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We use a pseudopotential model to calculate the electronic states available to an excess 

electron in crystalline and amorphous regions of model polyethlyene (PE) as well as the 

molecular crystal of the linear alkane C27H56. It is shown that alkane crystals of whatever 

chain length are not representative of crystalline polyethylene although they are often 

considered to be so. We discuss the implications for electron transport in polyethylene.  
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Molecular crystals of linear long-chain alkanes are often used as a model of polyethylene  

[— (CH2)x—]1,2,3,4,5 due in part to their similar single molecule electronic properties6. 

However in the solid state polyethylene (PE) is not entirely crystalline, but is, to various 

degrees, semi-crystalline, with coexisting amorphous and crystalline regions1. These two 

regions have different electronic structures, which obscures comparisons between 

different materials, for example of states available to an excess electron. The most 

accurate experimental value for the bottom of the conduction band 0V  in PE comes from 

photoconduction measurements7, which locate 0V  in the range  00 1V< < eV 8.  N. Ueno 

et al3 determined the ground-state energies of excess electron in crystalline long-chain 

alkanes using low-energy electron transmission and secondary-electron emission 

experiments. The ground-state energies as a function of the number of carbons in the 

molecule were found to reach a plateau, practically independent of the chain length (up to 

n-C 44 H 90 ) in the range 0.4—0.6 eV. This was taken as an estimate of the bottom of the 

conduction band in crystalline polyethylene.  

 

Previous theoretical, ab initio and semi-empirical, one-dimensional calculations based on 

a single chain, give values of the bottom of the conduction band for PE that vary between 

0 and 5.8 eV8. In a recent density functional theory (DFT) calculation, Righi et al 9 

reported the values 0.1 and 0.17 eV for the crystalline PE surfaces (001) and (110), 

respectively. However, their calculation is based on the identification of the Kohn-Sham 

eigenvalues with excitation energies, which is not a rigorous procedure; it is known that it 



fails to provide the correct band gap in crystalline PE (8.8 eV), with an absolute error 

larger than 2 eV 9.  

 

In this letter we present new results for excess electrons in PE and alkane crystals using a 

fast Fourier transform (FFT) block Lanczos diagonalization algorithm and DFT. A 

complete description of the methods employed can be found elsewhere10. Our semi-

classical calculations used classical explicit atom force-field given by Martonak et al11, 

including bonded (bond stretch, valence angles and dihedrals) and dispersion interactions. 

The trajectories were generated using the molecular dynamics code DLPOLY12. For the 

electron-molecule interactions we use a semi-empirical pseudopotential, derived by us10, 

to be consistent with experimental data for the density dependence of the threshold 0V  of 

conduction in alkane fluids. The pseudopotential consists of a repulsive component 

constructed from ab initio calculations in methane13, which accounts for the interaction 

with the static charge distribution as well as exchange and orthogonality of the excess 

electron with the target atom,  and a attractive part, which accounts for the polarization 

interaction between the excess electron and the dielectric. We have used the multi-center 

polarizabilities reported in Ref.14, which were obtained using state of the art ab initio 

calculations, combined with full many body self-consistent calculations of the 

polarization interaction as described in Ref.15. In all calculations we employed periodic 

boundary conditions and a cutoff of 9  Å.  The qualitative differences in excess electronic 

states we report in this paper arise from differences in molecular geometry in the different 

materials we study and have nothing to do with small differences in fundamental 

electronic interactions between eg CH2 and CH3 groups. Note also that corrections due to 



surface effects9 10 are small, less than 0.1 eV, which is also of the same order of the error 

bars we expect with our pseudopotential.  

A fast Fourier transform (FFT) block Lanczos diagonalization algorithm16,17 was used to 

compute the adiabatic excess electronic states of lattice and amorphous configurations. 

This method provides the lowest energy eigenstates for a given three dimensional 

potential energy grid, and has been used successfully to describe excess electron in 

simple fluids15. The grid spacing was never bigger than 0.72  Å, and we estimate the 

uncertainty in the results due to grid size as ~0.02eV. In order to improve the sampling at 

the bottom of the Brillouin zone for periodic systems we have modified the recursion 

method in order to obtain directly the energy level of a given point k  in the Brillouin 

zone.  According to Bloch’s theorem, the Fourier components of the Bloch wave function 

of wave vector k  will vanish except for the points +k G , where G  is a vector of the 

reciprocal space18. Therefore, the corresponding Bloch function can be directly calculated 

if all the other Fourier components are set to zero at every step of the recursion algorithm. 

In practice, we kept the components corresponding to the desired k  and all the symmetry 

equivalents19, which provide a set of degenerate eigenstates.  

  

The crystalline regions of PE have been modeled as a perfect orthorhombic lattice with 

unit cell parameters taken from ray diffraction data at room temperature20 21 22 23.  The c-

axis was chosen to be in the direction of the chains (see Fig. 1). The modified Fourier 

transform (FFT) block Lanczos diagonalization algorithm applied to the PE lattice using 

our new pseudopotential predicts a ground state energy for the excess electron of 

0 0 65E = .  eV and a kinetic energy of 2 4.  eV. Since we have a perfect periodic system, 



this state can be identified as the bottom of the conduction band. In Fig. 1 (a) we present 

a volumetric representation of the excess electron probability density for this state. The 

wave function is clearly interchain, in agreement with the results presented by S. Serra et 

al 24. Fig. 1 (b) shows the conduction band dispersion of crystalline PE along several 

lines in the first Brillouin zone19. As a reference, we have also plotted the energy levels of 

a free excess electron 0 2 2( ) 2k G k Gh emε − = − / . The results show that the band dispersion 

is strongly free electron like, with an effective mass of 1.0 em m∗ =  along the c -axis, 

where em  is the mass of the electron. The effective mass tensor shows anisotropy, with 

effective masses of 1.7 em  and 1.4 em along the a  and b  axis, respectively.  

 

The long-chain alkane n-C 27H 56  has a stable orthorhombic structure at room temperature 

similar to crystalline PE, but with the molecules packed in layers due to their finite 

length. Adjacent layers are shifted25 along the a-axis by 2 5.  Å. Applying our methods to 

a molecular crystal of n-C 27 H 56  we find a ground state energy for the excess electron of 

0 0 39E = .  eV. This value compares favorably with the experimental data3 which are in 

the range 0 4 0 6. − .  eV but is 0 26.  eV below the lowest conducting state of crystalline 

PE. The reason for this difference is clear from the plot of the excess electron density in 

Figure 2. The bottom of the conduction band is not interchain, as in PE, but interlayer. 

The electron is localized in the gap separating the layers. The main contribution to the 

energy difference comes from the kinetic energy ( 2.0K =  eV for n-C 27H 56 ). In the 

molecular crystal the excess electron finds more free volume in the interlayer gap, and as 

a consequence a lower kinetic energy. Moreover, the ground state is nearly degenerate, 



each state corresponding to localization in each available interlayer gap, which is in 

contrast with the free electron-like band found in crystalline PE. The gap separation 

between the planes of the terminal CH3 groups of alkanes with an odd number of carbons 

is 3.148 Å26. Even-numbered  long-chain alkanes are found to crystalize all-trans in 

simple layers with a monoclinic or triclinic unit cells, but with the same gap separation of 

about 3  Å26. Since the ground state depends mainly on this separation, the ground state 

energies of different long-chain alkanes should all be very close to each other, though 

different to crystalline PE. Moreover, in the later electron transport is expected to be 

strongly anisotropic (with a preferred direction parallel to the chains), whereas in the 

alkane crystal it is at an angle to the chain direction (along the interlayer gap) with 

additional conduction parallel to the chains occurring at the excited state ~0.26eV above 

the bottom of the conduction band. 

 

We can use the calculated value of the effective mass to compute the order of magnitude 

of the electron mobility given by band conduction in crystalline PE. Using the expression 

*/e mµ = τ  and taking the electron collision time as / vτ = λ , with the electronic velocity 

v  estimated from the (room) temperature, and setting 2 53λ = .  Å (minimum length 

parameter), we obtain a lower bound of µ  ≥ 1 cm 2 / V ⋅ s. This value is too high in 

comparison with the reported mobility in real (that is partially disordered) PE, which is in 

the range 3 1010 10− −−  cm 2 /V ⋅ s  27 28.  However, both in simple crystals of long-chain 

alkanes29 and in photoconduction experiments in PE7 (where electrons are excited into 

the conduction band in the crystalline regions) a much larger mobility is observed. The 



much smaller mobility in PE in absence of irradiation, is probably a sign that conduction 

in the amorphous regions of PE plays a very important role.  

 

Anaylisis of the excess electronic states in amorphous PE shows a band tail of localized 

states, with the bottom of the band located below the vacuum level, at about -0.3 eV10. 

This is in agreement with experiments on molten long-chain alkanes, where the ground 

state energy was found to be negative3.  A careful analysis of the eigenstates shows a 

transition from localized to extended states at about the vacuum level10, implying an 

activation energy of 0.3 eV, which is in good agreement with the trap depth of 0.35 eV 

attributed to amorphous regions of PE estimated from thermoluminescence and thermally 

stimulated conductivity measurements30 31, as well as the activation energy of 0.24 eV 

obtained from mobility measurements32.This is well below the bottom of the band for 

crystalline PE and  therefore the localized states discussed above cannot be considered a 

perturbation or a band tail of crystalline states which are not present. 

 

In conclusion, we have shown that even though crystalline PE and alkane crystals  

present a similar structure and negative electron-affinity, conduction in the two materials 

is found to be quite different; in PE conduction is interchain, in an alkane crystal it is 

interlayer. Nevertheless, long-chain alkanes in a disordered state are still expected to be a 

good model of amorphous regions of polyethylene, where the electronic states are 

governed by the density fluctuations of the material. In subsequent papers we will explore 

the electron trajectories on these energy surfaces using surface hopping techniques. 



 

From these preliminary results we can speculate that in polyethylene with a high degree 

of crystallinity, amorphous and interfacial regions constitute electron traps of the order of 

1 eV (for example adding the value of the bottom of the conduction band in the crystal 

and the ground state of the amorphous region we have +0.65+0.3=0.95eV) and are 

therefore likely to play an important role in determining electron transport in 

polyethylene (along with the chemical traps33,34). This is in agreement with the 

experimental results by Tanaka35, who found an optical gap of 7.35 eV with a band tail 

value around 1 eV.  On the other hand, in low density polyethylene the energy difference 

of 0.65 eV between the conduction levels in the crystalline and amorphous regions would 

prevent the electron from penetrating the crystalline regions and conduction would only 

occur through the extended states at the amorphous regions.  The details of these effects 

and the role of structural inhomogeneities in determining the current voltage 

characteristics of PE will be the subject of future work. 
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Figure 1: (a) Orthographic view of the ground state wave function for crystalline 

PE. The excess electron is depicted using a volumetric representation of the density 

probability. The lighter regions correspond to the higher density values, showing the 

interchain nature of the conducting state. (b) Conduction band dispersion along 

symmetry directions in crystalline PE (diamonds). Lines correspond to a free 

electron. 

 

Figure 2: Ground-state wavefunction for crystalline n-C27H56.  Orthographic views 

along the c-axis (a) and the b-axis (b) showing the interlayer gap. The wave function 

is clearly interlayer, rather than interchain.  
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Figure 2: Ground-state wavefunction for crystalline n-C27H56.  Orthographic views 

along the c-axis (a) and the b-axis (b) showing the interlayer gap. The wave function 
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