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Abstract—In this abstract we extend ideas and results submit-
ted to [3] in which a new codification of Local Binary Patterns
(LBP) is given using combinatorial maps and a method for
obtaining a representative LBP image is developed based on
merging regions and Minimum Contrast Algorithm. The LBP
code characterizes the topological category (max, min, slope,
saddle) of the 2D gray level landscape around the center region.
We extend the result studying how to merge non-singular slopes
with one of its neighbors and how to extend the results to non-
well formed images/maps. Some ideas related to robust LBP and
isolines are also given in last section.
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I. LBP CODES AND COMBINATORIAL MAPS

Given a grayscale digital image I , the local-binary-pattern
codification of I , LBP (I) [8], [9] is a grayscale digital image
(LBP codes) used to represent the texture element at each pixel
in I .

In this paper, for computing LBP codification, the 4 neigh-
bors (on its top, bottom, right, left) of each pixel are considered
for comparison. Where the center pixel’s gray value is smaller
than the neighbor’s gray value, write 1. Otherwise, write 0.
Example:

113 240 23
20 25 12
15 30 40

⇒
1

0 25 0
1

⇒ 0101 ⇒ 9

A combinatorial map in two dimensions (shortly cal led
2−maps) [1], [7] consists of the triplet G = (D, σ, α), where
D is a set called the set of darts and σ, α are two permutations
defined on D such that α is an involution: ∀d ∈ D α2(d) =
d. The composition σα is denoted by ϕ. Each dart d ∈ D
defines a region by the orbit1 of ϕ:

ϕ∗(d) = {ϕ(d), ϕ2(d), . . . , ϕn(d) = d}.

The vertices of the region are given by the set σ∗(d). Two
regions ϕ∗(d1) and ϕ∗(d2) 6= ϕ∗(d1) are direct neighbors if
their orbits have a non-empty intersection:

ϕ∗(d1) ∩ ϕ∗(d2) 6= ∅.
1sequence of darts

They are corner neighbors if they are not direct neighbors but
there exist d′i ∈ ϕ∗(di), i = 1, 2 such that d′2 ∈ σ∗(d′1).

Two basic operations, edge removal and edge contraction
can simplify the potentially huge2 2−map to obtain a simpler
subdivision of the object in terms of darts (for details see [5],
[1]). A combinatorial pyramid [2] is a stack of 2−maps created
by successive removal and contraction operations.

In our case, pixels are considered unit-square regions.
2−maps are computed for these regions. The intensity of a
pixel/region p is denoted by g(p). For each dart d, we assign
a binary value `(d) ∈ {0, 1} which coincides with the LBP
condition. That is, suppose dart d starts at the center pixel p
and is α−related to a neighbor pixel n (i.e., n is a direct
neighbor of p). If the center pixel’s gray value is smaller
than the neighbor’s gray value, then `(d) = 1. Otherwise,
`(d) = 0. For a sequence of darts S = (d1d2d3 . . .), we
denote by `(S) the corresponding sequence of binary labels
`(S) = (`(d1)`(d2)`(d3) . . .).

The LBP code characterizes the topological category of
the gray level landscape around the center region without
referring to the original gray values. A region ϕ∗(dr) is a local
maximum if the LBP code `ϕ(d) = 0∀d ∈ ϕ∗(dr) contains just
0s. A local minimum produces an LBP code with just 1s. A
region ϕ∗(d) is a plateau if it is direct neighbor to another
region with same gray value, i.e., if there exists d′ ∈ ϕ∗(d)
such that `(d) = `α(d) = 1. A region ϕ∗(d) is a slope if
it contains exactly one connected component of 1s and one
connected component of 0s in the closed path of LBP bits
around the region, (11 . . . 100 . . .). Otherwise it is a saddle. In
particular, we say that a slope is singular if `(ϕ∗(d)) contains
exactly one 1 or one 0. It is double-singular if its LBP code
is exactly 01 or 10.

Minimum Contrast Algorithm. In [3], the Minimum Contrast
Algorithm for reconstructing a representative image R from its
LBP code [11], is translated in terms of 2−maps (see Fig. 1).
Although R may be quite different from the original image,
it generates identical LBP codes. The top image overlays
the reconstructed representative image with some monotonic
increasing paths (in red) that are the basis for the reconstruc-
tion. Since the contrast between successive pixels along these

2An n×m image needs nearly 4nm darts
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paths must be at least one the reconstructed gray value of a
pixel corresponds to the longest monotonic path to to a local
minimum (marked by a green dot) which is set to zero.

Fig. 1. Top: the original image. Center: reconstructed image. Bottom:
Minimum pixels (dots) and monotonic ascending paths (lines).

Merging regions. Our final aim is to obtain a reconstructed
image R and a structure consisting only of local minima, local
maxima, saddles and the respective adjacency relationships
(similar to Reeb graphs [10]).

In [3], a process to merge plateaus and singular slope in
terms of 2− maps is given. Multiple edges are also merged via
the contraction operation. After applying the merging process
described in [3] on the top of the pyramid we have: vertices

of degree 3 or 4, non-singular slopes, double-singular slopes,
maxima, minima and saddles. We do not have: multiple edges
(vertices of degree 2), singular slopes nor plateaus. See Fig. I
in which the green region is a double-singular slope.

Fig. 2. At the top, the original image. The two pictures on the bottom are
an illustration of the five regions obtained on the top level of the pyramid.

Our further aim here is to study how to merge the rest of
the slopes with one of its neighbors.

II. TO BE OR NOT TO BE: WELL-COMPOSED IMAGES

A 2D image is well-composed [6] if it (or its complement)
does not contain the following configuration:

a b
c d

where g(a) < g(b), g(a) < g(c), g(d) < g(b) and g(d) < g(c).
For example, the following block of 2×2 pixels cannot be part
of a well-composed image:

12 117
191 14



The notion of well-composed configurations can be extended
to regions.

Lemma 1: [3] If the image is well-composed and there
are no plateaus, then 4− and 8−connectivity LBP provide
pixels/regions with equivalent topological categories (i.e. same
pixels/regions are labeled with max, min, slopes or saddles
from both).

In order to merge slopes, our strategy could be to merge
regions with minimum (resp. greatest) intensity value around
a minimum (resp. maximum). Nevertheless, we have the
following result.

Lemma 2: Let dm be a dart in a region m. Let ϕ∗(dm)
be the surrounding darts. N(m) = ϕ∗(σ∗(ϕ∗(dm))) \ϕ∗(dm)
form a closed cycle of regions surrounding m, and consist of
all the direct and corner neighbors of m. Consider the pyramid
obtained after merging plateaus, singular slopes and multiple
edges. Let m be a minimum (resp. maximum) and let n be
a region with minimum (resp. maximum) intensity value in
N(m).

• If n is a direct neighbor of m and |ϕ∗(dn)| > 2 then
n is a saddle.

• If the image is well-composed then n cannot be a
corner neighbor of n.

Proof: To prove the result, suppose m is a minimum
and n a direct neighbor of m. Observe that n cannot be a
minimum nor a maximum if there are other regions in N(m).
Since n is a region with minimum intensity value in N(m)
and |ϕ∗(dn)| > 2 then the sequence 101 appears in the LBP
code of n. Observe that |ϕ∗(dn)| > 3, otherwise n would be a
singular slope which is not possible. For the same reason (n is
not a singular slope), LBP code of n should contain more than
one 0. Therefore, n is a saddle. If n is a corner neighbor of m
then a non-well formed configuration appears on the corner.

In the following result we show a special case in which a
slope can be merged with one of its direct neighbors.

Lemma 3: Consider the pyramid obtained after merging
plateaus, singular slopes and multiple edges. Let a = ϕ∗(d)
be a (non double-singular) slope. Let b = ϕ∗(α(d)) (i.e., b is
a direct neighbor of a). If

• `(d) = 0, (resp. `(d) = 1),

• g(b) > max{g(n) : n is a direct neighbor of a and
g(a) > g(n)} (resp. g(b) < min{g(n) : n is a direct
neighbor of a and g(a) < g(n)})

• and (`σ(d), `σα(d)) = (0, 1) or
(`σ−1(d), `σ−1α(d)) = (0, 1)

then a can be merged with b and the new region a∪ b has the
same topological category and intensity value than b.

Proof: Suppose that `(d) = 0 and (`σ(d), `σα(d)) =
(0, 1). This means that g(a) > g(b). The code of the new
region consists of replacing the bit `α(d) = 1 in the LBP
code of b by the string 0 . . . 01 . . . 1 (see Fig.II.bottom). Since
g(b) > max{g(n) : n is a direct neighbor of a and g(a) >
g(n)} then the code of the merged region is in fact its LBP

code. Finally, since `σα(d) = 1, then the bit `α(d) = 1 in
the LBP code of b is preceded by 0 therefore, the topological
category of the new region is the same than that of b.

Fig. 3. Top: Illustration of condition (`σ(d), `σα(d)), `σα(d)) = (0, 1).
Bottom: Illustration of condition (`σ−1(d), `σ−1α(d)) = (0, 1).

Non-well-composed Images. If the image is not well-
composed, the idea is to detect the 2×2 blocks corresponding
to saddles on the dual graph.

Lemma 4: Merging pixels in a non-well-composed config-
uration changes one of their topological categories.

Proof: Suppose we detect a non-well-composed configu-
ration, i.e., a 2× 2 block:

a b
c d

such that g(a) < g(b), g(a) < g(c), g(d) < g(b) and g(d) <
g(c). Suppose the LBP code of b is 0000 (i.e. b is a maximum).
Suppose a is a slope. If b merges with a, the new region cannot
be a maximum since the code of the new region contains at
least one 1 (the one that comes from the inequality g(c) <
g(a). Although the merged region can be a slope it destroys
the maximum b. Two adjacent regions cannot be both slopes.
And none of the four regions can be a saddle since the two
adjacent regions have both either a larger or a smaller gray
value. Other cases are similar.

Therefore, if the image is not well-composed then slopes
can survive, after merging-slope process, until the top of the
pyramid.

In order to avoid this, the idea is to replace vertex v shared
by the four pixels a, b, c, d by a new region r with a new gray
scale value g(r) reflecting the relations between a, b, c, d:

Without loss of generality, we can suppose that g(a) ≤
g(d) < g(b) ≤ g(c). Following cases can occur:

1) g(a) = g(d) < g(b) = g(c) (resp. g(a) <
g(d) < g(b) < g(c)). In this case, the vertex v



represents a saddle. Set g(r) = g(d)+g(b)
2 . We have

that g(a) = g(d) < g(b)+g(d)
2 < g(b) = g(c) (resp.

g(a) < g(d) < g(b)+g(d)
2 < g(b) < g(c)). Therefore,

the LBP code of r is 0101 which is a saddle and
all three new vertices have degree 3 and, hence, are
well-composed.

2) g(a) = g(d) < g(b) < g(c) (resp. g(a) < g(d) <
g(b) = g(c)). Set g(r) = g(d) (reps. g(r) = g(b)).
In our process, regions g(a) = g(r) = g(d) (resp.
g(b) = g(r) = g(c)) form a plateau.

III. ROBUST LBP AND ISOLINES

In this last section we would like to address a few issues
related to the above research that will be part of our future
research.

Since we know the contrast |gmax − gmin| between end
points of monotonic paths in the original image and in the
minimum contrast representative image (=length of monotonic
path), the average step along a path measures by how much
we have to change a gray value along this path in order to
change the LBP output. An average contrast of 1 would make
the result extremely sensible to small changes, either creating
a new plateau or a new critical point. The result could be made
more robust by simply merging instable sub-configurations
(e.g. darts with low contrast, similar to robust local binary
pattern, RLBP).

Another idea concerns isolines (also called level sets,
curves of constant height) emanating from saddle points:
isolines can split and merge only at saddle points. Hence
multiple splits and merges can occur only in degenerated cases
where saddles have identical height (’all distinct critical points
must have different function values’, Morse theory). Hence
a non-degenerate saddle of degree 4 must create two iso-
cycles both surrounding either the neighbor’s max or min. If
the cycles surround a max then the two min regions are a
single connected region since you can walk around the two
max keeping one hand on the isoline. However we may find
degenerated cases in our discrete data. Does this happen in
our data? A way to solve such discretization problems [4] is
to slightly incline the heights of such critical points from one
side of the domain to the other such that the difference is
always less than 1, i.e. adding i/m to each pixel (i, j).

If isolines/level sets through a non-degenerated saddle point
are homology generators, we could consider the persistence
of the enclosed substructures and probably eliminate less
persistent parts (even if they are critical). It seems that many
of our images contain lots of noisy critical points with small

persistence. So far we considered only simplifications that
preserve critical points and the LBP codes. In order to simplify
the result we could also select the least persistent structures
for simplification. We could consider a similar strategy as for
the re-insertion and de-contraction of darts: with a little extra
information we could reconstruct the lower pyramid level if
needed. Is the LBP-label of the eliminated dart sufficient to
reconstruct the finer resolution?

Furthermore we can consider reconstruction at different
levels:

a) reconstruct only the original LBP codes (without
considering whether the original image belongs to the
reconstruction class);

b) reconstruct the min contrast representative and deter-
mine the size of the class of images it represents; and

c) reconstruct the original image: under what conditions
has the class only one representative.
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