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DNA replication initiates at defined replication origins along eu-
karyotic chromosomes, ensuring complete genome duplication
within a single S-phase. A key feature of replication origins is their
ability to control the onset of DNA synthesis mediated by DNA
polymerase-α and its intrinsic RNA primase activity. Here, we de-
scribe a novel origin-independent replication process that is medi-
ated by transcription. RNA polymerase I transcription constraints
lead to persistent RNA:DNA hybrids (R-loops) that prime replication
in the ribosomal DNA locus. Our results suggest that eukaryotic
genomes have developed tools to prevent R-loop–mediated replica-
tion events that potentially contribute to copy number variation,
particularly relevant to carcinogenesis.
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During transcription, DNA acts as a template for the synthesis
of the nascent RNA. RNA synthesis is accompanied by the

generation of positive and negative DNA supercoiling in front of
and behind the transcription machinery, respectively (1). Un-
winding of the DNA double helix by negative supercoiling may
allow the RNA to hybridize to its DNA template behind the
elongating RNA polymerase, leading to R-loops (2). Other ele-
ments that could potentiate R-loop accumulation include RNA:
DNA hybrid-facilitating DNA sequences, such as G-quadruplex
structures (3) or nicks in the nontemplate DNA strand (4).
Eukaryotic cells need to control R-loop formation to avoid

replication impairment, genome instability, and life span short-
ening mediated by such intermediates (5–10; reviewed in ref. 11).
To do so, cells catalyze the relaxation of supercoiled DNA by type
I topoisomerases (12–15), thus preventing replication fork reversal
(16), DNA overwinding with the potential to block replication fork
progression (17), DNA unwinding (18), or R-loop–mediated
blocks of ribosomal RNA synthesis (19). Other enzymatic activi-
ties involved in R-loop processing include ribonuclease H (RNase
H) activities, DNA-RNA helicases, such as Sen1/senataxin (20, 21),
or Ataxin-2 RNA-binding protein Pbp1 (10). The ribonuclease
activity of Saccharomyces cerevisiaeRNases H1 and H2 specifically
cleaves the RNA moiety of the RNA:DNA hybrid structure (22),
whereas RNase H2 and topoisomerase 1 (Top1) can also process
ribonucleotides in duplex DNA (23, 24).
Notably, R-loops are required to initiate mitochondrial DNA

replication (25) and pioneering studies connected R-loops to
origin-independent replication in prokaryotic systems (26, 27).
For example, DnaA-dependent initiation of DNA replication at
the Escherichia coli oriC replication origin can be overcome in
the absence of RNase H1 (28, 29). As a consequence, rnhA
mutants can survive complete inactivation of oriC by transcription-
dependent activation of so-called oriK sites (30, 31), although
candidate oriK sites have been identified only recently (32). Ad-
ditional evidence for R-loop–primed replication was given by the
observation that rnhA mutants are prone to an increase in muta-
tion and DNA amplification events if origin activity is suppressed.
These events required removal of the RNA polymerase (RNAP)
to allow conversion of an R-loop into a replication fork (33). In
summary, R-loops may act as the earliest known mutagenic in-
termediate in transcribed regions, and accelerate adaptation to

genomic stress in prokaryotes. However, the possibility that
R-loops mediate replication events in eukaryotic organisms still
remains to be explored.
Highly transcribed ribosomal genes have been shown to favor

R-loop formation in cells lacking both RNase H and Top1 activ-
ities (19). Here, by taking advantage of R-loop promoting condi-
tions we potentiate the formation of DNA double-strand breaks
(DSBs) and detect origin-independent replication intermediates
(RI) within the transcribed 35S rRNA genes. A main finding in
this work is the observation of “bubble-shaped” RIs by 2D agarose
gels within the actively transcribed 35S rDNA when both Top1
and cellular RNases H are depleted. Importantly, in accordance
with R-loop–mediated replication these “bubbles” are no longer
observed when transcription by RNAPI is constrained. Our data
suggest that R-loop–mediated replication contributes to stress-
induced mutation, which is potentially relevant to eukaryotic ge-
nome evolution and disease formation.

Results
R-Loops Promote Genome Instability and Noncanonical Replication
Events. We maximized R-loop accumulation by treatment of mu-
tants devoid of both RNase H1 and H2 (rnh1Δ rnh201Δ, referred
to herein as r1Δ r2Δ) with the Top1 inhibitor camptothecin (CPT).
CPT causes the accumulation of a covalent Top1–DNA complex
that prevents religation of a nicked DNA duplex (15). Sensitivity to
CPT and replicative stress generated by hydroxyurea (HU) and
methyl methanesulfonate (MMS) was dependent on the removal
of both RNase H activities, suggesting that both enzymes can
substitute for each other (Fig. 1A and Fig. S1 A and B). Similarly,
the lack of both RNase H activities was necessary to induce ge-
nomic instability. Double mutants r1Δ r2Δ showed a sixfold in-
crease in CAN mutation rates (Fig. S1C), a 10-fold increase in loss
of heterozygosity at the MAT locus (Fig. S1C), and a sevenfold
increase (WT 4.5%, r1Δ r2Δ 31.6%) in S/G2 phase DNA repair
centers as monitored by Rad52-YFP foci (Fig. 1B). More than half
of the Rad52-YFP foci appeared to be associated with nucleolar
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DNA in r1Δ r2Δ cells (61% in the absence and 65% in the
presence of CPT), indicating an increased susceptibility of ribo-
somal DNA (rDNA) to DNA damage caused by impaired pro-
cessing of RNA:DNA hybrids.
The rDNA, which is hosted in the nucleolus, is localized on

chromosome XII and consists of ∼150 rDNA copies per haploid
that are susceptible to stress-induced changes in repeat number
and the formation of extrachromosomal rDNA circles (ERCs)
caused by the excision of rDNA repeats (34, 35). Consistent with
an increase in replicative stress upon CPT treatment, the number
of Rad52 foci-containing cells doubled 30–90 min after release
from α-factor (Fig. S2A) and CPT-treated r1Δ r2Δ mutant cells
accumulated in late S or G2 phase (Fig. 2A). To further investigate
the impact of CPT on rDNA maintenance, we monitored the fate
of replication forks in S-phase cells. Following G1-synchronization
by α-factor and release into CPT-containing medium, RIs were
isolated and analyzed by 2D agarose gel electrophoresis (for in-
terpretation of the results, see Fig. 2B). Although the S-phase
specific pattern of replication (Y-arc) and recombination (X-spike)
intermediates in WT and r1Δ r2Δ strains were similar, a clear
difference was observed at late S/G2 phase. Whereas replication in
the WT had finished, Y-arc and X-spike RIs remained in the r1Δ
r2Δ mutants, and replication fork pausing sites (RFPs) (Fig. 2C,
open arrowheads) appeared in the nontranscribed spacer region
(Fig. 2C, probe A). These pausing sites were CPT-dependent be-
cause we could not detect them in RIs isolated from untreated r1Δ
r2Δ mutants (Fig. S3A). The majority of these RFP sites over-
lapped with those previously described in cells lacking the Rrm3
DNA helicase (36) (Fig. 3). The observed pausing sites may be
enriched at hot spots of Top1–DNA interaction sites and corre-
spond to CPT-trapped Top1–DNA complexes, yet they correlated
with potential sites of R-loop formation (37, 38), such as the 3′ end
of 35S genes (d in Fig. 3) or 5S genes (c in Fig. 3), but also included
sites of protein barriers such as the ribosomal autonomously rep-
licating sequence (ARS) or 35S promoter (a/b and e in Fig. 3).
Next, we monitored replication intermediates present within the

35S gene (Fig. 2C, probe B). Although the 35S gene lacks common
characteristics of replication origins that allow the binding of the
prereplication complex (39), intermediates migrating as expected
for bubble-shaped molecules were detected (indicated by a black

arrowhead at the 105-min timepoint in Fig. 2C; see ref. 40 for a
more detailed explanation of RI characteristics), indicative of
replication initiation events within the 35S gene. We analyzed the
bubble-shaped RIs by several means to determine the structure of
these molecules (Fig. S3B). Previously it had been shown that in
vitro RNase H treatment of mtDNA replication intermediates
removes RNA:DNA hybrids and leads to the appearance of sim-
ple-Y structures in 2D agarose gels (41, 42). In accordance with a
replicon-like structure, the bubble-shaped molecules were resistant
to in vitro RNase H treatment and heat-induced branch migration.
Furthermore, as expected for replicating molecules having an ex-
tendable 3′ end, in vitro DNA synthesis by Klenow/gp32 treatment
could destroy the bubble-shaped molecules by strand displacement
(43). These analyses rule out the presence of long stretches of
R-loops, which could have a bubble-like appearance, and suggest a
rapid conversion of R-loops into noncanonical replicons.
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Fig. 1. Lack of RNase H activities predominantly affects nucleolar DNA
stability. (A) Tenfold serial dilutions of cells grown for 3 d on YPAD (control)
or YPAD-containing 10 μg/mL CPT. (B) Rad52-YFP foci represent DNA repair
centers associated to nuclear versus nucleolar DNA (rDNA; hatched). Nop1-
mRFP was used as nucleolar marker. (Scale bars, 2.5 μm.) Percentage of cells
containing Rad52-YFP foci counted in exponentially growing cells growing in
the absence (control) or presence of CPT (10 μg/mL, 3-h treatment; Right). Data
represent mean± SD from three independent experiments. Note that the ratio
of Rad52-YFP/Nop1-RFP colocalization increased from 29% (control) and 34%
(+CPT) in WT cells to 61% (control) and 65% (+CPT) in r1Δ r2Δ mutants.
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Fig. 2. Two-dimensional gel analysis detects exceptional replication events in
the rDNA of CPT-treated r1Δ r2Δ mutants. (A) FACS analysis of S-phase pro-
gression upon α-factor release of cells (WT, r1Δ r2Δ) in the presence of 10 μg/mL
CPT. G1 (n) and G2/M phase (2n) are indicated. (B) Schematic representation of
major 2D gel signals including Y-, X-, and bubble-shaped molecules are
displayed. The accumulation of replication intermediates at the RFB site as
well as nonreplicating DNA (1×) are indicated. (C) Two-dimensional gel
analysis of the BglII (B) digested rDNA locus. Probe A (Upper) detects the
intergenic spacer region (IGS) containing the ribosomal origin of replica-
tion (ARS); the 5S gene, the RFB, and the 5′ end of the 35S gene. Repli-
cation pausing sites are indicated (open arrowheads). Probe B hybridizes
to the RNAPI transcribed 35S gene. Replication intermediates indicative of
bubble-shaped molecules are indicated (black arrowhead). The images are
reduced by 5×. Quantification is shown in Fig. S2B.
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Depletion of Top1 in the Absence of RNase H Leads to Unscheduled
Replication Within the 35S rDNA. Next we generated an indole
acetic acid (IAA)-inducible Top1-degron mutant (TOP1AID*)
and assayed the impact of Top1 degradation on RNA:DNA hy-
brid formation. Top1 levels rapidly decreased upon IAA addition
(Fig. 4A, Left and Fig. S4A), and consistent with previous ob-
servations (19), growth of r1Δ r2Δ mutants was inhibited in the
absence of Top1 (Fig. S4A). Although 30% of r1Δ r2Δ mutant
cells cross-reacted with the R-loop specific S9.6 antibody, 61% of
cells were S9.6+ upon CPT addition, and similar values (39% vs.
76%) were obtained for the IAA-stimulated Top1 degradation in
r1Δ r2Δ mutants, respectively (Fig. 4A, Right and Fig. S4B). This
result supports the idea that the concomitant loss of RNase H
and Top1 activities has an additive effect on RNA:DNA hybrid
formation (13, 33).
Top1 depletion in r1Δ r2Δ mutants was accompanied by an

increase in Rad52 foci, indicative of an increase in DSB accu-
mulation in the absence of both Top1 and RNase H activities
(Fig. S4C) and a cell cycle arrest in S/G2 (Fig. S4D). Some of the
CPT-mediated pausing sites characterized within the intergenic
space region in r1Δ r2Δ mutants (Fig. 3) were barely detectable
in the triple mutant (Fig. 4B, probe A). However, a strong pausing
site at the 3′ end of the 35S gene (Fig. 4B, open arrowhead) may
indicate a failure of the replication machinery to bypass torsional
stress generated ahead of the transcribing RNAPI. Interestingly,
the appearance of this strong RFP correlates with a decrease of
RF accumulation at the Fob1-dependent replication fork barrier
(RFB) (Fig. 4B, asterisk). A cease in ribosomal ARS firing, in-
creased torsional stress, or weakened Fob1 binding in the absence
of Top1 (44) could contribute to the loss of the Fob1-dependent
RFB signal. Nevertheless, the presence of replicon-like structures
within the 35S gene (Fig. 4B; probe B, black arrowhead) upon
Top1 depletion in cells lacking RNase H strengthens the idea
that R-loops could mediate origin-independent replication initi-
ation events.

Unscheduled Replication Events Are Transcription-Dependent. Our
model predicts that RNAPI transcription would be a prerequisite
for R-loop–initiated replication. To slow down rDNA transcrip-
tion rates, we made use of the rpa190-3 mutant of the largest
RNAPI subunit Rpa190 and the rrn3-8 mutant of Rnr3, which
recruits RNAPI to the promoter of 35S rRNA genes (45). Strik-
ingly, both rpa190-3 and rrn3-8 mutants alleviated the CPT-sen-
sitivity of r1Δ r2Δ mutants at semipermissive temperature (Fig. 5A
and Fig. S5A), reduced the formation of nucleolus-associated
Rad52-foci formation and suppressed S/G2-phase cell cycle arrest
(Fig. 5B and Fig. S5B). These observations suggest that the ma-
jority of the CPT-induced Top1-dependent DNA lesions are
linked to rDNA transcription, as well as a potential link between
rDNA damage, checkpoint activation, and growth rate. Next, we
examined the fate of replication in rpa190-3 r1Δ r2Δ mutants by
2D gel electrophoresis. Cells were grown at 26 °C, before α-factor

synchronization and released in CPT-containing media at per-
missive (23 °C) or semipermissive (30 °C) temperature. The ab-
sence of bubble-shaped replication intermediates in cells released
from α-factor synchronization at semipermissive temperature (Fig.
5C and Fig. S5C) confirms a mechanism where transcription-
mediated R-loops initiate replication at late S/G2 phase within the
35S rDNA.

Discussion
Decades ago it became evident that R-loops take part in repli-
cation initiation of prokaryotic cells (46, 47). Here we present
evidence that this is also the case for eukaryotic cells based on the
observation that persistent R-loops can mediate unscheduled,
origin-independent replication initiation in yeast chromosomal
DNA. These replication events were observed in the highly tran-
scribed 35S rRNA gene, and occurred spatially and temporally
outside of the regular replication schedule. Unscheduled replica-
tion was not linked to a defined replication origin, and it was
observed in late S/G2 phase of the cell cycle where replication
termination and completion is expected to take place.

Which Factors and Mechanism Would Participate in Transcription-
Initiated Replication Events? Various, nonexclusive mechanisms
could cooperate to trigger such transcription-initiated replication
(TIR) (Fig. 5D). At present we do not know whether the pres-
ence of single-stranded DNA within an R-loop may permit
strand invasion-dependent replication events, favored by the
repetitive nature of the rDNA array. DSBs seem to be particu-
larly frequent in the rDNA locus. Thus, R-loops and DSBs could
stimulate recombination-driven replication events as observed in
Candiada albicans mtDNA (42) or break-induced replication
(48, 49) and involve the transient formation of simple Y-like
replication intermediates.
The synthetic lethality observed in the absence of Top1 and

RNase H activities (19, 50, and present work) complement pre-
vious notions that R-loops have an evolutionary conserved impact
on transcription. E. coli Top1 mutants suffer from impaired
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growth and rDNA transcription (51–53), and that RNase H1
overexpression can partially compensate for the absence of Top1
(54). Other factors that possibly contribute to synthetic lethality
include the accumulation of positive supercoiling generated ahead
of RNAPI and in front of an advancing replication fork in con-
vergent orientation. Such supercoiling can promote DNA extru-
sions and secondary structures that can be substrates for specific
DNA nucleases (55).
Consistent with the observation that R-loops block replication

fork progression (6), replication fork collapse at the site of nicked
DNA may result in the physical presence of a “truncated” repli-
cation machinery in close vicinity to the R-loop and also explain
the observed increase in DSB formation during S-phase (Fig.
S2A). A truncated replication machinery potentially restarts rep-
lication from an R-loop, given that elegant in vitro experiments
demonstrated that replication can restart from a purified E. coli
replisome–RNAP complex, and that the replisome uses mRNA as
a primer to reinitiate leading-strand synthesis after displacing a
codirectional RNAP from DNA (56). One can speculate that
RNAPI is no longer associated with the R-loop, a scenario that
facilitates TIR without the need for factors that drive the dis-
placement of RNAPs being head-on to a replisome (57).
In contrast to replication restart from a colliding replisome–

RNAP complex, TIR events may be driven by the de novo repli-
some assembly at an R-loop. Assembly of the replication factor A
protein complex to single-stranded DNA opposite a RNA:DNA
hybrid could promote interaction with DNA replicases that are
available at the end of chromosomal DNA synthesis at late S/G2
(58). There is evidence that replicases remain replication com-
petent at S/G2 (58), and by doing so they may be able to initiate
DNA synthesis within an R-loop. The DNA polα-primase subunit
Pol12 is essential for replication initiation and has been suggested
to act as a molecular tether during DNA replication (59). Pol12 is
an essential but stable protein and its phosphorylated form ap-
pears to be required for the initial stages of DNA synthesis before
the HU-sensitive elongation step (60). Pol12 remains in active and

phosphorylated form in S/G2 and its inactivation by de-
phosphorylation only occurs while cells exit mitosis (61). Our
observations suggest that RNAPI-associated R-loops and repli-
cation-competent DNA polα-primase complexes could drive
S/G2-dependent TIR events.

Are TIR Events Limited to rDNA? At a much lower frequency, TIR
events may happen throughout the whole genome, and hot-spots
for R-loop formation, such as highly transcribed genes, might be
more prone to TIR events. Numerous enzymatic activities linked
to the suppression of RNA:DNA hybrids including the THO-
complex (37), the mRNA polyadenylation factor Pbp1, G4-
quadruplex binding proteins Stem1 and Pif1 (10, 62), or the Sen1
subunit of the Nrd1 complex (20, 21, 63) may also be required to
avoid TIR events. Mutations in the yeast Sen1 ortholog sen-
ataxin have been shown to be associated with human AOA2/
ALS4 neurodegenerative disorders (64, 65). Indeed, Senataxin is
needed to maintain genome integrity because of its function in
the coordination of transcription, DNA replication, and the
DNA damage response (reviewed in ref. 66). Thus, it would be
interesting to see if TIR events are stimulated by the absence of
Sen1 or other factors involved in mRNA biogenesis.

What Could be the Consequences of TIR Events? R-loop primed,
unlicensed genome replication would provide a new threat to
eukaryotic genome stability. TIR carried out by a noncanonical
replisome is likely to be inaccurate, and hence may have serious
repercussions for genome instability. Unscheduled replication,
particularly in regions of repetitive sequences, such as the rDNA
array, could lead to the deletion of repetitive sequences or gene-
amplification events, respectively. The rDNA repeat is located
on chromosome XII and we find by pulse-field gel-electropho-
resis (PFGE) analysis that the migration of chromosome XII is
retarded (Fig. S6A). These initial findings indicate that loss of
RNase H activity leads to rDNA expansion or intermediate
structures that hamper electrophoretic separation as shown for
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RI-derived from cells grown at 23 °C is indicated (black arrowhead). Description as in Fig. 2. (D) Model for TIR in yeast rDNA. RNA (red) and newly synthesized
DNA (green) are indicated. The images are reduced by 5×. See text for explanation.
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replicating chromosomes (67). The observation that ERC forma-
tion is enhanced in r1Δ r2Δ mutants (Fig. S6B) confirms that the
loss of RNase H activities causes genetic instability (Fig. S1). It
would be particularly interesting to determine to which extent
impaired RNA:DNA hybrid processing contributes to rereplica-
tion, gene amplification, and alterations in chromosome copy
number in human cells. These events would have disastrous con-
sequences for eukaryotic genome function and are particularly
relevant to carcinogenesis (68).
Selective gene amplification is frequently observed in dif-

ferentiating eukaryotic cells and results in transcript number
and gene product increases in a dosage-dependent manner (69).
The mechanisms by which gene amplification is achieved include
DSB-dependent sister chromatid fusion and repeated breakage-
fusion-bridge cycles evident in the dihydrofolate reductase locus
of CHO cells (70), endoreplication of diptera chorion genes by
multiple activation of replication origins within the same S-phase
(71), RNA-template derived nanochromosome amplification in
Stylonychia lemnae (72), or rolling circle amplification of extra-
chromosomal rDNA circles in Xenopus oocytes (73). Although in
our study we could not distinguish if ERCs are more prone to TIR
events, our results provide the possibility that ERC replication can
be driven by impaired RNA transcript-processing suggesting that
R-loops could have a physiological role in the control of gene
amplification linked to nuclear differentiation events.

Experimental Procedures
Yeast Strains and Growth Conditions. Yeast strains used in this study are listed
in Table S1. Gene deletions were constructed by PCR-based methods (74). If
not generated by a direct knock-out in the YKL background, mutant strains
were backcrossed at least twice to the YKL83 strain background. Yeast
strains were grown in YPAD, or synthetic complete (SC) minimal medium
supplemented with 2% (wt/vol) glucose and amino acids. IAA (Sigma) was
added at 500 μM for solid and 1 mM for liquid YPAD media.

Viability Assays. To test for sensitivity to genotoxic agents, 10-fold serial
dilutions of cells were grown for 3 d on YPAD plates or YPAD-containing HU
(50 mM; USBiological), MMS (10 mM; Fluka), or CPT (5 μg/mL; Santa Cruz
Biotechnology), unless otherwise specified.

Quantification and Colocalization of Rad52-YFP Foci. For colocalization of
Rad52-YFP foci with the nucleolar marker Nop1, cells were cotransformed
with the RAD52-YFP expressing plasmid (F. Prado, Sevilla, Spain) and a plasmid
expressing NOP1-mRFP (75). Transformants were grown in exponential phase in
SC with plasmid selection, in the presence or absence of 10 μg/mL CPT for 3 h,
and fixed using 2.5% (vol/vol) formaldehyde. YFP fluorescence (480-nm excita-
tion/527-nm emission) and RFP fluorescence (584-nm excitation/607-nm emission)
were detected by wide-field fluorescence microscopy (DM-6000B, Leica) at 100×
magnification. Images were taken using LAS AF software (Leica). For each
sample, 600 cells were counted from three independent experiments. For time-
course analysis of Rad52-YFP foci, cells expressing the RAD52-YFP plasmid were
synchronized with α-factor and released in the presence or absence of 10 μg/mL
CPT. Samples were retrieved at the specified time points following release and
fixed with 2.5% (vol/vol) formaldehyde. Approximately 600 cells derived from
three independent colonies were analyzed for each condition.

Cell Cycle Progression Analysis and DNA Isolation. For G1 synchronization,
MATa cells were grown to an OD600 of 0.4 in YPAD medium before α-factor

(1 μg/mL; Biomedal) synchronization for 180 up to 240 min. Cells were re-
leased from α-factor treatment by washing three times in prewarmed, fresh
YPAD medium containing 0.1 mg/mL Pronase E (Sigma). For FACS analysis,
1-mL samples were taken at indicated times and fixed in 70% ethanol.
Samples were resuspended in PBS containing 5 μg/mL propidium iodide, fol-
lowing RNase A overnight treatment, and were analyzed by flow cytometry
using a FACSCalibur (Becton Dickinson) and CellQuest software. For DNA
analysis, cells were released in fresh media containing 10 μg/mL CPT. 100 mL
samples were retrieved at the specified time points following release and
arrested by adding sodium azide (to a final concentration of 0.1%). DNA was
extracted according to ref. 6.

Two Dimensional Agarose Gel Electrophoresis. In a total volume of 100 μL,
about 5 μg of genomic DNA was digested with 40 units BglII for 6 h, iso-
propanol precipitated, and resuspended in 20 μL loading buffer. First, di-
mension electrophoresis was performed in 0.4% TBE-buffered agarose gels at
40 V for 20 h. A gel slice containing DNA fragments between 3 and 12 kb was
cut out for second dimension resolution in 1.1% TBE-buffered agarose at 140 V
for 16 h. Denatured DNA was transferred to a Hybond XL membrane
(Amersham) by standard procedures. Replication intermediates were detected
by hybridization with specific 32P-labeled DNA probes, matching to nucleo-
tides 452691–453344 (probe A) and 453834–454699 (probe B) on chromosome
XII. Signals were quantified using a PhosphorImager with ImageGauge
software (Fuji). The relative intensity of replication intermediates was
normalized to the signal intensity obtained in the 1×-spot (nonsaturating
exposure).

TOP1AID* Degron Construct. The Top1 protein was tagged at the C terminus
with the IAA17 auxin-binding domain (amplified by PCR from the plasmid
pKan–AID* (76) in a r1Δ r2Δ strain, which expresses TIR1 under control of the
constitutive ADH promoter. Note that both proteins contain multiple Myc
epitopes that can be detected by a c-Myc primary antibody. The functionality
of the Top1AID* degron was confirmed by Western blot analysis against the
Myc tag to confirm degradation of the Top1 protein in response to 1 mM IAA
(60). Protein extracts for immunoblotting were separated by SDS/PAGE us-
ing 8% (wt/vol) polyacrylamide (37.5:1), and protein bound membranes
were incubated overnight with a mouse anti–c-Myc primary antibody
(Abcam) at 1:1,000 and 1:20,000 in PBS-5% (wt/vol) milk, respectively. For
FACS and 2D-gel analysis of the r1Δ r2Δ TOP1AID* strain, 1 mM IAA was
added to YPAD medium for the last 30 min of α-factor incubation, and cells
were released in the presence of IAA.

Statistics. Values are expressed as the mean ± SD. Significance values (P) were
obtained following Student’s t test for pairwise comparisons of data and
considered statistically significant for P values < 0.05.
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