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ABSTRACT 

The characterization of the fabrication process to develop free-standing SU-8 structures 

integrated in PCBMEMS (Printing Circuit Board in Microelectromechanical Systems) 

technology is presented. SU-8 microcantilevers, microbridges, microchannels and 

micromembranes have been fabricated following the described procedure. Adherence between 

FR4 substrate and SU-8 has been studied using the destructive blister method, determining the 

surface energy. Residual thermal stress has also been analyzed for this integration and compared 

when using other substrates. Moreover, a study of the copper wet etching with cupric chloride 

has been performed in order to characterize how this isotropic etching affects the geometry of 

the copper structures. Finally, stiction has been observed and examined, determining the 

adhesion energy responsible of this effect. 

 

I. INTRODUCTION 

During the last decade, the fabrication of microstructures employing alternative 

technologies to silicon and innovative processes has rapidly increased in the field of 

microelectromechanical systems (MEMS). In this respect, polymer technology has made 

possible to overcome most of the high costs and restrictions related to traditional silicon 

manufacturing processes.  

Specifically, SU-8 is an epoxy-based negative photoresist which can be patterned using 

standard mask photolithography, offering a simple alternative for rapid prototyping [1]. Another 

technology that is becoming important in microfabrication area is PCBMEMS, which involves 

mailto:perdi@gte.esi.us.es
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electronic, mechanical and fluidic components by adding some new steps in common PCB 

fabrication [2]. The main advantage lies in its low cost, robustness and high integration, making 

the fabrication of complex microdevices possible by the combination of a few PCB layers and 

simple processes. 

By the integration of both SU-8 and PCBMEMS technologies, it is possible to develop 

many structures in a wide range of applications, without using expensive clean room facilities or 

special equipment. Several authors have proposed different contributions to this area, coating 

SU-8 over PCBs for encapsulating microchips [3], as planarization layers [4] and also for 

microchannel manufacturing [5]. Another remarkable application is the use of conductive SU-8 

[6] or ferromagnetic SU-8 [7], making possible an electronic integration of SU-8 and 

PCBMEMS. 

Leïchlé et al [8] reported a resonant micromachined compass using the PCB copper as a 

sacrificial layer to fabricate a free-standing SU-8 structure, providing new possibilities towards 

the simple and rapid processing of micromechanical components. Although thermally 

decomposable polymers, metal layers (Au, Ti or Cr) [9] or positive-tone-photoresist [10] have 

been mainly chosen as sacrificial materials, the copper from a commercially standard PCB 

presents some advantages when compared with those alternatives. 

Copper can be directly patterned in the substrate by photolithography so deposition steps 

are not required. Furthermore, SU-8 processing temperatures or the solvents required for 

developing have no effect on the copper properties and vice versa: the SU-8 keeps its 

mechanical properties unaffected during the wet etching step when removing the sacrificial 

copper layer. This fabrication process allows the rapid and inexpensive manufacturing of free-

standing microstructures in a large scale of integration by means of a unique SU-8 deposition, 

without using expensive facilities such as laser or RIE systems. 

In this paper, the characterization of the integration of free-standing SU-8 microstructures 

in PCBMEMS is analyzed and presented. Adherence between SU-8 and PCB substrate, residual 

thermal stress, stiction and copper wet etching effects on SU-8 are studied in order to achieve a 
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successful integration of both technologies. Microcantilevers, microbridges, microchannels and 

other structures have successfully been fabricated following the described procedure. 

 

II. FABRICATION PROCESS 

In this section, a microcantilever process flow is detailed to illustrate a simple structure 

fabrication by applying the technology characterized in this paper. The fabrication process is 

easy to be carried out in a few steps and integrates inexpensive materials like PCB and SU-8, as 

is shown in Fig. 1. 

Following the PCBMEMS technology, a conventional single-sided copper-plated rigid 

material, flame retardant 4 (FR4) is used as a substrate. The thickness of the FR4 and the copper 

layer are selectable (18-105 µm for the copper and 100-1500 µm for the FR4), choosing 

commercially standard thicknesses of 70 µm and 1500 µm, respectively. The copper is coated 

with a few micrometers positive photoresist layer, making its photolithographic process 

possible. 

The fabrication process starts when photolithography is applied on the top side of the 

PCB, Fig. 1(a), in order to determine the sacrificial areas where the cantilever will be released 

and the areas where it will be anchored to the FR4 substrate. After UV light exposure with 

mask-1 for 2.5 min, the exposed areas are etched using cupric chloride. The remaining 

photoresist is then stripped with acetone and the PCB air-dried, Fig. 1(b). 

The next step is the deposition of an SU-8 layer over the PCB, Fig. 1(c), using a spin 

coater SMA AC 6000 (supplied by SMA Inc.). To obtain thin SU-8 depositions, negative 

photoresist SU-8 2025 (Microchem) is used, achieving a SU-8 layer with a thickness of 100 µm. 

In the PCB areas where sacrificial copper is under the deposited SU-8, the thickness of the resist 

layer is 30 µm from copper. Deposition details are studied and discussed in detail in section III. 

In the next step, the SU-8 is soft baked at 65 ºC for 5 min and at 95 ºC for 60 min on a 

hotplate. When the resist is cured and cooled down at room temperature for 10 min, a mask with 

the cantilever pattern is used for lithography (mask-2). This mask must be aligned with the 

sacrificial copper area in order to obtain a cantilever with one end anchored to the substrate. 
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SU-8 is then exposed to UV light with mask-2 for 2 min, Fig. 1(d). Then, a post exposure 

bake step (PEB) is performed at 65 ºC for 5 min and 95 ºC for 10 min on a hotplate in order to 

crosslink the resist. After 10 min at room temperature the following stage is to immerse the 

board in the Mr600 developer (Microchem) for 5 min. Then the patterned SU-8 is rinsed in 

isopropyl alcohol (IPA).  

In Fig. 1 (e) the resulting SU-8 structure after development can be seen. It is important to 

highlight that the SU-8 layer is flat over the whole board. The SU-8 is in contact with the 

substrate in the left side of the copper, whereas the rest of the cantilever is separated 70 µm over 

the substrate.  

Finally, in step (f) sacrificial copper is etched using cupric chloride, being removed from 

beneath the SU-8 and leaving the structure released. No SU-8 degradation is observed thorough 

the complete etching process. After this, the board is immersed in DI water to remove the 

etchant completely. Copper wet etching steps will be discussed in depth in section VI. 

SU-8 microcantilevers are illustrated in Fig. 2 before and after the copper sacrificial layer 

etching step. The cantilevers present a length of 400 µm, a width of 50 µm and a thickness of 30 

µm. The thickness of the copper layer (70 µm) provides enough distance between the 

cantilevers and the FR4 substrate, which could be easily adjusted by selecting a PCB with a 

thicker or thinner copper layer. 

In order to confirm the potential of this technology, several structures were fabricated 

following the described fabrication process, as is shown in Fig. 3. The thickness of the SU-8 

free-standing layer for all of them was 30 µm. In Fig. 3(a), a microbridge with a length of 500 

µm and a width of 100 µm is illustrated after copper removal from beneath. A free-standing 

double-clamped serpentine spring with a minimum cross-section of 50 µm × 30 µm is also 

illustrated in Fig. 3(b), with a length of 2 mm and a width of 800 µm. 

In Fig. 3(c), a free-standing membrane is shown with a radius of 250 µm. The external 

radius where the structure was held by means of four suspensions was 450 µm. The suspensions 

presented a width of 50 µm. Finally, a circular geometry microstructure with concentric SU-8 
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rings is shown in Fig. 3(d). Four cylindrical columns with diameters of 200 µm hold the 

structure. The rings presented a width of 100 µm, with an external ring radius of 800 µm. 

 

III. SU-8 DEPOSITION ON FR4 

The first issue to consider is the SU-8 2025 deposition on the FR4 substrate. The 

thickness of this layer depends on the spinning speed, the time being spun and the SU-8 

viscosity. Experimental tests were performed at different spinning speeds for 60 seconds and the 

results compared with the SU-8 deposition thicknesses on silicon substrate (Microchem), as is 

shown in table 1. 

Table 1. SU-8 2025 layer thickness over FR4 and silicon as a function of the spin speed. The 

reported thickness presented a deviation of 5%.  

R.P.M. 700 1000 1500 2500 

Thickness over FR4 (µm) 100 75 50 25 

Thickness over Si (µm) 100 80 60 35 

 

According to these results, the SU-8 deposition thickness over FR4 and silicon substrate 

are similar. Following the microcantilever fabrication process reported in section II, the spin 

speed selected to achieve a SU-8 layer on FR4 with a thickness of 100 µm was 700 rpm for 60 

s. 

Another issue is to achieve a reasonable flatness of the deposition when the copper has 

been patterned and the board surface is not completely flat. This problem can be overcome if the 

design thickness of the SU-8 layer is sufficiently larger than the thickness of the sacrificial 

copper, and when the substrate area is large enough compared with sacrificial copper area. 

 

IV. ADHERENCE 

In this section the adhesion between SU-8 and FR4 is discussed. Low values for the 

surface energy between both materials could cause delaminations, making impossible a correct 

device fabrication. To determine the surface energy, γ1, a destructive blister test [11] is 
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performed with the set up illustrated in Fig. 4. The specimen used for this test consists on a 

drilled FR4 with a thin SU-8 2025 layer spin coated over it. 

When a pressure is applied through the FR4, the SU-8 membrane over it will deform 

under the exerted pressure while the rest of the membrane is fixed to the substrate. When a 

critical pressure P is reached, a crack will propagate through the bond interface, assuming the 

bond surface energy weaker than the FR4 fracture energy. The crack travels through the 

interface until the membrane bursts under the exerted pressure, which has the same value than 

the critical pressure due to the crack fast propagation. 

From the burst pressure P, the surface energy of the bond between SU-8 and FR4 can be 

determined by the expression: 

4 2
2

1 3

3 (1 )

32

a
P

t E







  (1) 

 

Where a is the blister radius, t is the membrane thickness, P is the critical pressure, υ is 

the SU-8 Poisson coefficient and E its Young modulus.  

Several tests were performed with a SU-8 deposition thickness t=80 µm and a fixed radius 

a=1250 µm for the FR4 inlet hole. A compressed air supply with a pressure transducer is 

connected to the hole, and the inlet pressure increased until a failure of the bond interface is 

achieved with the corresponding membrane crack. Table 2 summarizes the surface energy 

between SU-8 and FR4 calculated with the expression (1) for each inlet pressure required to 

crack during experimental tests. 

Table 2. Surface energy between SU-8 and FR4 resulting from blister tests. 

Test # 1 2 3 4 5 

P (MPa) 0.200 0.205 0.225 0.210 0.200 

γ (J/m2) 1.231 1.293 1.558 1.357 1.231 

µγ = 1.334 J/m2 σγ = 0.136 J/m2 

 

These experimental tests provided an average surface energy µγ of 1.334 J/m2 with a 

standard deviation σγ of 0.136 J/m2, according to the described fabrication conditions. This 

value is larger than the surface energy of SU-8-to-PDMS [12] and the SiO2-SU-8-pyrex bonded 
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wafers [13], 0.047 J/m2 and 0.5 J/m2 respectively, and comparable to Silicon-to-Pyrex glass 

bonding surface energy, 1.3 J/m2 [14]. 

 

V. RESIDUAL THERMAL STRESS 

The residual stress during fabrication must also be evaluated. This stress appears due to 

the different values of the coefficient of thermal expansion (CTE) between SU-8 and the used 

substrate. The expression to determine this value is [15]: 

 

  8
8 4 0

8

( )
1

SU
th SU FR PEB

SU

E
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  (2) 

 

Where α is the CTE of the corresponding material, υ and E are the SU-8 Poisson ratio and 

Young modulus respectively, TPEB is the PEB temperature and T0 is the room temperature. 

For a given TPEB, as the difference for the CTE values is higher, the residual stress 

between both materials increases. With a CTE about 13 ppm/K for the FR4 and 52 ppm/K for 

the SU-8, the residual stress between both materials results in 13.4 MPa under fabrication 

conditions. Therefore, the residual thermal stress is lower than the corresponding value for 

silicon under the same PEB temperature (CTE of 3 ppm/K), or pyrex (CTE of 3.2 ppm/K). 

However, the residual stress can be controlled by reducing the PEB temperature as is shown in 

(2), but the baking times must be increased. 

 

VI. COOPER WET ETCHING 

Another issue in the fabrication process is the use of cupric chloride to remove the copper 

during patterning wet etching and sacrificial wet etching steps. The cupric chloride attacks the 

copper isotropically, so the geometry of the copper areas after the patterning etching procedure 

will be affected. 

To illustrate this issue, microchannels were fabricated by burying copper lines with SU-8 

and leaving a side open to allow the etchant to remove the sacrificial copper. The copper line 

cross-section was 200 µm × 70 µm, however the shape achieved after patterning wet etching 
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step is illustrated in Fig. 5(a). This photograph clearly shows the isotropic etching effect on both 

edges of the copper line, changing its cross-section. This result must be taken into account, 

because the cross-section of the microchannel after sacrificial etching will be determined by the 

cross-section of the copper line previously patterned, as is shown in Fig. 5(b). 

The time required to etch a given length of the sacrificial copper to create the 

microchannel was measured and illustrated in Fig. 6. This curve is also compared with a similar 

microchannel fabricated in a PCB with a 35 µm copper line (cross-section of 200 × 35 µm), in 

order to determine the fastest copper etching rate. The length of the etched copper was shorter 

for the microchannel where a smaller section made the etching action more difficult, resulting in 

a higher etching rate for the 70 µm copper line. 

The etching time for the free-standing fabricated structures reported in section II 

depended on the holes and cavities patterned on the SU-8 structure over the copper layer, which 

allow the contact between the sacrificial copper and the etchant through the SU-8. However, the 

etching time reported was always less than 25 minutes, with a maximum copper etching rate of 

3 µm/min.  

The presence of cupric chloride during sacrificial wet etching step did not cause damage 

in the SU-8 structure or changed the SU-8 mechanical properties during the experiments. 

 

VII. STICTION 

A typical problem of the wet etching process is the stiction, which causes that fabricated 

structures stick on the substrate from a critical length due to the smoothness of the surface [16]. 

In this section, the stiction effect between the free-standing SU-8 structures and the FR4 

substrate is studied and the adhesion energy determined. The process to obtain this value 

consists on fabricating several cantilevers with different lengths so that the critical length is 

evaluated, and the adhesion energy, γ2 is obtained using the expression (3): 

 
3 2

2 4

3

8 crit

Et g

l
   (3) 
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Where E is the SU-8 Young modulus, t is the thickness of the cantilever, g is the gap 

between cantilever and substrate, and lcrit is the critical length when the stiction appears. This 

phenomenon is observed for cantilevers with lengths from 1900 µm and thicknesses of 30 µm, 

where the determined adhesion energy is 16.75 ± 0.35 mJ/m2. This value is lower than the 

minimum one reported for silicon substrate with H2O as liquid, 50 mJ/m2 [17]. 

 

VIII. CONCLUSION 

The characterization of the fabrication process which integrates free-standing SU-8 

structures in PCBMEMS technology has been presented. SU-8 microstructures were fabricated 

following the manufacturing steps in order to analyze the different aspects involved in the 

process. Deposition details and adherence between SU-8 and FR4 substrate, residual thermal 

stress, copper wet etching effects on SU-8 and stiction are studied to achieve a successful 

integration of both technologies. 

A blister test was carried out to determine the surface energy between SU-8 and FR4, 

resulting a high value of 1.334 J/m2. A theoretical study of thermal stress was also performed, 

providing a low residual stress about 13.4 MPa. Cupric chloride did not damage the SU-8 

during sacrificial etching step, however the previous patterning wet etching isotropically 

changed the copper geometry. Stiction was also studied in a group of cantilevers, resulting an 

adhesion energy of 16.75 mJ/m2. With this value, the free-standing structures critical length 

with different gaps and thicknesses can be estimated.  

These characterized parameters have demonstrated that the integration of SU-8 and 

PCBMEMS technologies allows the simple and rapid fabrication of robust and inexpensive 

microdevices. Finally, the presented work could serve as a first step towards the fabrication of 

SU-8/PCB hydrid devices. 
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