into account (33), we obtain

‖∂t(r−1/2σmi )‖L2(L2) ≤ C, i = 1, 2. (35)
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Estimates (22), (23), (29)− (35) can be used to prove the existence of subsequences (again indexed

with m) such that

vm → v weakly in L2(H1
R),

vmr → vr weakly in L2(W ),

r1/2vm → r1/2v weakly? in L∞(L2) and weakly in L2(H1
R),

r1/2vmr → r1/2vr weakly? in L∞(L2) and weakly in L2(H1),

∂t(r
1/2vm) → ∂t(r

1/2v) weakly in L2(L2),

σmi → σi weakly? in L∞(L∞ ∩W ) i = 1, 2,

r1/2σmi → r1/2σi weakly? in L∞(H1) i = 1, 2,

∂t(r
−1/2σmi ) → ∂t(r

−1/2σi) weakly in L2(L2) i = 1, 2.

¿From well know compactness results, in particular, one has

r1/2vm → r1/2v and r1/2σmi → r1/2σi strongly in L2(L2), i = 1, 2.

The weak convergences are suffice to pass to the limit in (13) and (27), but the strong convergence

is necessary to pass to the limit in (14) × r and (15) × r, on account of terms r1/2σmi r
1/2vmr . In

particular, (v, σ1, σ2) verifies

(Re r ∂tv − (1− α)(rvr)r − (rσ2)r − rf, w) = 0 ∀w ∈ V. (36)

By a standard density argument, the above equality is also verified for all w ∈ L2, hence one has

Re ∂tv − (1− α)
1

r
(rvr)r =

1

r
(rσ2)r + f a.e. in (0, R)× (0, T ). (37)

Multiplying (37) by w ∈ H, one has

∂tv ∈ L2(H ′).

In particular, v ∈ C(H ′).

On the other hand, from (32) and (35) we deduce that σmi is relativily compact in C([0, T ], H−1)

and from (23) and (31) we obtain that r1/2vm is relativily compact in C([0, T ], H−1). Then, we

can pass to the limit in the initial conditions.

The Theorem 2 is proved.

5 The proof of Theorem 1

Let us choose sequences (vε0), (σεi,0) (i = 1, 2) and (fε) such that

vε0 ∈ V, σεi,0 ∈ L∞ ∩W i = 1, 2, r1/2fε ∈ L2(L2), ∀ε > 0
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and
vε0 → v0 strongly in H,

σεi,0 → σi,0 weakly? in L∞ and a.e. in (0, R),

rfε → rf strongly in L2(V ′).

(38)

For each ε > 0, we consider (vε, σε1, σ
ε
2) a regular solution of (1)–(5) associated to the data vε0, σεi,0,

fε furnished by Theorem 2. In particular, (vε, σε1, σ
ε
2) is a weak solution of (1)–(5):

Re(∂t(r
1/2vε), r1/2w) + (1− α)(r1/2vεr , r

1/2wr)

= −(r1/2σε2, r
1/2wr) + (rfε, w) ∀w ∈ V, a.e. in (0, T ), (39)

∂tσ
ε
1 + We−1σε1 = (1− a2)σε2v

ε
r a.e. in (0, R)× (0, T ), (40)

∂tσ
ε
2 + We−1σε2 = αWe−1vεr − σε1vεr a.e. in (0, R)× (0, T ), (41)

(r1/2vε)|t=0 = r1/2vε0, (r1/2σεi )|t=0 = r1/2σεi,0 i = 1, 2. (42)

Proceeding as in section 4, we can prove the estimates (22) and (23) (respect to ε), that is

‖σεi ‖L∞(L∞) ≤ C, ‖r1/2vε‖L∞(L2) ≤ C, ‖r1/2vεr‖L2(L2) ≤ C. (43)

Considering these estimates in (40), (41), one has

‖∂t(r1/2σεi )‖L2(L2) ≤ C, i = 1, 2. (44)

In addition, the estimate

‖∂t(r1/2vε)‖L2(H−1
R

) ≤ C, (45)

can be proved, using the following

Lemma 6 If w ∈ H1
R then r−1/2w ∈ V and ‖r−1/2w‖V ≤ C‖w‖H1

R
.

Proof:

By definition of V , r−1/2w ∈ V if only if r1/2(r−1/2w)r = wr −
1

2
r−1w ∈ L2. Since wr ∈ L2, it

suffices to prove that r−1w ∈ L2 and ‖r−1w‖ ≤ C‖wr‖. Indeed, we can write

(r−1w)2(r) = −2

∫ R

r

s−1w(s)
(
s−1w(s)

)
s
ds.

Integrating in r ∈ (0, R) and using Fubini’s Theorem, we obtain

‖r−1w‖2 = −2

∫ R

0

w(r)(r−1w(r))r dr = 2 ‖r−1w‖2 − 2

∫ R

0

r−1w(r)wr(r) dr.

Therefore,

‖r−1w‖2 = 2

∫ R

0

r−1w(r)wr(r) dr ≤ 2 ‖r−1w‖ · ‖wr‖,

12



and ‖r−1w‖ ≤ 2 ‖wr‖ holds. tu
Thanks to the estimates (43)–(45), we can pass to the limit in (39) and in the linear terms of

(40)–(41). Moreover, the initial conditions are verified. However, the weak convergences are not

enough to pass to the limit in the nonlinear terms σεi v
ε
r of (40)–(41). To do it, we will prove that

(r1/2vε, r1/2σε1, r
1/2σε2) is a Cauchy sequence in an addecuate norm.

We consider the difference between (39)ε–(41)ε and (39)η–(41)η. Taking w =
α

We
(vε − vη)

as test function in (39)ε − (39)η, computing the scalar products in L2 of ((40)ε − (40)η) × r and

((41)ε − (41)η)×r respectively by
1

1− a2
r1/2(σε1−σ

η
1 ) and r1/2(σε2−σ

η
2 ), and adding all the terms,

we obtain

1

2

d

dt

{
αRe

We
‖r1/2(vε − vη)‖2 +

1

1− a2
‖r1/2(σε1 − σ

η
1 )‖2 + ‖r1/2(σε2 − σ

η
2 )‖2

}
+
α(1− α)

We
‖r1/2(vεr − vηr )‖2 +

1

We

(
1

1− a2
‖r1/2(σε1 − σ

η
1 )‖2 + ‖r1/2(σε2 − σ

η
2 )‖2

)
=

α

We
(r1/2(σε2 − σ

η
2 ), r1/2(vεr − vηr )) +

α

We
(r(fε − fη), (vε − vη))

+(ση2r
1/2(vεr − vηr ), r1/2(σε1 − σ

η
1 )) +

α

We
(r1/2(vεr − vηr ), r1/2(σε1 − σ

η
1 ))

−(ση1r
1/2(vεr − vηr )), r1/2(σε2 − σ

η
2 )).

(46)

Here, we have added and subtracted ση2v
ε
r in (40)ε − (40)η and ση1v

ε
r in (41)ε − (41)η respectively.

It must be emphasized that, in the previous manipulations, those terms “difficult to handle”, i.e.

the terms associated to

(1− a2)(σε2 − σ
η
2 )vεr and − (σε1 − σ

η
1 )vεr

have disappeared. The right-hand side of (46) is bounded by

C(‖r1/2(vεr − vηr )‖ · ‖r1/2(σε1 − σ
η
1 )‖+ ‖r1/2(vεr − vηr )‖ · ‖r1/2(σε2 − σ

η
2 )‖

+‖r(fε − fη)‖V ′ · ‖(vε − vη)‖V ).

Then, we arrive at

d

dt

{
αRe

We
‖r1/2(vε − vη)‖2 +

1

1− a2
‖r1/2(σε1 − σ

η
1 )‖2 + ‖r1/2(σε2 − σ

η
2 )‖2

}
+
α(1− α)

We
‖r1/2(vεr − vηr )‖2 ≤ C1‖r(fε − fη)‖2V ′

+C2

[
αRe

We
‖r1/2(vε − vη)‖2 +

1

1− a2
‖r1/2(σε1 − σ

η
1 )‖2 + ‖r1/2(σε2 − σ

η
2 )‖2

] (47)
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¿From Gronwall’s Lemma, we obtain

αRe

We
‖r1/2(vε − vη)‖2L∞(L2) +

1

1− a2
‖r1/2(σε1 − σ

η
1 )‖2L∞(L2) + ‖r(σε2 − σ

η
2 )‖2L∞(L2)

≤ αRe

We
‖r1/2(vε0 − v

η
0 )‖2L2 +

1

1− a2
‖r1/2(σε1,0 − σ

η
1,0)‖2L2 + ‖r1/2(σε2,0 − σ

η
2,0)‖2L2

+C ‖r(fε − fη)‖2L2(V ′).

Therefore, thanks to (38), {r1/2vε} and {r1/2σεi } (i = 1, 2) are Cauchy sequences in L∞(L2).

Coming back to (47), we also obtain that {r1/2vεr} is a Cauchy sequence in L2(L2).

Notice that, in particular, the above argument implies uniqueness of the weak solution.

The strong convergences of r1/2σεi in L∞(L2) or r1/2vεr in L2(L2), are enough to take limits in

(40)× r1/2 and (41)× r1/2. Finally, from estimates (43)–(45), one has that the sequence {r1/2σεi }
is relatively compact in C([0, T ], H−1) and {r1/2vε} in C([0, T ], H−1R ), hence the initial conditions

holds.

Remark: The Cauchy argument used in the above proof, can not be made directly with a Galerk-

ing approximation. From this fact, we have had to prove the regularity result (Theorem 2) before

that Theorem 1.

Remark: When a = 1 or a = −1, results like of this paper can be proved more easily. Now, σ2

is uncoupled respect to (v, σ1), which is the solution of a linear system. The principal disavantage

is that now one can not prove the L∞ estimates for σ1. In this new system, the energy estimates

says us that

r1/2σm1 is bounded in L∞(L2),

r1/2vm is bounded in L∞(L2),

r1/2vmr is bounded in L2(L2).

Therefore a standard compactness argument leads to the existence (and uniqueness) of the weak

solution.
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