brought to you by 🐰 CORE

Manuscript submitted to AIMS' Journals Volume **xx**, Number **0x**, xxxxx **xxxx**

рр. 1-хх

Website: http://AIMsciences.org

MORSE DECOMPOSITION OF GLOBAL ATTRACTORS WITH INFINITE COMPONENTS

Tomás Caraballo, Juan C. Jara, José A. Langa

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

José Valero

Centro de Investigación Operativa, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202-Elche, Spain

(Communicated by Associate Editor)

ABSTRACT. In this paper we describe some dynamical properties of a Morse decomposition with a countable number of sets. In particular, we are able to prove that the gradient dynamics on Morse sets together with a separation assumption is equivalent to the existence of an ordered Lyapunov function associated to the Morse sets and also to the existence of a Morse decomposition—that is, the global attractor can be described as an increasing family of local attractors and their associated repellers.

1. **Introduction.** The asymptotic behaviour of a system of (ordinary or partial) differential equations modeling real phenomena from different areas of Science is usually described by the analysis of their global attractors, a compact invariant set for the associated semigroups attracting (uniformly) bounded sets forwards in time. This subject has received much attention throughout the last decades (see, for instance, [4], [9], [12], [16], [19], [18] or [20]). We recall now the definition of global attractor associated to a semigroup.

First, let X be a metric space with metric $d: X \times X \to \mathbb{R}^+$, where $\mathbb{R}^+ = [0, \infty)$, and denote by $\mathscr{C}(X)$ the set of continuous maps from X into X. Given a subset $A \subset X$, the ϵ -neighborhood of A is the set $\mathcal{O}_{\epsilon}(A) := \{x \in X : d(x, a) < \epsilon \text{ for some } a \in A\}$.

Definition 1.1. A family $\{T(t): t \geq 0\} \subset \mathscr{C}(X)$ is a semigroup in a complete metric space X if:

- $T(0) = I_X$, with I_X being the identity map in X,
- T(t+s) = T(t)T(s), for all $t, s \in \mathbb{R}^+$,
- $\mathbb{R}^+ \times X \ni (t,x) \mapsto T(t)x \in X$ is continuous.

²⁰⁰⁰ Mathematics Subject Classification. 37B25, 37L99, 35B40, 35B41.

Key words and phrases. Morse decomposition; infinite components; gradient dynamics; Lyapunov function; gradient-like semigroup.

Partially supported by FEDER and Ministerio de Economía y Competitividad (Spain) under grants MTM2011-22411 and MTM2012-31698, and by Junta de Andalucía under Proyecto de Excelencia P12-FQM-1492.

The notion of invariance plays a fundamental role in the study of the asymptotic behavior of semigroups.

Definition 1.2. A subset A of X is said invariant under the semigroup $\{T(t): t \geq 0\}$ if T(t)A = A for all $t \geq 0$.

Given $A, B \subset X$, the Hausdorff semidistance from A to B is given by

$$d(A,B) := \sup_{a \in A} \inf_{b \in B} d(a,b).$$

Definition 1.3. Given two subsets A, B of X we say that A attracts B under the action of the semigroup $\{T(t): t \geq 0\}$ if $d(T(t)B, A) \stackrel{t \to \infty}{\longrightarrow} 0$.

We are now in a position to define global attractors.

Definition 1.4. A subset A of X is a global attractor for a semigroup $\{T(t): t \geq 0\}$ if it is compact, invariant under the action of $\{T(t): t \geq 0\}$ and for every bounded subset B of X we have that A attracts B under the action of $\{T(t): t \geq 0\}$.

Definition 1.5. The semigroup $\{T(t): t \geq 0\}$ is eventually dissipative if for any bounded set B there exists $t^* = t^*(B) \geq 0$ such that $\bigcup_{t \geq t^*} T(t)B$ is bounded.

Remark 1.6. It is obvious that if T(t) possesses a global attractor, then it is eventually dissipative.

One of the main properties in the study of attractors is referred to the description of their geometrical internal structure. Generically, a global attractor is characterized by a (finite or infinite) number of isolated invariant sets and the connecting orbits among them. This fact leads to a Morse decomposition of the global attractor in terms of a family of attracting-repeller pairs (see [8, 17, 11, 14, 15]). We now introduce this concept.

Definition 1.7. Let $\{T(t): t \geq 0\}$ be a semigroup on X. We say that an invariant set $E \subset X$ for the semigroup $\{T(t): t \geq 0\}$ is an isolated invariant set if there is an $\epsilon > 0$ such that E is the maximal invariant subset of $\mathcal{O}_{\epsilon}(E)$.

Definition 1.8. A disjoint family of isolated invariant sets is a family $\{M_1, \dots, M_n\}$ of isolated invariant sets with the property that

$$\mathcal{O}_{\epsilon}(M_i) \cap \mathcal{O}_{\epsilon}(M_j) = \varnothing, \ 1 \le i < j \le n,$$

for some $\epsilon > 0$.

Definition 1.9. A global solution for a semigroup $\{T(t): t \geq 0\}$ is a continuous function $\xi: \mathbb{R} \to X$ with the property that $T(t)\xi(s) = \xi(t+s)$ for all $s \in \mathbb{R}$ and for all $t \in \mathbb{R}^+$. We say that $\xi: \mathbb{R} \to X$ is a global solution through $x \in X$ if it is a global solution with $\xi(0) = x$.

It is also well known that the global attractor is the union of all bounded complete global solutions of the semigroup T.

Definition 1.10. Let $\{T(t): t \geq 0\}$ be a semigroup which possesses a disjoint family of isolated invariant sets $M = \{M_1, \cdots, M_n\}$. A homoclinic structure associated to M is a subset $\{M_{k_1}, \cdots, M_{k_p}\}$ of M $(p \leq n)$ together with a set of global solutions $\{\xi_1, \cdots, \xi_p\}$ such that

$$M_{k_j} \stackrel{t \to -\infty}{\longleftarrow} \xi_j(t) \stackrel{t \to \infty}{\longrightarrow} M_{k_{j+1}}, \ 1 \le j \le p,$$

where $M_{k_{p+1}} := M_{k_1}$.

Remark 1.11. Here, $\xi(t) \stackrel{t \to \pm \infty}{\longrightarrow} M$ means that $d(\xi(t), M) \to 0$ as $t \to \pm \infty$.

We will study the dynamics of the semigroup inside the global attractor A. We now define generalized dynamically gradient semigroups (see [6, 5]).

Definition 1.12. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor \mathcal{A} and a disjoint family of isolated invariant sets $M = \{M_1, \dots, M_n\}$ in A. We say that $\{T(t): t \geq 0\}$ is a generalized dynamically gradient semigroup relative to M if:

a) For any global solution $\xi: \mathbb{R} \to \mathcal{A}$ there are $1 \leq i, j \leq n$ such that

$$M_i \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} M_i$$
.

b) There is no homoclinic structure associated to M.

Remark 1.13. The concept of generalized dynamically gradient semigroup is the same as the concept of gradient-like semigroup as given in [1], [5].

To introduce the notion of a Morse decomposition for the attractor \mathcal{A} of a semigroup $\{T(t): t \geq 0\}$ (see [8], [17] or [18]) we previously need the notion of attractorrepeller pair. We recall that the omega-limit set of $B \subset X$ is defined by

$$\omega\left(B\right) = \bigcap_{t>0} \overline{\bigcup_{s>t} T(s)B}.$$

Definition 1.14. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor \mathcal{A} . We say that a non-empty subset A of A is a local attractor if there is an $\epsilon > 0$ such that $\omega(\mathcal{O}_{\epsilon}(A)) = A$. The repeller A^* associated to a local attractor A is the set defined by

$$A^* := \{ x \in \mathcal{A} : \omega(x) \cap A = \emptyset \}.$$

The pair (A, A^*) is called an attractor-repeller pair for $\{T(t) : t \ge 0\}$.

Note that if A is a local attractor, then A^* is closed and invariant.

Definition 1.15. Given an increasing family $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = \mathcal{A}$, of n+1 local attractors, for $j=1,\cdots,n$, define $M_j:=A_j\cap A_{j-1}^*$. The ordered n-tuple $M:=\{M_1,M_2,\cdots,M_n\}$ is called a Morse decomposition for A.

Definition 1.16. We will say that a semigroup $\{T(t): t \geq 0\}$ with a global attractor \mathcal{A} and a disjoint family of isolated invariant sets $M = \{M_1, \dots, M_n\}$ in \mathcal{A} is a gradient semigroup with respect to M, if there exists a continuous function V: $X \to \mathbb{R}$ such that $[0, \infty) \ni t \mapsto V(T(t)x) \in \mathbb{R}$ is non-increasing for each $x \in X \setminus M$, V is constant in M_i for each $1 \le i \le n$, and V(T(t)x) = V(x) for all $t \ge 0$ if and only if $x \in \bigcup_{i=1}^{n} M_i$.

V is called a Lyapunov function related to M.

It has been proved in [1] that given a disjoint family of isolated invariant sets on the global attractor $M = \{M_1, \dots, M_n\}$ for a semigroup T(t), the dynamical property of being generalized dynamically gradient, the existence of an associated ordered family of local attractor-repellers, and the existence of a Lyapunov functional related to M, are equivalent properties. Many of the arguments in [1] make a precise use of the fact that the number of Morse sets is finite. The aim of this paper is to generalize this result to the case of a countable number of Morse sets.

Indeed, the general theory of Morse decomposition of invariant sets is generically adapted to the existence of a finite number of isolated Morse sets. However, it is not unusual to have an infinite number of invariants in a global attractor. For instance, consider the scalar differential equation

$$\frac{dy}{dt} = f(y)$$

with

$$f(y) = \begin{cases} -y, & \text{if } y \le 0, \\ (1 - e^{-y}) \left| \sin \left(\frac{\pi}{y} \right) \right|, & \text{if } 0 < y \le 1, \\ 1 - y, & \text{if } y \ge 1. \end{cases}$$

Note that the equation possesses the following fixed points:

$$y_1 = 1, \ y_2 = \frac{1}{2}, \ y_3 = \frac{1}{3}, ..., \ y_k = \frac{1}{k}, ..., \ y_{\infty} = 0,$$

with their respective associated unstable manifolds (see Definition 4.2)

$$W^{u}\left(1\right)=1,\ W^{u}\left(\frac{1}{2}\right)=[\frac{1}{2},1),\ ...,\ W^{u}\left(\frac{1}{k}\right)=[\frac{1}{k},\frac{1}{k-1}),...,\ W^{u}\left(0\right)=0,$$

and as global attractor $\mathcal{A} = [0, 1]$. In [3] the authors study a multivalued version of the well-known Chafee-Infante equation, also leading to a global attractor with an infinite number of equilibria, which actually has motivated the necessity of developing the theory in this paper. We will consider this application in a subsequent work.

In Section 2 we recall some results on the dynamics related to an attractor-repeller pair. In Section 3 we will generalize Definitions 1.12, 1.15 and 1.16 to the case of an infinite number of disjoint isolated invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ inside the global attractor. In Sections 4, 5 and 6 we prove the main result of this paper, the equivalence between a generalized dynamically gradient semigroup referred to \mathbf{M}_{∞} with a suitable separation assumption, the existence of an ordered Lyapunov function associated to \mathbf{M}_{∞} , and the existence of a Morse decomposition on the global attractor. This is done in several steps: first, we prove that the property of the semigroup of being generalized dynamically gradient together with a separation assumption implies that a Morse decomposition can be constructed; then we prove that from a Morse decomposition related to \mathbf{M}_{∞} an ordered Lyapunov function can be defined; finally, we check that the existence of an ordered Lyapunov function implies that the semigroup is generalized dynamically gradient semigroup referred to \mathbf{M}_{∞} and that the separation assumption holds.

2. **Preliminary results on attractor-repeller pairs.** The following results on the dynamics on attractor-repeller pairs are taken from [1].

We recall that local attraction of A in \mathcal{A} is equivalent to local attraction in X, for which we firstly need the following result.

Lemma 2.1. Let $\{T(t): t \geq 0\}$ be a semigroup in X with a global attractor \mathcal{A} . If $A \subset \mathcal{A}$ is a compact invariant set for $\{T(t): t \geq 0\}$ and there is an $\epsilon > 0$ such that A attracts $\mathcal{O}_{\epsilon}(A) \cap \mathcal{A}$, then given $\delta \in (0, \varepsilon)$ there is a $\delta' \in (0, \delta)$ such that $\gamma^+(\mathcal{O}_{\delta'}(A)) \subset \mathcal{O}_{\delta}(A)$, where $\gamma^+(\mathcal{O}_{\delta'}(A)) = \bigcup_{x \in \mathcal{O}_{\delta'}(A)} \bigcup_{t \geq 0} \{T(t)x\}$.

The next result generalizes for semigroups a known result for groups given in [8] and shows that our definition of local attractor is equivalent to that one in [8, 17].

Lemma 2.2. If $\{T(t): t \geq 0\}$ is a semigroup in X with a global attractor A and $S(t):=T(t)|_{\mathcal{A}}$, clearly $\{S(t): t \geq 0\}$ is a semigroup in the metric space A. If A is a local attractor for $\{S(t): t \geq 0\}$ in the metric space A (that is, there exists $\varepsilon > 0$ with $\omega(\mathcal{O}_{\epsilon}(A) \cap A) = A$), and K is a compact subset of A such that $K \cap A^* = \emptyset$, then A attracts K. Furthermore A is a local attractor for $\{T(t): t \geq 0\}$ in X.

We now describe the dynamics on an attractor-repeller pair.

Lemma 2.3. Let $\{T(t): t \geq 0\}$ be a semigroup in X with a global attractor A and (A, A^*) an attractor-repeller for $\{T(t): t \geq 0\}$. Then:

- (i) If $\xi: \mathbb{R} \to X$ is a global bounded solution for $\{T(t): t \geq 0\}$ through $x \notin A \cup A^*$, then $\xi(t) \stackrel{t \to -\infty}{\longrightarrow} A$ and $\xi(t) \stackrel{t \to -\infty}{\longrightarrow} A^*$.
- (ii) A global solution $\xi : \mathbb{R} \to X$ of $\{T(t) : t \geq 0\}$ with the property that $\xi(t) \in \mathcal{O}_{\delta}(A^*)$ for all $t \leq 0$ for some $\delta > 0$ such that $\mathcal{O}_{\delta}(A^*) \cap A = \emptyset$ must satisfy $d(\xi(t), A^*) \stackrel{t \to -\infty}{\longrightarrow} 0$.
 - (iii) If $x \in X \setminus A$, then $T(t)x \xrightarrow{t \to \infty} A \cup A^*$.

Part (i) of the previous lemma is proved in Theorem 1.4 in [17]. Parts (ii) and (iii) can be found in [1].

3. **Generalized dynamically gradient semigroups.** In this section we will introduce the concepts of generalized dynamically gradient semigroups and Morse decomposition for a countable set of isolated invariant sets.

Definition 3.1. A disjoint (countable) family of invariant sets is a family $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ of invariant sets with the property that, given $j \in \mathbb{N}$, there exists δ_j such that

$$\mathcal{O}_{\delta_j}(M_j) \cap \mathcal{O}_{\delta_j}(M_i) = \emptyset, \text{ for all } i \neq j, i \in \mathbb{N} \cup \{\infty\}.$$
 (3.1)

Definition 3.2. Let $\{T(t): t \geq 0\}$ be a semigroup which possesses a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ with M_j isolated for each $j \in \mathbb{N}$. A homoclinic structure associated to \mathbf{M}_{∞} is a finite subset $\{M_{k_1}, \dots, M_{k_p}\}$ of \mathbf{M}_{∞} together with a set of global solutions $\{\xi_1, \dots, \xi_p\}$ such that

$$M_{k_j} \stackrel{t \to -\infty}{\longleftarrow} \xi_j(t) \stackrel{t \to \infty}{\longrightarrow} M_{k_{j+1}}, \ 1 \le j \le p,$$

where $M_{k_{p+1}} := M_{k_1}$.

Remark 3.3. The set M_{∞} is not assumed to be isolated. The reason is that typically in applications M_{∞} is an accumulation set of the sequence M_n as $n \to \infty$. Hence, it is not isolated. This is the case in the example given in the introduction, and also, for instance, in the application for multivalued semiflows in [3].

Definition 3.4. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} with M_j isolated for each $j \in \mathbb{N}$. We say that $\{T(t): t \geq 0\}$ is a generalized dynamically gradient semigroup relative to \mathbf{M}_{∞} if for any global solution $\xi: \mathbb{R} \to \mathcal{A}$ such that $\xi(t_0) \notin M_k$, for some $t_0 \in \mathbb{R}$ and any $k \in \mathbb{N} \cup \infty$, it holds that

$$M_j \overset{t \to -\infty}{\longleftarrow} \xi(t) \overset{t \to \infty}{\longrightarrow} M_i, \quad \text{ for } 1 \le i < j \le \infty. \tag{3.2}$$

Remark 3.5. It is obvious that condition (3.2) implies the following properties:

• For any global solution $\xi : \mathbb{R} \to \mathcal{A}$ there are $1 \leq i, j \leq \infty$ such that

$$M_j \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} M_i.$$

• There is no homoclinic structure associated to \mathbf{M}_{∞} .

When the number of sets M_i is finite, then it is proved in [2] that these last two properties imply (3.2) for a suitable rearrangement of the sets. In fact, Definition 3.4 is the way in which it is defined a Morse decomposition of a global attractor in [18].

Note that, in particular, (3.2) implies that there is no global solution $\xi(t) : \mathbb{R} \to \mathcal{A}$ with $\xi(t_0) \notin M_1$ for some $t_0 \in \mathbb{R}$ such that

$$\lim_{t \to -\infty} d(\xi(t), M_1) = 0.$$

The following lemma implies that an isolated invariant set inside a global attractor is compact.

Lemma 3.6. Let M be an isolated invariant set which is relatively compact. Then M is compact.

Proof. We need to prove that M is closed. Let $y_n \to y$, where $y_n \in M$. By the continuity of T we have that $T(t)y_n \to T(t)y$ for any t > 0. Hence, $T(t)y \in \overline{M}$. Thus, $T(t)\overline{M} \subset \overline{M}$ for all $t \geq 0$. On the other hand, as M is invariant, for any t > 0 there exists $z_n \in M$ such that $T(t)z_n = y_n$. Since M is relatively compact, passing to a subsequence we have $z_n \to z \in \overline{M}$, and then T(t)z = y. Therefore, $\overline{M} \subset T(t)\overline{M}$ for all t > 0. It follows that \overline{M} is invariant. As M is an isolated invariant set, we get $M = \overline{M}$.

As a consequence of the first statement in Lemma 2.3 we obtain the following.

Corollary 3.7. If $\{T(t): t \geq 0\}$ is a semigroup in X with a global attractor A and (A, A^*) is an attractor-repeller pair for $\{T(t): t \geq 0\}$, then $\{T(t): t \geq 0\}$ is a generalized dynamically gradient semigroup associated to the disjoint family of isolated invariant sets $\{A, A^*\}$.

Note that (3.1) implies

$$M_i \cap M_{\infty} = \emptyset$$
, for each $i \in \mathbb{N}$. (3.3)

Lemma 3.8. Condition (3.2) implies that there is no global solution $\xi : \mathbb{R} \to \mathcal{A}$ with $\xi(t_0) \in \mathcal{A} \setminus M_{\infty}$ for some $t_0 \in \mathbb{R}$ such that

$$\lim_{t \to +\infty} d(\xi(t), M_{\infty}) = 0. \tag{3.4}$$

Proof. It is obvious, as in (3.2), that the index i cannot be ∞ .

Lemma 3.9. Let $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ be compact invariant sets such that $M_j \cap M_i = \emptyset$ for $i \neq j, i, j \in \mathbb{N} \cup \infty$, and also suppose that the invariant compact set $M_{\infty} \subset \mathcal{A}$ is such that

$$\lim_{i \to \infty} d(M_i, M_{\infty}) = 0.$$
(3.5)

Then \mathbf{M}_{∞} is a disjoint family of invariant sets.

Proof. Take $j \in \mathbb{N}$ arbitrary. We have to check (3.1). There exists $\delta_1 > 0$ such that

$$\mathcal{O}_{\delta_1}(M_i) \cap \mathcal{O}_{\delta_1}(M_{\infty}) = \varnothing.$$

In view of (3.5) there is N > j such that

$$M_i \subset \mathcal{O}_{\frac{\delta_1}{2}}(M_\infty) \text{ if } i > N.$$

Hence,

$$\mathcal{O}_{\delta_1}\left(M_j\right)\cap\mathcal{O}_{\frac{\delta_1}{2}}\left(M_i\right)=\varnothing \text{ if } i>N.$$

Obviously, there exists $\delta_2 > 0$ for which

$$\mathcal{O}_{\delta_2}\left(M_j\right) \cap \mathcal{O}_{\delta_2}\left(M_i\right) = \emptyset \text{ for } 1 \leq i \leq N, i \neq j.$$

Then the result follows for $\delta_i = \min\{\delta_1/2, \delta_2\}.$

We can now introduce the concept of a Morse decomposition referred to \mathbf{M}_{∞} .

Definition 3.10. Given an increasing family $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n \subset \cdots A_\infty = \mathcal{A}$ of local attractors, for $j \in \mathbb{N}$ define $M_j := A_j \cap A_{j-1}^*$, $M_\infty = \bigcap_{j=0}^\infty A_j^*$. The ordered countable set $\mathbf{M}_\infty := \{M_i\}_{i=1}^\infty \cup M_\infty$ is called a Morse decomposition of \mathcal{A} .

The following properties of the sets M_i follow.

Lemma 3.11. $M_{\infty} \cap A_j = \emptyset$ for any $j \in \mathbb{N}$. Hence, $M_{\infty} \subset A_{\infty} \setminus \bigcup_{j=1}^{\infty} A_j$ and $M_{\infty} \cap M_j = \emptyset$ for all $j \in \mathbb{N}$.

Proof. Let $y \in M_{\infty}$. Then $y \in A_i^*$, for any $j \in \mathbb{N}$, implies $y \notin A_j$ for all $j \in \mathbb{N}$. \square

Lemma 3.12. The sets M_j , $j \in \mathbb{N} \cup \infty$, are compact.

Proof. Since $M_j \subset \mathcal{A}$, they are relatively compact. Also, as M_j are the intersection of closed sets, they are closed.

We can also give the following characterization.

Proposition 3.13. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor \mathcal{A} and $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ a Morse decomposition for \mathcal{A} with the family $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_{\infty} = \mathcal{A}$ of local attractors. Then,

$$\bigcap_{j=0}^{\infty} (A_j \cup A_j^*) = (\bigcup_{j=1}^{\infty} M_j) \cup M_{\infty}.$$

Proof. If $z \in \bigcup_{j=1}^{\infty} M_j$, let $k \in \mathbb{N}$ be such that $z \in M_k = A_k \cap A_{k-1}^*$. Hence $z \in A_k \subset A_{k+1} \subset \cdots \subset A_{\infty}$ and $z \in A_{k-1}^* \subset A_{k-2}^* \subset \cdots \subset A_0^*$. Thus

$$z \in (\bigcap_{j=k}^{\infty} A_j) \cap (\bigcap_{j=0}^{k-1} A_j^*) \subset \left[\bigcap_{j=k}^{\infty} (A_j \cup A_j^*)\right] \cap \left[\bigcap_{j=0}^{k-1} (A_j \cup A_j^*)\right] = \bigcap_{j=0}^{\infty} (A_j \cup A_j^*),$$

proving that $\bigcup_{j=1}^{\infty} M_j \subset \bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. If $z \in M_{\infty}$, then $z \in \bigcap_{j=0}^{\infty} A_j^* \subset \bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$.

Conversely, we take $z \in \bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. If $z \in \bigcap_{j=0}^{\infty} A_j^*$, then $z \in M_{\infty}$. Otherwise, $z \in A_j$ for some $j \in \mathbb{N}$. Denote $I := \{i_1, i_2, \cdots, i_k, \dots\}$ and $J := \{j_1, j_2, \cdots, j_l, \dots\}$ such that $I \cup J = \mathbb{Z}^+$ with $I \cap J = \emptyset$ and $z \in A_i$ for all $i \in I$ and $z \in A_j^*$ for all $j \in J$. Clearly, if $i := \min I$, necessarily $I = \{j \geq i\}$ and $J = \{0, 1, \cdots, i-1\}$, consequently $z \in A_i$ and $z \in A_{i-1}^*$. So, $z \in A_i \cap A_{i-1}^* = M_i$, from which $\bigcap_{j=0}^{\infty} (A_j \cup A_j^*) \subset A_j^*$

$$\bigcup_{j=1}^{\infty} M_j.$$

4. Construction of a Morse decomposition from the dynamics on \mathbf{M}_{∞} . In this section we describe the construction of a Morse decomposition of the global attractor \mathcal{A} relative to the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j is isolated if $j \in \mathbb{N}$ and satisfying (3.2). By Lemma 3.8 we have that (3.4) does not hold.

The following lemma will play an important role in what follows.

Lemma 4.1. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor \mathcal{A} and the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty} = \{M_1, \dots, M_n, \dots; M_{\infty}\}$ in \mathcal{A} be such that M_j are isolated for $j \in \mathbb{N}$. Assume that T is generalized dynamically gradient relative to \mathbf{M}_{∞} . Then, M_1 is a local attractor for $\{T(t): t \geq 0\}$.

Proof. We firstly prove that for all $\delta \in (0, \delta_1)$ there exists $\delta' \in (0, \delta)$ such that

$$\gamma^{+}\left(\mathcal{O}_{\delta'}\left(M_{1}\right)\right)\subset\mathcal{O}_{\delta}\left(M_{1}\right),$$

where δ_1 satisfies $\mathcal{O}_{\delta_1}(M_1) \cap \mathcal{O}_{\delta_1}(M_i) = \emptyset$ for i > 1 or $i = \infty$.

If not, there exist $0 < \delta < \delta_1$ and sequences $\{t_k\}_{k \in \mathbb{N}}$ of positive times and $\{x_k\}_{k \in \mathbb{N}}$ of points in X such that for all k

$$d(x_k, M_1) < \frac{1}{k},$$

$$d(T(t_k)x_k, M_1) = \delta$$

and

$$d(T(t)x_k, M_1) < \delta \text{ for } t \in [0, t_k).$$

Thus, if we define, for each k, $\xi_k(t) := T(t+t_k)x_k$ for $t \in [-t_k, \infty)$, as $t_k \underset{k \to \infty}{\to} \infty$, we conclude that there exists a global solution $\xi : \mathbb{R} \to X$ for $T(\cdot)$ such that $\xi_k \underset{k \to \infty}{\to} \xi$ uniformly in compact sets of times (see [7, Lemma 3.1]). Then, $d(\xi_k(t), M_1) \le \delta$ for $t \in [-t_k, 0]$ implies

$$d(\xi(t), M_1) < \delta < \delta_1 \text{ for } t < 0.$$

But by (3.2) we have $\xi(t) \to M_j$, with j > 1, as $t \to -\infty$, a contradiction.

 M_1 is the maximal invariant set in $\mathcal{O}_{\varepsilon}(M_1)$ for some $\varepsilon > 0$. Thus, for $\delta < \min\{\varepsilon, \delta_1\}$ take $\delta' \in (0, \delta)$ such that

$$\gamma^+(\mathcal{O}_{\delta'}(M_1)) \subset \mathcal{O}_{\delta}(M_1),$$

so that

$$\omega(\mathcal{O}_{\delta'}(M_1)) \subset \overline{\mathcal{O}_{\delta}(M_1)} \subset \mathcal{O}_{\varepsilon}(M_1),$$

and then, as $\omega(\mathcal{O}_{\delta'}(M_1))$ is invariant,

$$\omega(\mathcal{O}_{\delta'}(M_1)) \subset M_1.$$

The other inclusion is trivial, so that M_1 is a local attractor.

For M_1 a local attractor, let $M_1^* = \{x \in \mathcal{A} : \omega(x) \cap M_1 = \varnothing\}$ be its associated repeller, so each M_i , with $i \geq 2$, is contained in M_1^* and more generally the orbit $\xi(\mathbb{R})$ of any global solution $\xi : \mathbb{R} \to \mathcal{A}$ that converges to M_i , $i \geq 2$, when $t \to +\infty$, is contained in M_1^* . Considering the restriction $\{T_1(t) : t \geq 0\}$ of $\{T(t) : t \geq 0\}$ to M_1^* we have that $\{T_1(t) : t \geq 0\}$ satisfies (3.2) in the space M_1^* with the invariant sets $\{M_i\}_{i=2}^{\infty} \cup M_{\infty}$ and we may assume, by the last lemma, that M_2 is a local attractor for the semigroup $\{T_1(t) : t \geq 0\}$ in M_1^* . If $M_{2,1}^*$ is the repeller associated to the local attractor M_2 for $\{T_1(t) : t \geq 0\}$ in M_1^* we may proceed and consider the restriction

 $\{T_2(t): t \geq 0\}$ of the semigroup $\{T_1(t): t \geq 0\}$ to $M_{2,1}^*$ and then $\{T_2(t): t \geq 0\}$ satisfies (3.2) in $M_{2,1}^*$ with the associated invariant sets $\{M_i\}_{i=3}^{\infty} \cup M_{\infty}$.

Setting $\mathcal{A}=:M_{0,-1}^*$ and $M_{1,0}^*:=M_1^*$, for $j\geq 1$ we have that M_j is a local attractor for the restriction of $\{T(t):t\geq 0\}$ to $M_{j-1,j-2}^*$ whose repeller will be indicated by $M_{j,j-1}^*$.

Definition 4.2. Let $\{T(t): t \geq 0\}$ be a semigroup. The unstable set of an invariant set M is defined by

$$W^{\mathrm{u}}(M) := \{ z \in X : \text{ there is a global solution } \xi : \mathbb{R} \to X$$

 $\text{such that } \xi(0) = z \text{ and } \lim_{t \to -\infty} d(\xi(t), M) = 0 \}.$

Define $A_0 := \emptyset$, $A_1 := M_1$ and for $j = 2, 3, \dots$,

$$A_j := A_{j-1} \cup W^{\mathrm{u}}(M_j) = \bigcup_{i=1}^j W^{\mathrm{u}}(M_i).$$
 (4.1)

Also, $A_{\infty} = \mathcal{A}$.

It is clear that $\mathcal{A} = \bigcup_{i=1}^{\infty} W^{\mathrm{u}}(M_i) \cup W^{\mathrm{u}}(M_{\infty}).$

Lemma 4.3. Assume the conditions of Lemma 4.1. Then $M_{\infty} = \bigcap_{j=0}^{\infty} A_{j}^{*}$.

Proof. Let $z \in M_{\infty}$. Then as M_{∞} is invariant, $\omega(z) \subset M_{\infty}$. Then z cannot be in $W^u(M_j)$ for $j \in \mathbb{N}$, as in such a case by (3.2) we would have $\omega(z) \cap M_i \neq \emptyset$ for some $i \leq j$, a contradiction. Thus, by (4.1) we have that $z \notin A_j$ for $j \in \mathbb{N}$. Hence, $\omega(z) \cap A_j = \emptyset$, so that $z \in \bigcap_{j=0}^{\infty} A_j^*$.

Conversely, let $z \in \bigcap_{j=0}^{\infty} A_j^*$. Then $\omega(z) \cap A_j = \emptyset$ for all $j \in \mathbb{N}$. If $z \notin M_{\infty}$, we take a global solution $\xi(\cdot)$ such that $\xi(0) = z$. Then by condition (3.2) we have that $\xi(t) \to M_i$ as $t \to +\infty$ for some $i \in \mathbb{N}$. But then $\omega(z) \cap A_i \neq \emptyset$, a contradiction. \square

Lemma 4.4. Assume the conditions of Lemma 4.1. Then the sets M_j , $j \in \mathbb{N} \cup \infty$, are compact.

Proof. We note that $M_j \subset \mathcal{A}$ implies by Lemma 3.6 that the sets M_j are compact if $j \in \mathbb{N}$. Also, Lemma 4.3 implies that M_{∞} is closed, and then $M_{\infty} \subset \mathcal{A}$ implies that it is compact.

Lemma 4.5. Assume the conditions of Lemma 4.1. Suppose that, given $j \in \mathbb{N}$, there exists δ_j such that

$$W^{u}(M_{j}) \cap \mathcal{O}_{\delta_{j}}(\bigcup_{i=j+1}^{\infty} M_{i} \cup M_{\infty})) = \emptyset.$$

$$(4.2)$$

Then.

$$A_j \cap \mathcal{O}_{\delta_j}((\bigcup_{i=j+1}^{\infty} M_i) \cup M_{\infty}) = \emptyset.$$
 (4.3)

Proof. For j=1 the result follows since $A_1=M_1=W^u(M_1)$. Suppose (4.3) is true for j-1 and we will show it for j. If not, there exists a sequence $\{x_k\}_{k\in\mathbb{N}}$ in A_j such that for all k

$$d(x_k, (\bigcup_{i=j+1}^{\infty} M_i) \cup M_{\infty}) < \frac{1}{k}.$$

As $A_j := A_{j-1} \cup W^u(M_j)$ and we have (4.3) for j-1, then $x_k \in W^u(M_j)$, from which, by hypothesis, we get a contradiction.

Remark 4.6. The separation condition (4.2) can be proved easily in the case of a finite number of elements M_j . It is interesting to study whether this assumption can be somehow avoided in the case of an infinite number of elements.

Corollary 4.7. Under the hypotheses of the previous lemma, given $j \in \mathbb{N}$, there exists δ_j such that

$$\mathcal{O}_{\delta_j}(A_j) \cap \left(\left(\bigcup_{i=j+1}^{\infty} M_i \right) \cup M_{\infty} \right) = \emptyset.$$
 (4.4)

Theorem 4.8. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor \mathcal{A} and consider the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j is isolated if $j \in \mathbb{N}$. Assume that T is generalized dynamically gradient relative to \mathbf{M}_{∞} and such that (4.2) holds, so that each M_j is a local attractor for the restriction of $\{T(t): t \geq 0\}$ to $M_{j-1,j-2}^*$. Then A_j defined in (4.1) is a local attractor for $\{T(t): t \geq 0\}$ in X, and

$$M_j = A_j \cap A_{j-1}^*. \tag{4.5}$$

As a consequence, $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ defines a Morse decomposition on the global attractor \mathcal{A} .

Proof. If we prove that for any $0 < \delta < \delta_j$, there is $\delta' < \delta$ such that $\gamma^+(\mathcal{O}_{\delta'}(A_j)) \subset \mathcal{O}_{\delta}(A_j)$, then $\omega(\mathcal{O}_{\delta'}(A_j))$ attracts $\mathcal{O}_{\delta'}(A_j)$ and (as $\omega(\mathcal{O}_{\delta'}(A_j))$ is invariant) is contained in A_j proving that A_j is a local attractor.

Suppose there is $j \in \mathbb{N}$ for which there exist $\delta \in (0, \delta_j)$ and sequences $(t_k)_{k \in \mathbb{N}}$ with $t_k \to \infty$ and $(x_k)_{k \in \mathbb{N}}$ in X such that

$$d\left(x_{k},A_{j}\right)<\frac{1}{k},$$

$$d\left(T\left(t_{k}\right)x_{k},A_{i}\right)=\delta.$$

and

$$d(T(t) x_k, A_i) < \delta \text{ for } t \in [0, t_k).$$

Then, as in Lemma 4.1, we get a global solution $\xi_0 : \mathbb{R} \to X$ satisfying

$$d(\xi_0(t), A_j) \le \delta \text{ for all } t \le 0$$
 (4.6)

with

$$d\left(\xi_{0}\left(0\right), A_{i}\right) = \delta. \tag{4.7}$$

For this global solution, there exists $M_i \in \mathbf{M}_{\infty}$ such that

$$\lim_{t \to -\infty} d\left(\xi_0\left(t\right), M_i\right) = 0,$$

and since $\delta \in (0, \delta_j)$, with δ_j satisfying (4.4), it holds that $i \leq j$, and so $\xi_0(0) \in W^u(M_i) \subset A_j$, which contradicts (4.7).

To prove that $M_j = A_j \cap A_{j-1}^*$ note that

$$A_j = \bigcup_{i=1}^j W^{\mathrm{u}}(M_i)$$

and $A_{j-1}^* = \{z \in \mathcal{A} : \omega(z) \cap A_{j-1} = \varnothing\}$. Hence, given $z \in A_j \cap A_{j-1}^*$ we have that any global solution $\xi : \mathbb{R} \to \mathcal{A}$ through z must satisfy that

$$\bigcup_{i=1}^{j} M_i \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} \bigcup_{i=j}^{\infty} M_i.$$

As a consequence of that and of the fact that $\{T(t): t \geq 0\}$ satisfies (3.2) we obtain that $z \in M_j$. This shows that $A_j \cap A_{j-1}^* \subset M_j$. The other inclusion is immediate from the definition of A_j and A_{j-1}^* .

Finally, (4.5) and Lemma 4.3 imply that $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ defines a Morse decomposition on the global attractor \mathcal{A} .

- **Remark 4.9.** As we suppose (3.2) for a dynamically gradient system, we get an order in Morse sets by an energy level decomposition of the global attractor in the sense of [2], in which the attractor is described by connecting global solutions among the different levels in a decreasing way.
- 5. A Lyapunov function for a Morse decomposition. In this section we will construct a Lyapunov function for semigroups having a Morse decomposition with an infinite number of elements.
- **Definition 5.1.** We say that a semigroup $\{T(t): t \geq 0\}$ with a global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} if there is a continuous function $V: \mathcal{A} \to \mathbb{R}$ such that:
- (i) The real function $[0,\infty) \ni t \mapsto V(T(t)x) \in \mathbb{R}$ is non-increasing for each $x \in \mathcal{A} \setminus \bigcup_{i=1}^{\infty} M_i \cup M_{\infty}$,
 - (ii) V is constant in M_i for each $i \in \mathbb{N} \cup \infty$,
 - (iii) V(T(t)x) = V(x) for all $t \ge 0$ if and only if $x \in \mathbf{M}_{\infty}$.

A function V with the properties above is called a Lyapunov function for the generalized gradient semigroup $\{T(t): t \geq 0\}$ with respect to \mathbf{M}_{∞} .

The following result, which is proved in [1, Proposition 3.3], gives the existence of a Lyapunov type functional for an attractor-repeller pair

Proposition 5.2. Let $\{T(t): t \geq 0\}$ be a nonlinear semigroup in a metric space (X,d) with the global attractor \mathcal{A} , and let (A,A^*) be an attractor-repeller pair in \mathcal{A} . Then, for any $\gamma > 0$ there exists a function $f: \mathcal{A} \to [0,1]$ satisfying the following:

- (i) $f: \mathcal{A} \to [0,1]$ is continuous in \mathcal{A} .
- (ii) $f: A \rightarrow [0,1]$ is non-increasing along solutions.
- (iii) $f^{-1}(0) = A$ and $f^{-1}(1) = A^*$.
- (iv) f(T(t)z) = f(z), for all $t \ge 0$, if and only if $z \in A \cup A^*$.

We now prove that the existence of a Morse decomposition implies the existence of a Lyapunov function

Proposition 5.3. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. If \mathbf{M}_{∞} is a Morse decomposition, then $\{T(t): t \geq 0\}$ is gradient in the sense of the Definition 5.1 with respect to \mathbf{M}_{∞} . In addition, the Lyapunov function $V: \mathcal{A} \to \mathbb{R}$ may be chosen in such a way that $V(x) = 1 - \frac{1}{2^{k-1}}$, for $x \in M_k$, $k \in \mathbb{N}$, V(x) = 1, for $x \in M_{\infty}$.

Proof. Let $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n \subset \ldots A$ be the sequence of local attractors given in Definition 3.10 and $\emptyset = A_{\infty}^* \subset \ldots A_n^* \subset \cdots \subset A_0^* = A$ their corresponding repellers such that for each $j \in \mathbb{N}$ we have $M_j = A_j \cap A_{j-1}^*$, and $M_{\infty} = \bigcap_{j=0}^{\infty} A_j^*$.

Let $f_j: X \to \mathbb{R}$ be the function from Proposition 5.2 for the attractor-repeller pair $(A_j, A_j^*), j \in \mathbb{N}$.

Define the function $V: \mathcal{A} \to \mathbb{R}$ by

$$V(z) := \sum_{j=1}^{\infty} \frac{1}{2^j} f_j(z), \ z \in \mathcal{A}.$$

Then $V: \mathcal{A} \to \mathbb{R}$ is a Lyapunov function for the generalized gradient semigroup $\{T(t): t \geq 0\}$ with respect to \mathbf{M}_{∞} .

Indeed, since each $f_j: \mathcal{A} \to \mathbb{R}, \ j \geq 1$, is non-increasing along solutions of $\{T(t): t \geq 0\}$, V is also non-increasing along solutions of $\{T(t): t \geq 0\}$.

Now, if $z \in \mathcal{A}$ is such that V(T(t)z) = V(z) for all $t \geq 0$, then, using that each $f_j, j \geq 0$, are non-increasing along solutions of $\{T(t) : t \geq 0\}$, we conclude that $f_j(T(t)z) = f_j(z)$ for all $t \geq 0$ and for each $j \in \mathbb{N}$. From part (iv) of Proposition 5.2, we have that $z \in (A_j \cup A_j^*)$, for each $j \in \mathbb{N}$; that is, $z \in \bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. From

Lemma 3.13 we have that

$$\bigcap_{j=0}^{\infty} (A_j \cup A_j^*) = (\bigcup_{j=1}^{\infty} M_j) \cup M_{\infty},$$

and so $z \in \bigcup_{j=1}^{\infty} M_j \cup M_{\infty}$.

If $k \in \mathbb{N}$ and $z \in M_k = A_k \cap A_{k-1}^*$, it follows that $z \in A_k \subset A_{k+1} \subset \cdots \subset A_{\infty} = \mathcal{A}$ and $z \in A_{k-1}^* \subset A_{k-2}^* \subset \cdots \subset A_0^* = \mathcal{A}$. Hence $f_j(z) = 0$ if $k \leq j$ and $f_j(z) = 1$ if $1 \leq j \leq k-1$. Hence,

$$V(z) = \sum_{j=1}^{\infty} f_j(z) = \sum_{j=1}^{k-1} f_j(z) + \sum_{j=k}^{\infty} f_j(z) = \sum_{j=1}^{k-1} \frac{1}{2^j} = 1 - \frac{1}{2^{k-1}}.$$

If $z \in M_{\infty}$, then $z \in \bigcap_{j=1}^{\infty} A_j^*$. Hence, $f_j(z) = 1$, for all $j \geq 1$, and then

$$V(z) = \sum_{j=1}^{\infty} \frac{1}{2^j} = 1.$$

Finally, we prove the continuity of V. Since $f_j(z) \in [0,1]$, for any $\varepsilon > 0$ there exists $N(\varepsilon) > 0$ such that

$$\sum_{j\geq N} \frac{1}{2^j} f_j(z) \leq \sum_{j\geq N} \frac{1}{2^j} \leq \varepsilon \text{ for all } z \in \mathcal{A}.$$

Then, as each f_j is continuous, it is standard to prove the continuity of V.

6. Dynamically gradient semigroups via a Lyapunov function. We now prove that the existence of an ordered Lyapunov function with respect to a family $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty} \text{ in } \mathcal{A} \text{ implies that the semigroup is generalized dynamically gradient and that (4.2) holds. Hence, together with the previous results we will obtain the equivalence of generalized dynamically gradient semigroups referred to <math>\mathbf{M}_{\infty}$ satisfying (4.2), the existence of an ordered Lyapunov function associated to \mathbf{M}_{∞} and the existence of a Morse decomposition of the global attractor.

As before, $\{T(t): t \geq 0\}$ is a semigroup with the global attractor \mathcal{A} and we consider a disjoint family of isolated sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$.

Definition 6.1. We say that \mathbf{M}_{∞} is ordered with respect to the generalized Lyapunov function V, or that V is an ordered Lyapunov function for \mathbf{M}_{∞} , if

$$L_1 \leq L_2 \leq \cdots \leq L_n \leq \cdots < L_{\infty}$$

where $L_j = V(z)$ for $z \in M_j$. Moreover, there cannot be an infinite number of sets M_j with the same value of V.

Remark 6.2. If $L_n \to L_\infty$, then the last condition in Definition 6.1 holds. Also, if (3.5) is satisfied, from the continuity of V it follows that $L_n \to L_\infty$.

Proposition 6.3. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V. Then for any complete bounded trajectory $\xi : \mathbb{R} \to X$,

- i) either there exists $i \in \mathbb{N}$ such that $\xi(t) \in M_i$, for all $t \in \mathbb{R}$,
- ii) or there exist $M_j, M_r \in \mathbf{M}_{\infty}$ with r > j such that

$$\lim_{t \to -\infty} d\left(\xi\left(t\right), M_r\right) = 0, \ \lim_{t \to +\infty} d\left(\xi\left(t\right), M_j\right) = 0.$$

Proof. Suppose that i) is not true. The function $t \mapsto V(\xi(t))$ is monotone. Since $\xi(t) \in \mathcal{A}$, it is also bounded. Hence, the following limits exist

$$L_{-} = \lim_{t \to -\infty} V\left(\xi\left(t\right)\right), \ L_{+} = \lim_{t \to +\infty} V\left(\xi\left(t\right)\right).$$

Thus,

$$V(y) = L_{-}$$
 for all $y \in \alpha(\xi)$,
 $V(y) = L_{+}$ for all $y \in \omega(\xi)$,

where $\alpha(\xi)$ is the alfa-limit set $\alpha(\xi) = \bigcap_{t \leq 0} \overline{\bigcup_{s \leq t} \xi(s)}$. It is well known that the sets $\omega(\xi)$, $\alpha(\xi)$ are invariant and connected (see e.g. [18]).

As $\omega(\xi)$ is invariant, for any $y \in \omega(\xi)$ and $t \geq 0$ we have that $T(t)y \in \omega(\xi)$, and then $V(y) = V(T(t)y) = L_+$. Thus, $y \in M_j$ for some $j \in \mathbb{N} \cup \infty$.

In fact, we shall prove that $\omega(\xi) \subset M_j$. By contradiction assume that there exists $z \in M_i \cap \omega(\xi)$, $i \neq j$. This is not possible if $j = \infty$, as in such a case we have that $L_i < L_+ = L_\infty$. Assume then that $j < \infty$. The number of sets M_i such that $L_i = L_+$ is finite. Denote by \widehat{E}_1 , ..., $\widehat{E}_m \in \mathbf{M}_\infty$ the sets such that $V(x) = L_+$ if $x \in \widehat{E}_k$ for some $k \in \{1, ..., m\}$. We can find $\varepsilon > 0$ for which $\mathcal{O}_{\varepsilon}\left(\widehat{E}_k\right) \cap \mathcal{O}_{\varepsilon}\left(\widehat{E}_r\right)$ for all $r \neq k \in \{1, ..., m\}$. Since $\omega(\xi)$ is connected, there exists $u \in \omega(\xi)$ such that $u \notin \bigcup_{k=1}^m \mathcal{O}_{\varepsilon}\left(\widehat{E}_k\right)$. But we have proved that any $u \in \omega(\xi)$ belongs to M_k for some $k \in \mathbb{N} \cup \infty$, and then $V(u) = L_+$ implies that $u \in \bigcup_{k=1}^m \mathcal{O}_{\varepsilon}\left(\widehat{E}_k\right)$, a contradiction.

Therefore, $\lim_{t\to+\infty} d(\xi(t), M_j) = 0$. Similarly, we prove $\alpha'(\xi) \subset M_r$ for some $r \in \mathbb{N} \cup \{\infty\}$. Hence, $\lim_{t\to-\infty} d(\xi(t), M_r) = 0$.

Since $L_- \geq L_+$, it is clear that $r \geq j$. As we are in the case where i) does not hold, the fact that if V is constant on a global solution $\xi(t)$ implies that it belongs to a fixed M_i prevents that r = j.

Corollary 6.4. Assume the conditions of Proposition 6.3. Then the sets M_j , $j \in \mathbb{N} \cup \infty$, are compact.

Proof. By Proposition 6.3 condition (3.2) is satisfied. Then the result follows from Lemma 4.4.

The existence of a Lyapunov function associated to an infinite number of invariant sets gives, as in the case of a finite number of invariants, a characterization of the global attractor as follows.

Proposition 6.5. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V. Then

$$\mathcal{A} = \bigcup_{i=1}^{\infty} W^{u}\left(M_{i}\right) \cup W^{u}\left(M_{\infty}\right).$$

Proof. If $x \in \mathcal{A}$, then x belongs to a bounded complete trajectory, so that Proposition 6.3 implies $x \in W^u(M_j)$ for some $j \in \mathbb{N} \cup \infty$. Thus, $\mathcal{A} \subset \bigcup_{j=1}^{\infty} W^u(M_j) \cup W^u(M_{\infty})$.

Conversely, let $x \in W^u(M_j)$ for some $j \in \mathbb{N} \cup \infty$. Since M_j is bounded, there exists t_0 such that $\bigcup_{t \leq t_0} \xi(t)$ is bounded, where $\xi(\cdot)$ is a complete trajectory satisfying $\lim_{t \to -\infty} d(\xi(t), M_j) = 0$. From the definition of a complete trajectory and the fact that T(t) is eventually dissipative (see Remark 1.6) it follows that $\bigcup_{t \geq t_0} \xi(t)$ is also bounded. Thus, $\xi(\cdot)$ is a bounded complete trajectory. But then $\xi(t) \in \mathcal{A}$ for all $t \in \mathbb{R}$. In particular, $x = \xi(0) \in \mathcal{A}$.

Note that Lemma 4.5 is also a consequence of the existence of a Lyapunov functional.

Proposition 6.6. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor \mathcal{A} and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V. Then (4.2) holds, that is, for any $j \in \mathbb{N}$ there exists δ_j such that

$$W^{u}(M_{j}) \cap \mathcal{O}_{\delta_{i}}(\bigcup_{i > j+1} M_{i} \cup M_{\infty}) = \varnothing.$$

Proof. We note that by Corollary 6.4 the sets M_j are compact for $j \in \mathbb{N} \cup \infty$.

First, let k_j be the first integer $k_j > j$ such that $L_{k_j} > L_j$. We shall prove the existence of δ'_j for which $W^u(M_j) \cap \mathcal{O}_{\delta'_j}(\cup_{i \geq k_j} M_i \cup M_\infty) = \varnothing$.

By contradiction assume the existence of $j \in \mathbb{N}$ and a sequence $x_n \in W^u(M_j)$ such that

$$d(x_n, \cup_{i \ge k_j} M_i \cup M_\infty) < \frac{1}{n}.$$

Then, there exists $y_n \in \bigcup_{i \geq k_j} M_i \cup M_{\infty}$ such that $d(x_n, y_n) < \frac{1}{n}$. Since $V(y_n) \geq L_{k_j} > L_j$, by the continuity of V there exist $n, \varepsilon > 0$ such that

$$V(x_n) \geq L_i + \varepsilon$$
.

But $x_n \in W^u(M_j)$ implies the existence of a bounded complete trajectory $\xi(t)$ such that $\xi(0) = x_n$ and

$$\lim_{t \to -\infty} d\left(\xi\left(t\right), M_{j}\right) = 0.$$

By the definition of V we have that $V(\xi(t)) \geq L_j + \varepsilon$ for $t \leq 0$. We take then sequences $t_m \to -\infty$, $z_m \in M_j$ for which

$$\lim_{t_m \to -\infty} d\left(\xi\left(t_m\right), z_m\right) = 0.$$

Since M_i is compact, we can assume that $z_m \to z_0$ and then

$$\lim_{t_m \to -\infty} d\left(\xi\left(t_m\right), z_0\right) = 0.$$

Again, by the continuity of V we have that $V(z_0) \ge L_j + \varepsilon$ and $V(z_0) = L_j$, which is a contradiction.

Further, considering a j for which $k_j - 1 > j$, we will check that there exists δ_j'' such that $W^u(M_j) \cap \mathcal{O}_{\delta_j''}(\bigcup_{i=j+1}^{k_j-1} M_i) = \emptyset$. If not, then arguing as before we obtain sequences $x_n \in W^u(M_j)$, $y_n \in \bigcup_{i=j+1}^{k_j-1} M_i$ such that $d(x_n, y_n) < \frac{1}{n}$. We can assume passing to a subsequence that $y_n \in M_k$ for all n and some $k \in \{j+1, ..., k_j-1\}$. We take a bounded complete trajectory $\xi_n(t)$ such that $\xi_n(0) = x_n$ and

$$\lim_{t \to -\infty} d\left(\xi_n\left(t\right), M_j\right) = 0.$$

We choose $\varepsilon > 0$ satisfying

$$\mathcal{O}_{\varepsilon}(M_r) \cap \mathcal{O}_{\varepsilon}(M_i) = \emptyset \text{ for all } r, i \in \{j, ..., k_j - 1\},$$

and take n for which $\frac{1}{n} < \varepsilon$. Then $x_n \in O_{\varepsilon}(M_k)$. Since $t \mapsto \xi_n(t)$ is continuous, it follows the existence of $t_n > 0$ such that

$$d(\xi_n(-t_n), M_k) = \varepsilon,$$

$$d(\xi_n(t), M_k) < \varepsilon \text{ for all } t \in (-t_n, 0].$$

We define the functions $\overline{\xi}_n(t) = \xi_n(t - t_n)$. Then $d(\overline{\xi}_n(0), M_k) = \varepsilon$ and $\overline{\xi}_n(t_n) = x_n$. There exists a complete trajectory $\overline{\xi}(\cdot)$ (see [7, Lemma 3.1]) such that up to a subsequence $\overline{\xi}_n(t) \to \overline{\xi}(t)$ for all $t \in \mathbb{R}$. We note that

$$V(\overline{\xi}_n(t)) \leq L_j \text{ for all } t \in \mathbb{R},$$

and then by the continuity of V,

$$V(\overline{\xi}(t)) \leq L_j \text{ for all } t \in \mathbb{R}.$$

We note that $t_n \to +\infty$. Otherwise, if $t_n \to t_0$, then as M_k is compact, we have $\overline{\xi}(t_0) = \lim_{n \to \infty} x_n = x \in M_k$, so that $V(\overline{\xi}(t_0)) = L_j$. Hence,

$$V(\overline{\xi}(t) \ge V(\overline{\xi}(t_0)) = L_j \text{ for all } t \le t_0.$$

By the last two inequalities, we have that $V(\overline{\xi}(t)) = L_j$ for all $0 \le t \le t_0$. Also, $\overline{\xi}(t) = T(t - t_0)\overline{\xi}(t_0)$ if $t \ge t_0$, so that $V(\overline{\xi}(t)) = L_j$ for all $t \ge t_0$ as well. From the definition of the Lyapunov function, we obtain that $\overline{\xi}(0) \in M_k$. But $d(\overline{\xi}_n(0), M_k) = \varepsilon$ and $\overline{\xi}_n(0) \to \overline{\xi}(0)$ imply that $d(\overline{\xi}(0), M_k) = \varepsilon$, a contradiction.

Hence, it is clear that

$$d(\overline{\xi}(t), M_k) \leq \varepsilon \text{ for any } t \geq 0.$$

On the other hand,

$$V(x_n) = V(\overline{\xi}_n(t_n)) \le V(\overline{\xi}_n(t)) \le L_j \text{ for any } 0 \le t \le t_n.$$

Since $x_n \to x \in M_k$, the continuity of V implies that $V(x_n) \to V(x) = L_j$ and $V(\overline{\xi}_n(t)) \to V(\overline{\xi}(t))$. Thus,

$$V\left(\overline{\xi}\left(t\right)\right) = L_{j} \text{ for all } t \geq 0.$$

From the definition of a Lyapunov function, we have that $\overline{\xi}(t) \in M_k$ for any $t \ge 0$. This is a contradiction, as $d(\overline{\xi}_n(0), M_k) = \varepsilon$ and $\overline{\xi}_n(0) \to \overline{\xi}(0)$.

Taking
$$\mathcal{O}_{\delta_j} = \mathcal{O}_{\delta'_j} \cup \mathcal{O}_{\delta''_j}$$
 we obtain the required result.

We can now conclude our main theorem.

Theorem 6.7. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor \mathcal{A} and consider a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. Then, the following conditions are equivalent:

- 1. $\{T(t): t \geq 0\}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} in the sense of the Definition 5.1 and \mathbf{M}_{∞} is ordered with respect to the respective Lyapunov function.
- 2. $\{T(t): t \geq 0\}$ is a generalized dynamically gradient semigroup with respect to \mathbf{M}_{∞} (as in Definition 3.4) satisfying (4.2).
- 3. \mathbf{M}_{∞} is a Morse decomposition of \mathcal{A} .

Proof. It is a straightforward consequence of Theorem 4.8 and Propositions 5.3, 6.3 and 6.6. \Box

Corollary 6.8. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor \mathcal{A} and consider a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in \mathcal{A} such that M_j are isolated for $j \in \mathbb{N}$. Assume that \mathbf{M}_{∞} is a Morse decomposition of \mathcal{A} . Then

$$\mathcal{A} = \bigcup_{i=1}^{\infty} W^{u}\left(M_{i}\right) \cup W^{u}\left(M_{\infty}\right).$$

Proof. In view of Theorem 6.7, $\{T(t): t \geq 0\}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} in the sense of the Definition 5.1 and \mathbf{M}_{∞} is ordered with respect to the Lyapunov function. Hence, the result follows from Proposition 6.5.

Acknowledgement. We would like to thank the referees for their helpful comments and suggestions which allowed us to improve the presentation of the paper.

REFERENCES

- [1] Aragão-Costa, E.R., Caraballo, T., Carvalho, A.N., & Langa, J.A., Stability of gradient semigroups under perturbation, *Nonlinearity*, **24** (2011), 2099–2117.
- [2] Aragão-Costa, E.R., Caraballo, T., Carvalho, A.N., & Langa, J.A., Continuity of Lyapunov functions and of energy level for a generalized gradient system, *Topological Methods Nonl.* Anal., 39 (2012), 57–82.
- [3] J. M. Arrieta, A. Rodríguez-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity, *Internat. J. Bifur. Chaos Appl. Sci. Engrg.*, 16 (10) (2006), 2695-2984.
- [4] A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations Studies in Mathematics and its Applications 25, North-Holland Publishing Co., Amsterdam (1992).
- [5] A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646–2668.
- [6] Carvalho, A.N., Langa, J.A., & Robinson, J.C., Attractors for infinite-dimensional nonautonomous dynamical systems, Applied Mathematical Series 182, Springer, New York (2013).
- [7] A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570–603.
- [8] C. Conley, *Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I. (1978).
- [9] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number 25 (American Mathematical Society, Providence, RI) (1988).
- [10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, (1981).
- [11] M. Hurley, Chain recurrence, semiflows and gradients, J. Dyn. Diff. Equations, 7 (1995), 437–456.

- [12] O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge (1991).
- [13] D.E. Norton, The fundamental theorem of dynamical systems, Comment. Math., Univ. Carolinae, 36 (3) (1995), 585–597.
- [14] M. Patrao, Morse decomposition of semiflows on topological spaces, J. Dyn. Diff. Equations, 19 (1) (2007), 181–198.
- [15] M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (1) (2007), 155–180.
- [16] Robinson, J.C., Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge, England (2001).
- [17] K. P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag (1987).
- [18] Sell, G.R. & You, Y., Dynamics of evolutionary equations. Applied Mathematical Sciences Vol. 143, Springer-Verlag, New York (2002).
- [19] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin (1988; second edition 1996).
- [20] Vishik, M.I., Asymptotic behaviour of solutions of evolutionary equations, Cambridge University Press, Cambridge, England (1992).

E-mail address, T. Caraballo: caraball@us.es

E-mail address, J.C. Jara: jcjara@us.es

E-mail address, J.A. Langa: langa@us.es

E-mail address, J. Valero: jvalero@umh.es