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Abstract

This paper is devoted to study the asymptotic behaviour of a time-dependent parabolic equa-

tion with nonlocal diffusion and nonlinear terms with sublinear growth. Namely, we extend some

previous results from the literature, obtaining existence, uniqueness, and continuity results, ana-

lyzing the stationary problem and decay of the solutions of the evolutionary problem, and finally,

under more general assumptions, ensuring the existence of pullback attractors for the associated

dynamical system in both L
2 and H

1 norms. Relationship among these objects are established

using regularizing properties of the equation.
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1 Introduction

In recent decades, nonlocal problems have arisen in modeling with great interest by its usefulness in
real applications (e.g. cf. [18, 4, 20, 30, 3]). For instance, in Biology, the evolution of some species
might be better represented by a nonlocal equation than within the corresponding local simplification.
Namely, as example of a spatial nonlocal feature, the migration of population of bacterias in a container
depends on the global population in a certain subdomain (e.g. cf. [10, 11]). Of course, the disadvantage
is that sometimes it is very complicated to deal with the nonlocal operators and terms since they are
more involved.

In particular, much attention has been paid to the parabolic PDE with nonlocal diffusion

du

dt
− a(l(u))∆u = f,

where the function a appearing in the diffusion coefficient satisfies suitable assumptions (detailed
below) and depends on a nonlocal functional applied to the solution u. For instance, see [24, 9] for a
detailed introduction on different applications, and for a very refined analysis of why imposing natural
conditions of non-degeneracy of a (controlled from above and below) in order to avoid extinction and
only existence of solutions in finite-time intervals.

This problem is far away of being a trivial perturbation of a heat equation, since the nonlinear
diffusion makes that the Lyapunov structure is, in general, lost, and manipulations that can be done
in the local case are not valid here (e.g. roughly speaking, one cannot gain some information on a
priori estimates by multiplying by ut).
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Despite the above obstacles, the qualitative analysis of the evolution of solutions to the problem
can be related to interesting questions as periodicity, or asymptotic-in-time issues –permanence vs ex-
tinction phenomena, stability–, etcetera, with meaningful interpretations, but more involved technical
difficulties, which can only be solved in special cases.

To be more precise, the results by Chipot and his collaborators (cited below) are referred to the
above equation with f independent of u. There, besides existence and uniqueness results by different
ways, the evolution for long times of the solutions is established under additional assumptions and
particular suitably ordered initial conditions w.r.t. stationary solutions (e.g. see [10, 12]) or [13] for
a mixed formulation in the boundary. As said before, a kind of Lyapunov structure were available
only in very special situations (see [12, 14, 15]). Another modification of the above equation, with the
nonlocal term in another position rather than in the diffusion, was also treated in [8], with similar
conclusions (see also [7] for a model that includes as particular cases those cited above).

In [1, 2] the authors analyze the case in which f is still independent of u, and the nonlocal operator
is not acting globally in the whole domain but in the part of it contained in a ball centered on each
position point. Radial solutions, bifurcation analysis, branch of solutions and their stability are studied.

For f depending on the unknown u in a semilinear form, the situation is more involved. In [29],
by fixed point techniques, it is proved the existence and uniqueness of weak solution of a semilinear
problem with nonlocal diffusion where the domain Ω has smooth boundary, and the term f (depending
on u) is a Lipschitz continuous function. In addition, the existence and uniqueness of periodic solutions
is also analyzed.

Concerning the long-time behaviour of solutions, it is also worth considering the information that
can be obtained by the theory of attractors, under less restrictive conditions on the problem. When
f is independent of the solution and of time, this was also addressed by Andami [1] (see also some
previous results on this direction by Lovat [24]).

However, in this context of attractors, there are more choices to deal with, rather than the compact
global attractor for an autonomous dynamical system. Indeed, after including time-dependent terms,
which allows to model more complex situations, there are several different approaches from the point of
view of non-autonomous dynamical systems, as uniform attractors, skew-product flows, and pullback
attractors (e.g. cf. [22]; also related to random dynamical systems, cf. [17]). All of them are valid
to analyze different features of the evolution of a non-autonomous dynamical system. We choose that
of pullback attractors since it allows us to minimize the assumptions on the forcing terms, and the
resultant objects are strictly invariant (in a suitable “non-autonomous-dynamical-system sense”). In
this last approach of pullback attractors, many new results have appeared over the last years, allowing,
as in the random case, to deal with not only fixed bounded sets, but developing the concept of attrac-
tion of a class of families (specifically, a universe D) parameterized in time, which usually appears in
applications and use to be defined in term of a tempered condition (e.g. cf. [16, 5, 6]). Relationships
between both type of attractors have already been established, and under suitable assumptions, they
may actually coincide (cf. [27]).

The goal of this paper is to study the existence and regularity of pullback attractors for dynamical
systems generated by solutions of a parabolic PDE as above but of semilinear type, with nonlocal
diffusion, and additional non-autonomous terms, extending the previously cited results. As far as
we know, in the previous literature there is no study on the existence of the pullback attractor in
L2(Ω) nor H1

0 (Ω) for the associated dynamical system, as we will consider in this paper. As a first
step towards this general aim, here we will be concerned with the sublinear case, to avoid additional
difficulties that appear and which will be analyzed elsewhere in future.

The content of the paper is as follows. In Section 2 we state the problem and some definitions
of solutions and energy equalities that will be used later, and establish some existence results by
compactness arguments. Section 3 is devoted to analyze the existence of stationary solution (combining
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fixed point and compactness arguments), and uniqueness, under additional assumptions. We conclude
this paragraph studying the global exponential stability of this steady state, i.e. exponential decay of
the solutions to the evolution problem toward this unique stationary solution. In Section 4 we briefly
recall some abstract results on pullback attractors that will be used in the sequel. Then, in Section 5 we
establish the existence of several pullback attractors in L2(Ω). The proof is based on an energy method
which relies on the continuity of solutions. In addition, we establish some relationships between these
pullback attractors. Finally, in Section 6 we use a similar argument to ensure the existence of pullback
attractors in H1

0 (Ω). Moreover, under suitable assumptions and taking into account the regularizing
effect of the equation, we can establish relationships between these families of pullback attractors.

2 Statement of the problem and existence results

Consider the following problem for a nonlocal and nonlinear parabolic equation:





du

dt
− a(l(u))∆u = f(u) + h(t) in Ω × (τ, +∞),

u = 0 on ∂Ω × (τ, +∞),
u(x, τ) = uτ (x) in Ω,

(1)

where Ω ⊂ R
N is a bounded open set, τ ∈ R, a ∈ C(R; R+) is locally Lipschitz, and there exist positive

constants m, M such that
0 < m ≤ a(s) ≤ M ∀s ∈ R, (2)

l ∈ (L2(Ω))′, f ∈ C(R) and there exist constants η > 0, and Cf ≥ 0, such that

|f(s)| ≤ Cf (1 + |s|) ∀s ∈ R, (3)

(f(s) − f(r))(s − r) ≤ η(s − r)2 ∀s, r ∈ R. (4)

As usual, we will denote by (·, ·) the inner product in L2(Ω) and by | · | its associated norm (since
no confusion arises, this will also denote the Lebesgue measure of a subset of R

N ). By ((·, ·)) we will
denote the inner product in H1

0 (Ω) given by the product in (L2(Ω))N of the gradients, by ‖ · ‖ the
associated norm, by 〈·, ·〉 the duality product between H−1(Ω) and H1

0 (Ω), and by ‖ · ‖∗ the norm in
H−1(Ω). Identifying L2(Ω) with its dual, we have the usual chain of dense and compact embeddings
H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). Observe that, by the Riesz theorem, we can obtain l̃ ∈ L2(Ω) with
〈l, u〉(L2(Ω))′,L2(Ω) = (l̃, u); here on, thanks to the identification (L2(Ω))′ ≡ L2(Ω), we will make the

abuse of notation of using l instead of l̃, but at the same time we keep the usual notation in the existing
previous literature l(u) instead of (l, u) for the operator l acting on u.

In what follows, we assume that uτ ∈ L2(Ω) and h ∈ L2
loc(R; H−1(Ω)).

Definition 1. A weak solution to (1) is a function u that belongs to L2(τ, T ; H1
0 (Ω))∩L∞(τ, T ; L2(Ω))

for all T > τ , with u(τ) = uτ , such that

d

dt
(u(t), v) + a(l(u(t)))((u(t), v)) = (f(u(t)), v) + 〈h(t), v〉 ∀v ∈ H1

0 (Ω), (5)

where the previous equation must be understood in the sense of D′(τ, +∞).

Remark 2. If u is a weak solution to (1), then (2), (3), and (5) imply that u′ ∈ L2(τ, T ; H−1(Ω))
for any T > τ , and therefore u ∈ C([τ, +∞); L2(Ω)). Hence the initial datum in (1) makes sense.
Moreover, we have the following energy equality for all τ ≤ s ≤ t :

|u(t)|2 + 2

∫ t

s

a(l(u(r)))‖u(r)‖2dr = |u(s)|2 + 2

∫ t

s

(f(u(r)), u(r))dr + 2

∫ t

s

〈h(r), u(r)〉dr. (6)
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A notion of more regular solution is also suitable for the problem.

Definition 3. A strong solution to (1) is a weak solution u which also satisfies that u ∈ L2(τ, T ; D(−∆))
∩L∞(τ, T ; H1

0 (Ω)) for all T > τ .

Remark 4. If h ∈ L2
loc(R; L2(Ω)) and u is a strong solution to (1), then u′ ∈ L2(τ, T ; L2(Ω)) for all

T > τ, and, consequently, u ∈ C([τ, +∞); H1
0 (Ω)). In addition, the following energy equality holds:

‖u(t)‖2 + 2

∫ t

s

a(l(u(r)))| − ∆u(r)|2dr = ‖u(s)‖2 + 2

∫ t

s

(f(u(r)) + h(r),−∆u(r))dr ∀τ ≤ s ≤ t. (7)

Next result establishes the existence and uniqueness of weak and strong solution to (1), the reg-
ularizing effect of the equation, and the continuity of the solution in L2(Ω) with respect to initial
data.

Theorem 5. Assume that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills (3)
and (4), and consider h ∈ L2

loc(R; H−1(Ω)) and l ∈ L2(Ω) given. Then, for each uτ ∈ L2(Ω), the
problem (1) possesses a unique weak solution, denoted by u(·) = u(·; τ, uτ ). Moreover, this solution
behaves continuously in L2(Ω) w.r.t. initial data.

In addition, if h ∈ L2
loc(R; L2(Ω)), for every ε > 0 and T > τ + ε, this solution u satisfies

that u ∈ C((τ, T ], H1
0 (Ω)) ∩ L2(τ + ε, T ; D(−∆)). In fact, if the initial condition uτ ∈ H1

0 (Ω), then
u ∈ C([τ, T ], H1

0 (Ω)) ∩ L2(τ, T ; D(−∆)) for every T > τ , i.e. u is a strong solution.

Proof. We split the proof into three steps.

Step 1. Uniqueness of solution and continuity w.r.t. initial data. We will prove both
assertions simultaneously since the same estimates are valid for both purposes. Suppose that u1 and
u2 are two weak solutions to (1) corresponding to initial values u1τ , u2τ ∈ L2(Ω) respectively. From
the energy equality,

1

2

d

dt
|u1(t) − u2(t)|2 + a(l(u1(t)))‖u1(t) − u2(t)‖2

= [a(l(u2(t))) − a(l(u1(t)))]((u2(t), u1(t) − u2(t))) + (f(u1(t)) − f(u2(t)), u1(t) − u2(t))

a.e. t ∈ [τ, T ].
Since u1, u2 ∈ C([τ, T ]; L2(Ω)), it holds that u1(t), u2(t) ∈ S for all t ∈ [τ, T ], where S is a

bounded set of L2(Ω). On the other hand, as l ∈ L2(Ω), there exists a value R > 0 such that
{l(ui(t))}t∈[τ,T ] ⊂ [−R, R] for i = 1, 2. Hence, using (2), (4), and the locally Lipschitz continuity of
the function a, it yields

1

2

d

dt
|u1(t) − u2(t)|2 + m‖u1(t) − u2(t)‖2

≤ La(R)|l||u1(t) − u2(t)|‖u2(t)‖‖u1(t) − u2(t)‖ + η|u1(t) − u2(t)|2,

where La(R) is the Lipschitz constant of the function a in [−R, R]. Thanks to the Young inequality,

d

dt
|u1(t) − u2(t)|2 ≤

(
(2m)−1(La(R))2|l|2‖u2(t)‖2 + 2η

)
|u1(t) − u2(t)|2.

Therefore,

|u1(t) − u2(t)|2 ≤ exp

[∫ t

τ

(
(2m)−1(La(R))2|l|2‖u2(s)‖2 + 2η

)
ds

]
|u1τ − u2τ |

2,

whence both statements, uniqueness (when u1τ = u2τ ) and continuity w.r.t. initial data follow.
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Step 2. Existence of weak solution. Assume that uτ ∈ L2(Ω) and h ∈ L2
loc(R; H−1(Ω)). By

the spectral theory, we can consider {wj} ⊂ H1
0 (Ω), a Hilbert basis of L2(Ω) formed by eigenfunctions

of −∆ with zero Dirichlet boundary condition in Ω, with corresponding eigenvalues 0 < λ1 ≤ λ2 ≤ . . .
For every integer n ≥ 1, we denote by un(t; τ, uτ ) =

∑n
j=1 ϕnj(t)wj , un(·) for short, the (Galerkin

approximation) solution of





d

dt
(un(t), wj) + a(l(un(t)))((un(t), wj)) = (f(un(t)), wj) + 〈h(t), wj〉, t > τ

(un(τ), wj) = (uτ , wj), j = 1, . . . , n.

(8)

Multiplying by ϕnj(t) in (8), summing from j = 1 to n, and using (2), we obtain

d

dt
|un(t)|2 + 2m‖un(t)‖2 ≤ 2(f(un(t)), un(t)) + 2〈h(t), un(t)〉 a.e. t > τ. (9)

By the Young inequality and (3),

d

dt
|un(t)|2 + m‖un(t)‖2 ≤

4C2
f |Ω|

λ1m
+

4C2
f

λ1m
|un(t)|2 +

2

m
‖h(t)‖2

∗ a.e. t > τ. (10)

Hence, from the Gronwall lemma we deduce that {un} is bounded in L∞(τ, T ; L2(Ω))∩L2(τ, T ; H1
0 (Ω)).

As a consequence, {−a(l(un))∆un} is bounded in L2(τ, T ; H−1(Ω)), and using (3), {f(un)} is
bounded in L2(τ, T ; L2(Ω)). Then, it is not difficult to prove that {u′

n} is bounded in L2(τ, T ; H−1(Ω)).
Therefore, from compactness arguments and the Aubin-Lions lemma, there exist a subsequence of {un}
(relabelled the same) and u ∈ L∞(τ, T ; L2(Ω))∩L2(τ, T ; H1

0 (Ω)) with u′ ∈ L2(τ, T ; H−1(Ω)), such that

un
∗
⇀ u weakly-star in L∞(τ, T ; L2(Ω)),

un ⇀ u weakly in L2(τ, T ; H1
0 (Ω)),

u′
n ⇀ u′ weakly in L2(τ, T ; H−1(Ω)),

f(un) ⇀ ξ1 weakly in L2(τ, T ; L2(Ω)),

a(l(un))un ⇀ ξ2 weakly in L2(τ, T ; H1
0 (Ω)),

un → u strongly in L2(τ, T ; L2(Ω)),

un(x, t) → u(x, t) a.e. (x, t) ∈ Ω × (τ, T ),

un(t) → u(t) strongly in L2(Ω) a.e. t ∈ (τ, T )

for all T > τ.
Then, from [23, Lemme 1.3, p. 12], it is not difficult to prove that ξ1 = f(u) and ξ2 = a(l(u))u.

Thus, we can pass to the limit in (8), and thanks to the fact that ∪n∈Nspan[w1, . . . , wn] is dense in
H1

0 (Ω), we conclude that u is a weak solution.

Step 3. Regularizing effect and strong solution. Integrating in (10) between τ and T , in
particular

m

∫ T

τ

‖un(s)‖2ds ≤ |uτ |
2 +

4C2
f |Ω|

λ1m
(T − τ) +

4C2
f

λ1m

∫ T

τ

|un(s)|2ds +
2

m

∫ T

τ

‖h(s)‖2
∗ds. (11)

Assuming now that h ∈ L2
loc(R; L2(Ω)), multiplying by λjϕnj(t) in (8), summing from j = 1 to n, and

using (2), (3), and the Young and Poincaré inequalities, we obtain

d

dt
‖un(t)‖2 + m| − ∆un(t)|2 ≤

4C2
f |Ω|

m
+

4C2
f

λ1m
‖un(t)‖2 +

2

m
|h(t)|2 a.e. t ≥ τ .
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Integrating the previous expression between s and t, with τ ≤ s ≤ t ≤ T,

‖un(t)‖2 + m

∫ t

s

| − ∆un(r)|2dr

≤
4C2

f |Ω|(T − τ)

m
+

4C2
f

λ1m

∫ t

s

‖un(r)‖2dr +
2

m

∫ t

s

|h(r)|2dr + ‖un(s)‖2. (12)

In particular, integrating again with respect to s between τ and t, it holds

(t − τ)‖un(t)‖2 ≤
4C2

f |Ω|(T − τ)2

m
+

(
4C2

f (T − τ)

λ1m
+ 1

)∫ T

τ

‖un(r)‖2dr +
2(T − τ)

m

∫ T

τ

|h(r)|2dr.

Therefore, for all t ∈ [ε + τ, T ] with ε ∈ (0, T − τ), it holds

‖un(t)‖2 ≤
4C2

f |Ω|(T − τ)2

εm
+

(
4C2

f (T − τ) + λ1m

ελ1m

)∫ T

τ

‖un(r)‖2dr +
2(T − τ)

εm

∫ T

τ

|h(r)|2dr.

From this and (11) we deduce that the sequence {un} is bounded in L∞(ε + τ, T ; H1
0 (Ω)).

On the other hand, taking s = ε and t = T in (12), and using the previous estimates, we ob-
tain that {un} is bounded in L2(τ + ε, T ; D(−∆)). As a consequence, {u′

n} is bounded in L2(τ +
ε, T ; L2(Ω)), and thanks to the uniqueness of the weak solution, it holds that {un} converges to
u weakly in L2(τ + ε, T ; D(−∆)) and {u′

n} converges to u′ weakly in L2(τ + ε, T ; L2(Ω)). Thus,
u ∈ L2(τ + ε, T ; D(−∆)) ∩ C((τ, T ]; H1

0 (Ω)).
The case in which the initial datum uτ belongs to H1

0 (Ω) allows to simplify the above estimates in
a standard way, and the solution becomes actually strong.

3 Stationary solutions and their stability

In this section we are interested in proving that problem (1) admits stationary solutions under some
extra assumptions. In order to do this, we will use a corollary of the Brouwer fixed point theorem.
Also, under additional suitable requirements, we will prove that in fact the stationary solution is unique
and is globally asymptotically exponentially stable.

As we aim now to deal with stationary (steady-state) solutions for the problem, we assume that h
is time-independent, i.e. h ∈ H−1(Ω). We also assume in this paragraph that the functions a and f
are globally Lipschitz, with respective Lipschitz constants La, Lf ≥ 0.

Once that we consider the evolutionary problem (1) under the above assumptions, by a stationary
solution to the problem, we mean an element u∗ ∈ H1

0 (Ω) such that

a(l(u∗))((u∗, v)) = (f(u∗), v) + 〈h, v〉 ∀v ∈ H1
0 (Ω). (13)

We then can prove the following result concerning existence, uniqueness, and regularity of stationary
solutions to the problem (the idea of the proof is close to that in [25]).

Theorem 6. Assume that the functions a and f are globally Lipschitz functions, with Lipschitz con-
stants La and Lf respectively, (2) is satisfied, h ∈ H−1(Ω), l ∈ L2(Ω), and m > λ−1

1 Lf . Then:

1. Problem (13) admits at least one solution. Moreover, any solution u∗ to (13) satisfies

‖u∗‖ ≤ Υ :=
λ
−1/2
1 |Ω|1/2|f(0)| + ‖h‖∗

m − λ−1
1 Lf

. (14)

In addition, if h ∈ L2(Ω), then the solutions given above belong in fact to D(−∆).
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2. Besides, if we assume

λ
−1/2
1 |l|LaΥ < m − λ−1

1 Lf , (15)

problem (13) possesses a unique solution.

Proof. We split the proof of the two statements.

Step 1. Existence. As in the proof of Theorem 5, we choose the Hilbert basis {wj} of L2(Ω),
formed by the eigenvectors (with corresponding eigenvalues {λj}) of the operator −∆ in Ω with zero
Dirichlet boundary condition. For each n ≥ 1, let us denote Vn = span[w1, . . . , wn], with the inner
product ((·, ·)) and norm ‖ · ‖. Then, for all n ≥ 1, we define the operators Rn : Vn → Vn as follows,

((Rnu, v)) = 〈−a(l(u))∆u, v〉 − (f(u), v) − 〈h, v〉 ∀u, v ∈ Vn.

Since the right hand side is a continuous linear map from Vn to R, the Riesz Theorem ensures that
each Rnu ∈ Vn is well defined. Now, let us check that Rn is continuous.

Indeed, observe that

((Rnu − Rnũ, v)) = 〈−a(l(u))∆u + a(l(ũ))∆ũ − f(u) + f(ũ), v〉

= 〈−a(l(u))∆(u − ũ) + (a(l(ũ)) − a(l(u)))∆ũ, v〉 + (f(ũ) − f(u), v)

≤ (M‖u − ũ‖ + La|l|λ
−1/2
1 ‖ũ − u‖‖ũ‖ + Lfλ−1

1 ‖ũ − u‖)‖v‖

for all u, ũ, v ∈ Vn, thanks to the assumptions on the functions a, f, and l. Therefore,

‖Rnu − Rnũ‖ ≤ (M + λ
−1/2
1 |l|La‖ũ‖ + λ−1

1 Lf)‖ũ − u‖.

for all u, ũ ∈ Vn. This proves that Rn : Vn → Vn is continuous.
On the other hand,

((Rnu, u)) = 〈−a(l(u))∆u, u〉 − (f(u), u) ± (f(0), u) − 〈h, u〉

≥ m‖u‖2 − λ−1
1 Lf‖u‖

2 − |f(0)|λ
−1/2
1 |Ω|1/2‖u‖ − ‖h‖∗‖u‖ (16)

for all u ∈ Vn.
Hence, we obtain ((Rnu, u)) ≥ 0 for all u ∈ Vn such that ‖u‖ = Υ, the value given in (14).

Consequently, by a corollary of the Brouwer fixed point theorem (see [23, Lemme 4.3, p. 53]), for each
n ≥ 1 there exists un ∈ Vn such that Rn(un) = 0, with ‖un‖ ≤ Υ.

Therefore, we deduce that

〈−a(l(un))∆un, v〉 = (f(un), v) + 〈h, v〉 ∀v ∈ Vn.

Since the sequence {un} is bounded in H1
0 (Ω), the compact embedding of H1

0 (Ω) in L2(Ω) allows us
to extract a subsequence {un′} ⊂ {un} that converges weakly in H1

0 (Ω) and strongly in L2(Ω) to an
element u∗ ∈ H1

0 (Ω), which also verifies (14). Passing to the limit in the above equality, and taking
into account the assumptions on the functions a, f, and l, we obtain that u∗ is a solution to (13).

The a priori estimate (14). It is deduced in a similar way as we argued in (16).
Regularity. Assume now that h ∈ L2(Ω), and consider any stationary solution u∗ of the problem

(13). We must prove that u∗ ∈ D(−∆). Obviously, u∗ is solution to the evolutionary problem (1) with
initial datum u(τ) = u∗. Therefore, by the regularity result in Theorem 5, u∗ ∈ D(−∆).

Step 2. Uniqueness. Let us suppose that u1 and u2 are two solutions to (13). Then,

〈−a(l(u1))∆u1 + a(l(u2))∆u2, v〉 = (f(u1) − f(u2), v)

for all v ∈ H1
0 (Ω). Introducing ±a(l(u1))∆u2 and taking v = u1 − u2 as test function, we obtain

m‖u1 − u2‖
2 ≤ (λ

−1/2
1 |l|La‖u2‖ + λ−1

1 Lf)‖u1 − u2‖
2.
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If u1 6= u2, we can simplify the above expression, dropping the factor ‖u1 − u2‖
2. But then, using the

a priori estimate (14) for u2, we would arrive at the opposite inequality to that one in (15), what is a
contradiction. Thus, it must be u1 = u2, and the proof is concluded.

Our second result in this section establishes the global asymptotic exponential stability of the
unique stationary solution obtained previously.

Theorem 7. Under the assumptions in Theorem 6, and if (15) holds, then, the following estimate
holds for the difference of any solution to (1) and the unique solution u∗ to (13):

|u(t; τ, uτ) − u∗|2 ≤ e−λ(t−τ)|uτ − u∗|2 ∀t ≥ τ,

where λ = 2λ1(m − λ−1
1 Lf − λ

−1/2
1 |l|LaΥ) > 0.

Proof. For short, denote by u(·) the weak solution of (1). Then, from the energy equality,

1

2

d

dt
|u(t) − u∗|2 = 〈a(l(u(t)))∆u(t) − a(l(u∗))∆u∗ + f(u(t)) − f(u∗), u(t) − u∗〉 a.e. t ∈ (τ, T ).

Introducing ±a(l(u))∆u∗, and using (2), the Poincaré inequality, and the fact that the functions a and
f are globally Lipschitz, it holds

1

2

d

dt
|u(t) − u∗|2 = −a(l(u(t)))‖u(t) − u∗‖2 + 〈(a(l(u(t))) − a(l(u∗)))∆u∗ + f(u(t)) − f(u∗), u(t) − u∗〉

≤ (−m + λ
−1/2
1 |l|La‖u

∗‖ + Lfλ−1
1 )‖u(t) − u∗‖2.

From (14), (15), and thanks once again to the Poincaré inequality, we arrive at

d

dt
|u(t) − u∗|2 ≤ −λ|u(t) − u∗|2 a.e. t > τ,

where λ is given in the statement. The proof is therefore complete.

4 Abstract results on the theory of Pullback Attractors

The aim of this section is to recall briefly the main results from the theory of pullback attractors which
will be used in the sequel (e.g. cf. [5, 6, 19, 27]).

Consider given a metric space (X, dX), and let us denote R
2
d = {(t, τ) ∈ R

2 : τ ≤ t}.

Definition 8.

(a) A process on X (also called a two-parameter semigroup) is a mapping R
2
d × X ∋ (t, τ, x) 7→

U(t, τ)x ∈ X such that U(τ, τ)x = x for any (τ, x) ∈ R×X, and U(t, s)(U(s, r)x) = U(t, r)x for
any r ≤ s ≤ t and all x ∈ X.

(b) A process U on X is said to be

1. continuous if for any pair (t, τ) ∈ R
2
d, the mapping U(t, τ) : X → X is continuous;

2. strong-weak (also known as norm-to-weak) continuous if for any pair (t, τ) ∈ R
2
d, the map

U(t, τ) is continuous from X with the strong topology into X with the weak topology;

3. closed if for any pair (t, τ) ∈ R
2
d, and any sequence {xn} ⊂ X, if xn → x ∈ X and

U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

8



It is clear that every continuous process is strong-weak continuous, and every strong-weak contin-
uous process is closed.

Let us denote by P(X) the family of all nonempty subsets of X and consider D a nonempty

class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X) and a family of nonempty sets

D̂0 = {D0(t) : t ∈ R} ⊂ P(X). Observe what we do not require any additional condition on these sets
such as compactness or boundedness.

Definition 9. A process U on X is said to be pullback D-asymptotically compact if for any t ∈ R, any
D̂ ∈ D, and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D(τn) for all
n, the sequence {U(t, τn)xn} is relatively compact in X.

The family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the process U on X if for

any t ∈ R and any D̂ ∈ D, there exists τ0(D̂, t) < t such that U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(D̂, t).

Observe that in the above definition D̂0 does not necessarily belong to the class D.

Definition 10. The family AD = {AD(t) : t ∈ R} ⊂ P(X) is said to be the minimal pullback
D-attractor for the process U if it satisfies the following properties:

1. for any t ∈ R, the set AD(t) is a nonempty compact subset of X;

2. AD is pullback D-attracting, i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for all D̂ ∈ D, t ∈ R,
where distX(·, ·) denotes the Hausdorff semi-distance in X between two subsets of X;

3. AD is invariant, i.e. U(t, τ)AD(τ) = AD(t) for all τ ≤ t;

4. AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of closed sets which
is pullback D-attracting, then AD(t) ⊂ C(t) for all t ∈ R.

The following result ensures the existence of a minimal pullback attractor (cf. [19, Theorem 3.11]).

Theorem 11. Consider a closed process U : R
2
d × X → X, a universe D in P(X), and a family

D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U and assume also that U is pullback

D̂0-asymptotically compact.

Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃

bD∈D
Λ(D̂, t)

X

for t ∈ R, where

Λ(D̂, t) =
⋂

s≤t

⋃
τ≤s U(t, τ)D(τ)

X
and {. . . }

X
denotes the closure in X, is the minimal pullback

D-attractor for the process U . Moreover, if D̂0 ∈ D, then AD(t) ⊂ D0(t)
X

for all t ∈ R.

Let us denote by DX
F the universe of fixed nonempty bounded subsets of X , i.e. the class of all

families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of X . In the
particular case of the universe DX

F , the corresponding minimal pullback DX
F -attractor for the process

U is the pullback attractor defined by Crauel, Debussche, and Flandoli (see [17]).
Then, we have the following relationships between pullback attractors (see [27]).

Corollary 12. Under the assumptions of Theorem 11, if DX
F ⊂ D, it holds that both attractors, ADX

F

and AD, exist and
ADX

F
(t) ⊂ AD(t) ∀t ∈ R.

Remark 13. Under the assumptions of the previous corollary, if for some T ∈ R the set
⋃

t≤T D0(t)
is a bounded subset of X, then

ADX
F

(t) = AD(t) ∀t ≤ T .

The following result allows to compare two attractors for a process under appropriate assumptions
(see [19]).
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Theorem 14. Consider {Xi, dXi
}i=1,2 two metric spaces such that X1 ⊂ X2 with continuous injection,

and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2. Suppose that there exists a map U that
acts as a process in both cases, i.e. U : R

2
d × Xi → Xi for i = 1, 2 is a process.

For each t ∈ R, let us denote

Ai(t) =
⋃

bDi∈Di

Λi(D̂i, t)
Xi

, i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the dependence on the
respective topology.

Then,
A1(t) ⊂ A2(t) ∀t ∈ R.

Suppose moreover that the two following conditions are satisfied:

(i) A1(t) is a compact subset of X1 for all t ∈ R,

(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and a t∗
bD1

such that U is pullback

D̂1-asymptotically compact, and for any s ≤ t∗
bD1

there exists a τs < s such that

U(s, τ)D2(τ) ⊂ D1(s) ∀τ ≤ τs.

Then, it holds
A1(t) = A2(t) ∀t ∈ R.

5 Pullback attractors in L
2(Ω)

Now, we get rid of the special and somehow strong assumptions imposed in Section 3 for the study of
stationary solutions and their global exponential stability. Our aim here is to come back to the initial
setting in Section 2, complete it with some more general assumptions, and to study the long-time
behaviour of the solutions to (1) in L2(Ω), according to the results on pullback attractors recalled in
Section 4.

Thanks to Theorem 5, we can define a process U : R
2
d × L2(Ω) → L2(Ω) as

U(t, τ)uτ = u(t; τ, uτ) ∀uτ ∈ L2(Ω), ∀τ ≤ t,

where u(t; τ, uτ) is the weak solution to (1).
As a straightforward consequence of Theorem 5, we have that

Proposition 15. Assume that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills
(3) and (4), and h ∈ L2

loc(R, H−1(Ω)) and l ∈ L2(Ω) are given. Then, the process U is continuous on
L2(Ω).

In what follows, we will make an additional assumption on the function f , namely

f(s)s ≤ α|s|2 + β ∀s ∈ R, (17)

where α ∈ [0, λ1m) and β ≥ 0. Observe that if the constant Cf appearing in the assumption (3)
belongs to [0, λ1m), this new assumption would be redundant.

To define a suitable universe in P(L2(Ω)) for our purposes, we first establish the following estimate.
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Lemma 16. Suppose that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills (3),
(4), and (17), and h ∈ L2

loc(R; H−1(Ω)), l ∈ L2(Ω), and uτ ∈ L2(Ω) are given. Then, for any
µ ∈ (0, 2(λ1m − α)), the solution u to (1) satisfies

|u(t)|2 ≤
2β|Ω|

µ
+ e−µ(t−τ)|uτ |

2 +
e−µt

2(m − αλ−1
1 ) − µλ−1

1

∫ t

τ

eµs‖h(s)‖2
∗ds ∀t ≥ τ.

Proof. From the energy equality, the Cauchy-Schwartz inequality, and by (3) and (17),

d

dt
|u(t)|2 + µ|u(t)|2 + 2m‖u(t)‖2 ≤ (2α + µ)|u(t)|2 + 2β|Ω| + 2‖h(t)‖∗‖u(t)‖.

Using the Poincaré and Young inequalities,

d

dt
|u(t)|2 + µ|u(t)|2 ≤ 2β|Ω| +

1

2m − (2α + µ)λ−1
1

‖h(t)‖2
∗.

Multiplying by eµt and integrating on [τ, t], the result follows.

Now, we define a suitable tempered universe in P(L2(Ω)).

Definition 17. For each µ > 0, we denote by DL2

µ the class of all families of nonempty subsets

D̂ = {D(t) : t ∈ R} ⊂ P(L2(Ω)) such that

lim
τ→−∞

(
eµτ sup

v∈D(τ)

|v|2

)
= 0.

Remark 18. Observe that DL2

F ⊂ DL2

µ and DL2

µ is inclusion-closed, i.e. if D̂∈ DL2

µ and D̂′ = {D′(t) :

t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t ∈ R, then D̂′ ∈ DL2

µ .

From the above estimate, if h satisfies a suitable growth condition, it is straightforward to conclude
the existence of an absorbing family for an appropriate choice of tempered universe. Namely, we have
the following

Proposition 19. Assume that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills (3),
(4), and (17), l ∈ L2(Ω), and h ∈ L2

loc(R; H−1(Ω)) satisfies that there exists some µ ∈ (0, 2(λ1m−α))
such that ∫ 0

−∞

eµs‖h(s)‖2
∗ds < +∞. (18)

Then, the family D̂0 = {D0(t) : t ∈ R} defined by D0(t) = BL2(0, R
1/2
L2 (t)), the closed ball in L2(Ω) of

center zero and radius R
1/2
L2 (t), where

RL2(t) = 1 +
2β|Ω|

µ
+

e−µt

2(m − αλ−1
1 ) − µλ−1

1

∫ t

−∞

eµs‖h(s)‖2
∗ds,

is pullback DL2

µ -absorbing for the process U : R
2
d × L2(Ω) → L2(Ω). Moreover, D̂0 ∈ DL2

µ .

In order to prove the existence of minimal pullback attractor for the process U : R
2
d × L2(Ω) →

L2(Ω), we need to check that the process U is pullback DL2

µ -asymptotically compact. For that, let us
firstly establish some useful estimates.
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Lemma 20. Under the assumptions of Proposition 19, for any t ∈ R and D̂ ∈ DL2

µ , there exists

τ1(D̂, t) < t − 2 such that for any τ ≤ τ1(D̂, t) and any uτ ∈ D(τ), we obtain





|u(r; τ, uτ )|2 ≤ ρ1(t) ∀r ∈ [t − 2, t],

∫ r

r−1

‖u(θ; τ, uτ)‖2dθ ≤ ρ2(t) ∀r ∈ [t − 1, t],

∫ r

r−1

‖u′(θ; τ, uτ )‖2
∗dθ ≤ ρ3(t) ∀r ∈ [t − 1, t],

(19)

where

ρ1(t) = 1 +
2β|Ω|

µ
+

e−µ(t−2)

2(m − αλ−1
1 ) − µλ−1

1

∫ t

−∞

eµθ‖h(θ)‖2
∗dθ,

ρ2(t) =
1

m − αλ−1
1

(
2β|Ω| + ρ1(t) +

1

m − αλ−1
1

max
r∈[t−1,t]

∫ r

r−1

‖h(θ)‖2
∗dθ

)
,

ρ3(t) = 3

(
M2ρ2(t) + 2C2

fλ−1
1 (|Ω| + ρ1(t)) + max

r∈[t−1,t]

∫ r

r−1

‖h(θ)‖2
∗dθ

)
.

Proof. The first inequality in (19) as well as the expression of ρ1 follow by arguing as in the proof of

Lemma 16, if τ ≤ τ1(D̂, t) < t−2 (far enough pull back in time) due to our choice of tempered universe,
taking into account (18). Notice that indeed this estimate also holds for the Galerkin approximations
already used in the proof of Theorem 5.

For the other two inequalities in (19), we will prove them for the Galerkin approximations, and
then, passing to the limit, we will obtain the same estimates for the solution.

Recall that from the energy equality for the Galerkin approximation un, at light of (2), we obtained
(9). Therefore, by (17) and the Poincaré inequality,

d

dt
|un(t)|2 + 2(m − αλ−1

1 )‖un(t)‖2 ≤ 2β|Ω| + 2〈h(t), un(t)〉 a.e. t > τ.

By the Young inequality,

d

dt
|un(t)|2 + (m − αλ−1

1 )‖un(t)‖2 ≤ 2β|Ω| +
1

m − αλ−1
1

‖h(t)‖2
∗ a.e. t > τ.

Integrating on [r − 1, r] for all r ∈ [t − 1, t], if τ ≤ τ1(D̂, t) and uτ ∈ D(τ), it yields

∫ r

r−1

‖un(θ)‖2dθ ≤
1

m − αλ−1
1

(
|un(r − 1)|2 + 2β|Ω| +

1

m − αλ−1
1

∫ r

r−1

‖h(θ)‖2
∗dθ

)

≤ ρ2(t), (20)

where ρ2(t) is the expression given in the statement, thanks to the first inequality in (19) for un.
Taking into account the equation (8) satisfied by un, that the functions a and f satisfy (2) and (3)

respectively, that −∆ is an isometric isomorphism from H1
0 (Ω) into H−1(Ω), and the already proved

first two estimates of (19) for un, we deduce that, for all r ∈ [t− 1, t], τ ≤ τ1(D̂, t), uτ ∈ D(τ), and for
any n ≥ 1,

∫ r

r−1

‖u′
n(θ)‖2

∗dθ ≤ 3

∫ r

r−1

a(l(un(θ)))2‖un(θ)‖2dθ +
3

λ1

∫ r

r−1

|f(un(θ))|2dθ + 3

∫ r

r−1

‖h(θ)‖2
∗dθ

≤ ρ3(t), (21)
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where ρ3(t) is the expression given in the statement.
Using the facts (proved in Theorem 5) that {un} converges to u(·; τ, uτ) weakly in L2(r−1, r; H1

0 (Ω))
for all r ∈ [t−1, t], and {u′

n} converges to u′(·; τ, uτ ) weakly in L2(r−1, r; H−1(Ω)) for all r ∈ [t−1, t],
from (20) and (21), and passing to the limit, we conclude the result.

Now we apply an energy method with continuous functions (e.g. cf. [19, 28, 26, 21]) in order to

obtain the pullback asymptotic compactness in L2(Ω) for the universe DL2

µ .

Lemma 21. Under the assumptions of Proposition 19, the process U : R
2
d×L2(Ω) → L2(Ω) is pullback

DL2

µ -asymptotically compact.

Proof. Let us fix t ∈ R, a family D̂ ∈ DL2

µ , a sequence {τn} ⊂ (−∞, t − 2] with τn → −∞ and
uτn

∈ D(τn) for all n. We will prove that the sequence {u(t; τn, uτn
)} is relatively compact in L2(Ω).

For short, we will denote un(·) = u(·; τn, uτn
).

Thanks to Lemma 20, (2), and (3), we know that there exists τ1(D̂, t) < t − 2 satisfying that,

if n1 ≥ 1 is such that τn ≤ τ1(D̂, t) for all n ≥ n1, {un}n≥n1
is bounded in L∞(t − 2, t; L2(Ω)) ∩

L2(t − 2, t; H1
0 (Ω)), {−a(l(un))∆un}n≥n1

is bounded in L2(t− 2, t; H−1(Ω)), {f(un)}n≥n1
is bounded

in L2(t−2, t; L2(Ω)), and {(un)′}n≥n1
is bounded in L2(t−2, t; H−1(Ω)). Then, using the Aubin-Lions

lemma, there exists u ∈ L∞(t − 2, t; L2(Ω)) ∩ L2(t − 2, t; H1
0 (Ω)) with u′ ∈ L2(t − 2, t; H−1(Ω)), such

that for a subsequence (relabelled the same) it holds





un ∗
⇀ u weakly-star in L∞(t − 2, t; L2(Ω)),

un ⇀ u weakly in L2(t − 2, t; H1
0 (Ω)),

(un)′ ⇀ u′ weakly in L2(t − 2, t; H−1(Ω)),
un → u strongly in L2(t − 2, t; L2(Ω)),

un(s) → u(s) strongly in L2(Ω) a.e. s ∈ (t − 2, t),
f(un) ⇀ f(u) weakly in L2(t − 2, t; L2(Ω)),

a(l(un))un ⇀ a(l(u))u weakly in L2(t − 2, t; H1
0 (Ω)).

(22)

Observe that u ∈ C([t − 2, t]; L2(Ω)), and due to (22) it is not difficult to prove that u satisfies (5) in
the interval (t − 2, t).

Since {(un)′}n≥n1
is bounded in L2(t − 2, t; H−1(Ω)), we have that {un}n≥n1

is equicontinuous in
H−1(Ω), on [t − 2, t]. In addition, as {un}n≥n1

is bounded in C([t − 2, t]; L2(Ω)) and the embedding
L2(Ω) ⊂ H−1(Ω) is compact, by the Ascoli-Arzelà Theorem, we obtain (for another subsequence,
relabelled again the same)

un → u strongly in C([t − 2, t]; H−1(Ω)). (23)

Using that {un}n≥n1
is bounded in C([t− 2, t]; L2(Ω)), we have that for any sequence {sn} ⊂ [t− 2, t]

with sn → s∗, it holds
un(sn) ⇀ u(s∗) weakly in L2(Ω), (24)

where we have used (23) to identify the weak limit.
If we prove that

un → u strongly in C([t − 1, t]; L2(Ω)), (25)

in particular we will have that {u(t; τn, uτn
)} is relatively compact in L2(Ω).

We establish (25) by contradiction. We suppose that there exist ε > 0, a sequence {tn} ⊂ [t − 1, t],
without loss of generality converging to some t∗, with

|un(tn) − u(t∗)| ≥ ε ∀n ≥ 1. (26)

From (24) we deduce
|u(t∗)| ≤ lim inf

n→+∞
|un(tn)|. (27)
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On the other hand, using the energy equality (6), the Young inequality, (2) and (17), the estimate

|z(s)|2 ≤ |z(r)|2 + 2β|Ω|(s − r) +
1

2(m − αλ−1
1 )

∫ s

r

‖h(θ)‖2
∗dθ ∀t − 2 ≤ r ≤ s ≤ t

holds with z replaced by u or any un.
Now we define the functions

Jn(s) = |un(s)|2 − 2β|Ω|s −
1

2(m − αλ−1
1 )

∫ s

t−2

‖h(r)‖2
∗dr,

J(s) = |u(s)|2 − 2β|Ω|s −
1

2(m − αλ−1
1 )

∫ s

t−2

‖h(r)‖2
∗dr.

It holds from the regularity of u and all un and the above inequality that these functions J and Jn are
continuous and non-increasing on [t − 2, t].

Observe now that using (22), it holds

Jn(s) → J(s) a.e. s ∈ (t − 2, t).

Hence, there exists a sequence {t̃k} ⊂ (t − 2, t∗) such that t̃k → t∗ when k → +∞ and

lim
n→+∞

Jn(t̃k) = J(t̃k) ∀k ≥ 1.

Fix an arbitrary value ǫ > 0. From the continuity of J on [t − 2, t], there exists k(ǫ) ≥ 1 such that

|J(t̃k) − J(t∗)| ≤ ǫ/2 ∀k ≥ k(ǫ).

Now consider n(ǫ) ≥ 1 such that

tn ≥ t̃k(ǫ) and |Jn(t̃k(ǫ)) − J(t̃k(ǫ))| ≤ ǫ/2 ∀n ≥ n(ǫ).

Then, since all Jn are non-increasing, we deduce

Jn(tn) − J(t∗) ≤ Jn(t̃k(ǫ)) − J(t∗)

≤ |Jn(t̃k(ǫ)) − J(t∗)|

≤ |Jn(t̃k(ǫ)) − J(t̃k(ǫ))| + |J(t̃k(ǫ)) − J(t∗)|

≤ ǫ ∀n ≥ n(ǫ).

As ǫ > 0 is arbitrary, from above we deduce lim supn→+∞ Jn(tn) ≤ J(t∗), and thus,

lim sup
n→+∞

|un(tn)| ≤ |u(t∗)|.

From this, (24), and (27), it holds that {un(tn)} converges to u(t∗) strongly in L2(Ω), in contradiction
with (26). Therefore, (25) is proved.

As a consequence of the previous results, we obtain the following theorem, which is the main result
of this section.

Theorem 22. Suppose that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills (3),
(4), and (17), l ∈ L2(Ω), and h ∈ L2

loc(R; H−1(Ω)) satisfies condition (18) for some µ ∈ (0, 2(λ1m −

α)). Then, there exist the minimal pullback DL2

F -attractor A
DL2

F

= {A
DL2

F

(t) : t ∈ R}, and the minimal
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pullback DL2

µ -attractor A
DL2

µ
= {A

DL2

µ
(t) : t ∈ R}, for the process U : R

2
d × L2(Ω) → L2(Ω). The

family A
DL2

µ
belongs to DL2

µ , and it holds

A
DL2

F

(t) ⊂ A
DL2

µ
(t) ⊂ BL2(0, R

1/2
L2 (t)) ∀t ∈ R.

Moreover, if h satisfies

sup
s≤0

(
e−µs

∫ s

−∞

eµθ‖h(θ)‖2
∗dθ

)
< +∞, (28)

then both attractors coincide, i.e. A
DL2

F

(t) = A
DL2

µ
(t) for all t ∈ R.

Proof. The existence of A
DL2

µ
, A

DL2

F

and the first relation between both attractors is a consequence

of the abstract results in the previous section, namely, by Corollary 12. Indeed, the continuity of
the process (cf. Proposition 15), the relation between the universes (cf. Remark 18), and two main
ingredients, absorbing family (cf. Proposition 19) and asymptotic compactness (cf. Lemma 21) hold.

The relation between the family A
DL2

µ
and D̂0 is a direct consequence of Theorem 11. The family

A
DL2

µ
belongs to DL2

µ since D̂0 ∈ DL2

µ , the set D0(t) is closed for all t ∈ R, and the universe DL2

µ is

inclusion-closed.
Finally, the coincidence of both families of attractors under the assumption (28) follows from

Remark 13, since the expression of RL2(t) given in Proposition 19 satisfies that for each T ∈ R,
∪t≤T RL2(t) is bounded.

Remark 23.

(i) Observe that condition (28) is equivalent to sups≤0

∫ s

s−1
‖h(θ)‖2

∗dθ < +∞.

(ii) Notice that if h ∈ L2
loc(R; H−1(Ω)) satisfies condition (18) for some µ ∈ (0, 2(λ1m− α)), then it

also satisfies ∫ 0

−∞

eσs‖h(s)‖2
∗ds < +∞ ∀σ ∈ (µ, 2(λ1m − α)).

Thus, under the assumptions of Theorem 22, for any σ ∈ (µ, 2(λ1m − α)) there exists the cor-

responding minimal pullback DL2

σ -attractor, A
DL2

σ
. By Theorem 14, since DL2

µ ⊂ DL2

σ , it is

evident that, for any t ∈ R, A
DL2

µ
(t) ⊂ A

DL2

σ
(t) for all σ ∈ (µ, 2(λ1m − α)). Moreover, if

h satisfies (28), then, from the above result and the equivalence pointed out in (i), we have
A

DL2

F

(t) = A
DL2

µ
(t) = A

DL2

σ
(t) for all t ∈ R and any σ ∈ (µ, 2(λ1m − α)).

6 Pullback attractors in H
1
0(Ω)

The goal of this section is to improve the results of the previous one, by establishing attraction in
H1

0 (Ω), and relating new pullback attractors with those proved in Theorem 22.
To do this, firstly observe that, thanks to Theorem 5, the restriction of U to R

2
d ×H1

0 (Ω) defines a
process into H1

0 (Ω). Since no confusion arises, we will not modify the notation, and continue denoting
this process as U.

Actually, this process defined on H1
0 (Ω) as phase-space still fulfills properties to apply the results

of Section 4. The following result shows that the process U is strong-weak continuous in H1
0 (Ω).

Proposition 24. Assume that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) satisfies
(3) and (4), l ∈ L2(Ω) and h ∈ L2

loc(R, L2(Ω)). Then, the process U is strong-weak continuous in
H1

0 (Ω).
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Proof. Consider fixed (τ, t) ∈ R
2
d. Let {uτn

} be a sequence that converges to uτ strongly in H1
0 (Ω).

On the one hand, by Proposition 15, it holds that the map U(t, τ) is continuous from L2(Ω) into
L2(Ω). Therefore,

U(t, τ)uτn
→ U(t, τ)uτ strongly in L2(Ω).

On the other hand, using (7), (2), (3), and the Hölder and Young inequalities, it holds

‖U(t, τ)uτn
‖2 ≤ ‖uτn

‖2 +
2C2

f

m

(∫ t

τ

(|Ω| + |U(s, τ)uτn
|2)ds

)
+

1

m

∫ t

τ

|h(s)|2ds.

From (6), and the Gronwall lemma, in particular, a uniform estimate for {U(·, τ)uτn
} in L2(τ, t; L2(Ω))

follows easily. Hence, the sequence {U(t, τ)uτn
} is bounded in H1

0 (Ω). Then, by the uniqueness of the
limit, it holds

U(t, τ)uτn
⇀ U(t, τ)uτ weakly in H1

0 (Ω).

Next result, which is analogous to Lemma 20, establishes some uniform estimates of the solutions
in more regular norms in a finite-time interval up to time t when the initial datum is shifted pullback
far enough. This will be useful to prove the pullback asymptotic compactness in H1

0 (Ω). In order to
simplify the statement, let us firstly introduce the following two quantities:

ρext
1 (t) = 1 +

2β|Ω|

µ
+

e−µ(t−3)

2(m − αλ−1
1 ) − µλ−1

1

∫ t

−∞

eµθ‖h(θ)‖2
∗dθ,

ρext
2 (t) =

1

m − αλ−1
1

(
2β|Ω| + ρext

1 (t) +
1

m − αλ−1
1

max
r∈[t−2,t]

∫ r

r−1

‖h(θ)‖2
∗dθ

)
.

(29)

[The upper script ext means that these expressions are estimates, close to those in Lemma 20 involving
ρ1 and ρ2, but in an extended interval, as will be indicated in the proof below.]

Lemma 25. Assume that the function a is locally Lipschitz and satisfies (2), l ∈ L2(Ω), f ∈ C(R)
satisfies (3), (4), and (17), and h ∈ L2

loc(R; L2(Ω)) satisfies (18) for some µ ∈ (0, 2(λ1m−α)). Then,

for any t ∈ R and D̂ ∈ DL2

µ , there exists τ2(D̂, t) < t − 3, such that for any τ ≤ τ2(D̂, t) and any
uτ ∈ D(τ), it holds





‖u(r; τ, uτ )‖2 ≤ ρ̃1(t) ∀r ∈ [t − 2, t],

∫ r

r−1

| − ∆u(θ; τ, uτ )|2dθ ≤ ρ̃2(t) ∀r ∈ [t − 1, t],

∫ r

r−1

|u′(θ; τ, uτ )|2dθ ≤ ρ̃3(t) ∀r ∈ [t − 1, t],

(30)

where, taking into account {ρext
i }i=1,2 from (29), the terms {ρ̃i}i=1,2,3 are given by

ρ̃1(t) =
4C2

f |Ω|

m
+

(
1 +

4C2
f

λ1m

)
ρext
2 (t) +

2

m
max

r∈[t−2,t]

∫ r

r−1

|h(θ)|2dθ,

ρ̃2(t) =
4C2

f |Ω|

m2
+

1

m
ρ̃1(t) +

4C2
f

λ1m2
ρext
2 (t) +

2

m2
max

r∈[t−1,t]

∫ r

r−1

|h(θ)|2dθ,

ρ̃3(t) = 3M2ρ̃2(t) + 6C2
f |Ω| +

6C2
f

λ1
ρext
2 (t) + 3 max

r∈[t−1,t]

∫ r

r−1

|h(θ)|2dθ.
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Proof. Let us firstly observe that, analogously as we argued in Lemma 20, we may obtain uniform
estimates for solutions in a longer time-interval (useful for our purposes). Namely, there exists

τ2(D̂, t) < t − 3, such that for any τ ≤ τ2(D̂, t) and any uτ ∈ D(τ), it holds

|u(r; τ, uτ )|2 ≤ ρext
1 (t) ∀r ∈ [t − 3, t],∫ r

r−1

‖u(θ; τ, uτ)‖2dθ ≤ ρext
2 (t) ∀r ∈ [t − 2, t],

where {ρext
i }i=1,2 are given in (29). Actually, these estimates also hold for the Galerkin approximations

un(·; τ, uτ ).
Taking this into account, we will prove the lemma by obtaining the inequalities for the Galerkin

approximations and then passing to the limit.
Now, multiplying by λjϕnj(θ) in (8), summing from j = 1 to n and using (2), (3), and the Young

inequality, we obtain

d

dθ
‖un(θ)‖2 + m| − ∆un(θ)|2 ≤

4C2
f |Ω|

m
+

4C2
f

λ1m
‖un(θ)‖2 +

2

m
|h(θ)|2 a.e. θ > τ (31)

Integrating between r and s with τ ≤ r − 1 ≤ s ≤ r, we obtain in particular

‖un(r)‖2 ≤ ‖un(s)‖2 +
4C2

f |Ω|

m
+

4C2
f

λ1m

∫ r

r−1

‖un(θ)‖2dθ +
2

m

∫ r

r−1

|h(θ)|2dθ.

Integrating the last inequality w.r.t. s on [r − 1, r], it holds

‖un(r)‖2 ≤

(
1 +

4C2
f

λ1m

)∫ r

r−1

‖un(s)‖2ds +
4C2

f |Ω|

m
+

2

m

∫ r

r−1

|h(θ)|2dθ,

for all τ ≤ r − 1.
Therefore, from the estimate on the solutions by ρext

2 given above, one deduces that

‖un(r; τ, uτ )‖2 ≤ ρ̃1(t) ∀r ∈ [t − 2, t], τ ≤ τ2(D̂, t), uτ ∈ D(τ),

where ρ̃1(t) is given in the statement.
Now, integrating between r − 1 and r in (31), we obtain in particular

∫ r

r−1

| − ∆un(θ)|2dθ ≤
1

m
‖un(r − 1)‖2 +

4C2
f |Ω|

m2
+

4C2
f

λ1m2

∫ r

r−1

‖un(θ)‖2dθ +
2

m2

∫ r

r−1

|h(θ)|2dθ

for all τ ≤ r − 1.
Therefore, for any n ≥ 1,

∫ r

r−1

| − ∆un(θ)|2dθ ≤ ρ̃2(t) ∀r ∈ [t − 1, t], τ ≤ τ2(D̂, t), uτ ∈ D(τ),

where ρ̃2(t) is given in the statement.
On the other hand,
∫ r

r−1

|u′
n(θ)|

2
dθ ≤ 3

∫ r

r−1

a(l(un(θ)))2| − ∆un(θ)|2dθ + 3

∫ r

r−1

|f(un(θ))|2dθ + 3

∫ r

r−1

|h(θ)|2dθ,

for all τ ≤ r − 1. Therefore, from (2), (3), and the above estimates, for any n ≥ 1, it yields
∫ r

r−1

|u′
n(θ)|2dθ ≤ ρ̃3(t) ∀r ∈ [t − 1, t], τ ≤ τ2(D̂, t), uτ ∈ D(τ),
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where ρ̃3(t) is given in the statement.
Using that u ∈ C([t − 2, t]; H1

0 (Ω)) and the facts that {un} converges to u(·; τ, uτ ) weakly-star in
L∞(t − 2, t; H1

0 (Ω)) and weakly in L2(r − 1, r; D(−∆)) for all r ∈ [t − 1, t], and {u′
n} converges to

u′(·; τ, uτ ) weakly in L2(r − 1, r; L2(Ω)) for all r ∈ [t − 1, t], from the above estimates, passing to the
limit we conclude (30).

Now, we introduce additional universes, that involve more regularity.

Definition 26. For each µ > 0, we will denote by D
L2,H1

0

µ the class of all families of nonempty subsets

D̂H1

0

= {D(t) ∩ H1
0 (Ω) : t ∈ R}, where D̂ = {D(t) : t ∈ R} ∈ DL2

µ .

Remark 27. Observe that D
H1

0

F ⊂ D
L2,H1

0

µ and D
L2,H1

0

µ is inclusion-closed.

As a direct consequence of the regularizing effect of the equation when h ∈ L2
loc(R; L2(Ω)) (cf.

Theorem 5) and the existence of a family pullback DL2

µ -absorbing (cf. Proposition 19), the existence

of an absorbing family in this universe D
L2,H1

0

µ also holds.

Proposition 28. Under the assumptions of Lemma 25, the family

D̂0,H1

0

= {B(0, R
1/2
L2 (t)) ∩ H1

0 (Ω) : t ∈ R}

belongs to D
L2,H1

0

µ and for any t ∈ R and any D̂ ∈ DL2

µ , there exists τ3(D̂, t) < t such that

U(t, τ)D(τ) ⊂ D0,H1

0

(t) ∀τ ≤ τ3(D̂, t).

In particular, the family D̂0,H1

0

is pullback D
L2,H1

0

µ -absorbing for the process U : R
2
d ×H1

0 (Ω) → H1
0 (Ω).

Now, we apply an energy method analogous to the one we used in the previous section. This will

lead to pullback asymptotic compactness of U in H1
0 (Ω) for the universe D

L2,H1

0

µ .

Proposition 29. Under the assumptions of Lemma 25, the process U : R
2
d × H1

0 (Ω) → H1
0 (Ω) is

pullback D
L2,H1

0

µ -asymptotically compact.

Proof. The proof is similar to that of Lemma 21, and we omit it for the sake of brevity. Let us just
indicate the main key in this more regular setting: in this case we consider the energy equality (7) and
the continuous and non-increasing functions

Jn(s) = ‖un(s)‖2 −
4C2

f |Ω|

m
s −

4C2
f

m

∫ s

t−2

|un(r)|2dr −
2

m

∫ s

t−2

|h(r)|2dr,

J(s) = ‖u(s)‖2 −
4C2

f |Ω|

m
s −

4C2
f

m

∫ s

t−2

|u(r)|2dr −
2

m

∫ s

t−2

|h(r)|2dr.

As a consequence of the above results, we obtain the existence of minimal pullback attractors for
the process U : R

2
d × H1

0 (Ω) → H1
0 (Ω).

Theorem 30. Suppose that the function a is locally Lipschitz and satisfies (2), f ∈ C(R) fulfills (3),
(4), and (17), l ∈ L2(Ω), and h ∈ L2

loc(R, L2(Ω)) verifies (18) for some µ ∈ (0, 2(λ1m − α)). Then,

there exist the minimal pullback D
H1

0

F -attractor A
D

H1
0

F

= {A
D

H1
0

F

(t) : t ∈ R} and the minimal pullback

18



D
L2,H1

0

µ -attractor A
D

L2,H1
0

µ

= {A
D

L2,H1
0

µ

(t) : t ∈ R}, for the process U : R
2
d × H1

0 (Ω) → H1
0 (Ω), and it

holds
A

D
H1

0

F

(t) ⊂ A
DL2

F

(t) ⊂ A
DL2

µ
(t) = A

D
L2,H1

0
µ

(t) ∀t ∈ R, (32)

where A
DL2

F

and A
DL2

F

are respectively the minimal pullback DL2

F -attractor and the minimal pullback

DL2

µ -attractor for the process U : R
2
d × L2(Ω) → L2(Ω), whose existence is guaranteed by Theorem 22.

In particular, it holds the following pullback attraction result

lim
τ→−∞

distH1

0

(U(t, τ)D(τ),A
DL2

µ
(t)) = 0 ∀t ∈ R ∀D̂ ∈ DL2

µ . (33)

Finally, if moreover h satisfies not only (28) but

sup
s≤0

(
e−µs

∫ s

−∞

eµr|h(r)|2dr

)
< +∞, (34)

then all attractors in (32) coincide, i.e.

A
D

H1
0

F
(t)

= A
DL2

F

(t) = A
DL2

µ
(t) = A

D
L2,H1

0
µ

(t) ∀t ∈ R, (35)

and again, a result of pullback attraction holds, in this case for any bounded subset B of L2(Ω) :

lim
τ→−∞

distH1

0

(U(t, τ)B,A
DL2

F

(t)) = 0 ∀t ∈ R. (36)

Proof. The existence of A
D

H1
0

F

and A
D

L2,H1
0

µ

is a consequence of Corollary 12, since U is strong-weak

continuous in H1
0 (Ω) (cf. Proposition 24), the relation between the universes (cf. Remark 27), and we

have the existence of an absorbing family in D
L2,H1

0

µ (cf. Proposition 28) and asymptotic compactness
of this universe in the H1 norm (cf. Proposition 29).

The chain of inclusions (32) follows from Corollary 12 and Theorem 14. Actually, the equality
statement is due to the second part of Theorem 14, by using Proposition 28. Then, (33) is straight-
forward.

If moreover h satisfies (28), we already proved in Theorem 22 the equality A
DL2

F

(t) = A
DL2

µ
(t)

for all t ∈ R. Now, in order to obtain (35), we assume (34), which is a requirement stronger than
(28). Therefore, the equality A

D
H1

0

F

(t) = A
DL2

F

(t) is again a consequence of Theorem 14. Indeed, the

solutions are coming into a bounded subset of H1
0 (Ω) due to the first estimate in Lemma 25 by ρ̃1(t)

[recall that, analogously as in Remark 23 (i), here (34) is equivalent to sups≤0

∫ s

s−1
|h(r)|2dr < +∞].

Then, (36) obviously holds.

Remark 31.
(i) As a complement to Remark 23, under the assumptions of Theorem 30, we can improve the

above result, involving new universes and attractors. Namely, for any σ ∈ (µ, 2(λ1m − α))

there exists the corresponding minimal pullback D
L2,H1

0

σ -attractor, A
D

L2,H1
0

σ

, and it holds that

A
DL2

σ
(t) = A

D
L2,H1

0
σ

(t) for all t ∈ R. Moreover, if h satisfies (34), then, after (35), A
D

L2,H1
0

σ

coincides with the family A
D

H1
0

F

for any σ ∈ (µ, 2(λ1m − α)).

(ii) Under additional conditions, we may restrict ourselves to study the problem in the positive cone
of L2(Ω), that is, C+(L2(Ω)) = {g ∈ L2(Ω) : g ≥ 0 a.e. Ω}, and redefining suitably new classes
of (tempered and non-tempered) families. Namely, assuming that h is a positive function and
f ∈ C(R; R+), a Maximum Principle holds, and U is well-defined from into C+(L2(Ω)), which is
important if one is dealing with a biological model. Then, all the results from Sections 5 and 6
can be obtained again analogously, by rearranging the assumptions within this setting.
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