
An Initial Approach to Explaining SLA
Inconsistencies?

Carlos Müller, Antonio Ruiz-Cortés, Manuel Resinas

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingeniería Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller, aruiz, resinas}@us.es

Abstract An SLA signed by all interested parties must be created care-
fully, avoiding contradictions between terms, because their terms could
carry penalties in case of failure. However, this consistency checking may
become a challenging task depending on the complexity of the agree-
ment. As a consequence, an automated way of checking the consistency
of an SLA document and returning the set of inconsistent terms of the
agreement would be very appealing from a practical point of view. For
instance, it enables the development of software tools that make the cre-
ation of correct SLAs and the consistency checking of imported SLAs
easier for users. In this paper, we present the problem of explaining WS-
Agreement inconsistencies as a constraint satisfaction problem (CSP),
and then we use a CSP solver together with an explanation engine to
check the consistency and return the inconsistent terms. Furthermore, a
proof-of-concept using Choco solver in conjunction with the Palm expla-
nation engine has been developed.
Keywords: Service Level Agreement, WS-Agreement, Consistency Check-
ing, Debugging, Quality of Service.

1 Introduction

SLAs consist of a set of terms that include information about functional features,
non-functional guarantees, compensation, termination terms and any other terms
with relevant information to the agreement. An agreement signed by all inter-
ested parties should be redacted carefully because a failure to specify their terms
could carry penalties to the initiating or responding party. Therefore, agreement
terms should be specified in a consistent way, avoiding contradictions between
them. However, depending on the complexity of the agreement, this may be-
come a challenging task. For instance, in a scenario in which a provider offers
computing services to other organizations, an SLA could be agreed that includes
non-functional attributes such as: the availability -in percentage-, the mean time
between two consecutive requests of the service (MTBR) -in seconds-, and the
? This work has been partially supported by the European Commission (FEDER),

Spanish Government under CICYT project Web-Factories (TIN2006-00472), and
project P07-TIC-2533 funded by the Andalusian local Government.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

efficiency. Assuming that: Availability ranges between [90..100] , MTBR ranges
between ∈ [5..60] and Efficiency = Availability/MTBR. If the SLA includes a
term obligating to guarantee Efficiency > 20, at first sight the SLA is consistent.
However the highest valid value for efficiency is 100/5=20, so this term cannot
be satisfied. Therefore, a consistency checker that automatically checks the SLA
for inconsistencies between its terms would be very appealing from a practical
point of view.

Furthermore, it is of interest not only to obtain an automated way of check-
ing the consistency of an SLA document, but also to return an explanation if the
document is inconsistent. This explanation is the set of inconsistent terms of the
agreement. So, in the previous scenario we would obtain as debugging informa-
tion that the inconsistent terms are: [(Efficiency > 20), (Availability ∈ [90..100]),
(MTBR ∈ [5..60]), (Efficiency = Availability/MTBR)], because they are incon-
sistent terms. This automated consistency checking enables the implementation
of a software tool which makes the creation of correct SLAs and the consistency
checking of imported SLAs easier for users.

Nevertheless, as far as we know, the consistency of SLAs has been taken for
granted by most authors. In this paper, we describe a mechanism to check and
explain SLAs specified with WS-Agreement [2], which is a proposed recommen-
dation of the Open Grid Forum (OGF) which provides a schema for defining
SLAs and a protocol for creating them. To this end, we map the terms of a
subset of the WS-Agreement document into a constraint satisfaction problem
(CSP). Then we use the CSP as an input for a CSP solver with an explanation
engine, which will return the set of inconsistent constraints. Finally, we trace
back the constraints to the original SLA terms in order to give useful debugging
information to users.

As a proof-of-concept, we have developed a prototype of our consistency
analyser using Choco solver [1] in conjunction with the Palm explanation engine
[3]. This prototype is available for testing at http://www.isa.us.es in the tools
section.

This paper is structured as follows. Section 2 presents some background on
constraint satisfaction problems and WS-Agreement. Section 3 details the sub-
set of WS-Agreement which is used to explain the SLA inconsistencies in 3.1
and its mapping to CSP in 3.2. Section 4 describes our process to explain the
WS-Agreement* iconsistencies. Section 5 shows our proof-of-concept. Section 6
reports on the related proposals. Finally, Section 7 details our conclusions and
future work.

2 Preliminaries

2.1 Constraint Satisfaction Problems

Constraint Satisfaction Problems [8] have been the object of research in Artificial
Intelligence over the last few decades. A Constraint Satisfaction Problem (CSP)
is defined as a set of variables, each ranging on a finite domain, and a set of

constraints restricting all the values that these variables can take simultaneously.
A solution to a CSP is an assignment of a value from its domain to every variable,
in such a way that all constraints are satisfied simultaneously. These are some
basic definitions of what a CSP is.

Definition 1 (CSP). A CSP is a three–tuple of the form (V,D,C) where V 6= ∅
is a finite set of variables, D 6= ∅ is a finite set of domains (one for each variable)
and C is a constraint defined on V .

Consider, for instance, the CSP: ({a, b}, {[0..2], [0..2]}, {a+ b < 4})

Definition 2 (Solution). Let ψ be a CSP, a solution of ψ is whatever valid
assignment of all elements in V that satisfies C.

In the previous example, a possible solution is (2, 0) since it verifies that
2 + 0 < 4.

Definition 3 (Solution space). Let ψ be a CSP of the form (V,D,C), its
solution space denoted as sol(ψ) is made up of all its possible solutions. A CSP
is satisfiable if its solution space is not empty.

sol(ψ) = {S | ∀si · si ∈ S ⇒ C(si) = true}

In the previous example there are eight solutions. The only assignment that
does not satisfy a+b < 4 is (2, 2). Nevertheless, if we replace the constraint with
a+ b < −1, then the CSP is not satisfiable.

In many real-life applications, if a CSP has no solution, we would like to know
which set of constraints are responsible for this situation. This can be done by
interpreting the CSP as an explanation problem.

Definition 4 (Explanation problem). Let ε be a CSP of the form (V,D,C)
with an empty solution space: sol(ε) = ∅. It is considered to be an explanation
problem if its objective is to find a set of constraints C ′ ⊂ C that cannot be
satisfied.

Definition 5 (Explanations). Let ε be an explanation problem, the resulting
set of inconsistent constraints C ′ are known as the explanations for the problem.
They are divided into two parts: a subset of the original set of constraints C ′ ⊂ C
and a subset of decision constraints introduced so far in the search of solutions
(dc1, ..., dck).

As defined in [3], a contradiction explanation, also known as “nogood” [7], is a
subset of the constraints of the problem that, left alone, leads to a contradiction
(no feasible solution contains a nogood).

The previous CSP example, with the constraint replaced with a+ b < −1, is
not satisfiable, and by interpreting it as an explanation problem the explanation
engine should obtain as the set of inconsistent constraints: [(a+ b < −1), (a >=
0), (b >= 0)]

2.2 WS-Agreement in a Nutshell

WS-Agreement specifies an XML-based language and a protocol for advertising
the capabilities and preferences of service providers, and creating agreements
based on agreement offers. The structure of an agreement in WS-Agreement
comprises:

– Name: it identifies the agreement and can be used for reference.
– Context: it includes information such as the name of the parties and their

roles as initiator or responder in the agreement. Additionally, it can include
other important information for the agreement.

– Terms: they are grouped by the following term compositors: ExactlyOne,
OneOrMore, or All. The two main types of terms are:
• Service terms: they provide service information by means of:

∗ Service description terms and service references, which includes infor-
mation to instantiate or identify the services and operations involved
in the agreement.

∗ Service properties, which includes the measurable properties that
are used in expressing guarantee terms. They consist of a set of vari-
ables whose values can be established inside the service description
term, and whose domain can be established by the metric attribute
pointing to an external XML document.

• Guarantee terms: they describe the service level objectives (SLO) agreed
by a specific obligated party, either using a free-form element or using a
key performance indicator. It also includes the scope of the term (e.g. if it
applies to a certain operation of a service or the whole service itself), and
a qualifying condition that specifies the validity condition under which
the term is applied.

Figure 1 depicts an example of a WS-Agreement between a computing ser-
vices provider and a consumer. It defines several service properties whose domain
is specified in an external XML document (depicted in Figure 2). Note that other
XML documents, such as an XML Schema definition, could have been used in-
stead. The service properties defined in the WS-Agreement document of Figure
1 are the following ones:

– the availability -integer form 1 to 100-
– the mean time between two consecutive requests of the service (MTBR) -

integer greater than 1-
– the mean time to response (MTTR) -integer greater than 1-
– the initial cost for the service (InitCost) -integer greater than 1-
– the final cost for the service (Cost) -integer greater than 1-
– the increase of the cost if the MTBR < 10 (ExtraMTBRCost) -integer

greater than 1-
– the increase of the cost if the MTTR < 05 (ExtraMTTRCost) -integer

greater than 1-

We have extracted the following information from the SLA:

– MTBR ∈ [5..60].
– MTTR ∈ [1..10].
– If MTBR >= 10 Then Availability ∈ [90..100].
– If MTBR < 10 Then Availability ∈ [95..100].
– Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost.
– If MTBR < 10 Then ExtraMTBRCost = 15.
– If MTTR < 05 Then ExtraMTTRCost = 15.
– If MTBR >= 10 and MTTR >= 05 Then ExtraMTBRCost = 0 and Ex-

traMTTRCost = 0.

3 Mapping WS-Agreement onto CSP

3.1 WS-Agreement* as a subset of WS-Agreement

Due to the flexibility and extensibility of WS-Agreement, we focus in this paper
on a subset of WS-Agreement that is a bit less expressive than WS-Agreement,
but still useful for our purpose. The subset of WS-Agreement is called WS-
Agreement*. A WS-Agreement* document (α) is composed of the following el-
ements:

– Service properties must define all variables that are used in the guarantee
terms. In addition, attribute metric of the variables is mandatory. This
attribute must point to another XML document or schema that provides
the data type and a general range of values (δ) for each service property.
Figure 2 shows an example of an ad-hoc XML document that includes the
mentioned information for service properties of the example of Figure 1,
although other XML documents could be used. XML node Location (λυ) of
each variable establishes the specific XML node inside the service description
term where it is defined the value for such variable (value(λυ)).

– Terms (T) can be composed using the three term compositors defined in
WS-Agreement: All (�), ExactlyOne (⊗), and OneOrMore (⊕).

– Service description terms can be included but only to impose specific value
definitions for each variable (υ) of service properties. Other service descrip-
tion terms could be added but they are ignored when checking the SLA
consistency.

– Guarantee terms (γ) can be included. Both qualifying condition (κ) and
the SLOs (σ) must be defined as constraints on the variables defined in the
service properties, and only to those variables (i.e. κ ∈ C and σ ∈ C). The
scope of a guarantee term cannot be established, but all guarantee terms
apply to the whole service.

Note that, although WS-Agreement* is not as expressive as WS-Agreement,
it does allow for the expression of complex agreements. For instance, the agree-
ment depicted in Figure 1 is compatible with WS-Agreement*.

Thus, we can formally define an agreement specified with WS-Agreement*
as follows:

<Agreement ’’id=exampleScenario’’>
<Context> ... </...>
<All>

<ServiceDescriptionTerm Name=’’ComputingService’’>
<...>

... </...>
<InitCost> 20 </...>
... </...>

</...>
</ServiceDescriptionTerm>
<ServiceProperties>

...<Variable name=’’Availability’’ metric=’’metricXML:Availability’’>
<Location> \\Availability </Location>

</Variable>
<Variable name=’’MTBR’’ metric=’’metricXML:MTBR’’>

<Location> \\MTBR </Location>
</Variable>
<Variable name=’’MTTR’’ metric=’’metricXML:MTTR’’>

<Location> \\MTTR </Location>
</Variable>
<Variable name=’’InitCost’’ metric=’’metricXML:InitCost’’>

<Location> \\InitCost </Location>
</Variable>
<Variable name=’’Cost’’ metric=’’metricXML:Cost’’>

<Location> \\Cost </Location>
</Variable>

<Variable name=’’ExtraMTBRCost’’ metric=’’metricXML:ExtraMTBRCost’’>
<Location> \\ExtraMTBRCost </Location>

</Variable>

<Variable name=’’ExtraMTTRCost’’ metric=’’metricXML:ExtraMTTRCost’’>
<Location> \\ExtraMTTRCost </Location>

</Variable>...
</ServiceProperties>
<GuaranteeTerm Name=’’MTBRDomain’’>

<SLO> MTBR >= 5 and MTBR <= 60 </...>
</GuaranteeTerm>
<GuaranteeTerm Name=’’MTTRDomain’’>

<SLO> MTTR >= 1 and MTTR <= 10 </...>
</GuaranteeTerm>
<GuaranteeTerm Name=’’CostDefinition’’>

<SLO> Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost </...>
</GuaranteeTerm>
<ExactlyOne>

<GuaranteeTerm Name=’’LowerAvailabilityDomain’’>
<QualifyingCondition> MTBR >= 10 </...>
<SLO> Availability >= 90 and Availability <= 100 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’HigherAvailabilityDomain’’>

<QualifyingCondition> MTBR < 10 </...>
<SLO> Availability >= 95 and Availability <= 100 </...>

</GuaranteeTerm>
</ExactlyOne>
<OneOrMore>

<GuaranteeTerm Name=’’MTBRIncrement’’>
<QualifyingCondition> MTBR < 10 </...>
<SLO> ExtraMTBRCost = 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’MTTRIncrement’’>

<QualifyingCondition> MTTR < 05 </...>
<SLO> ExtraMTTRCost = 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’CheaperCost’’>

<QualifyingCondition> MTBR >= 10 and MTTR >= 05 </...>
<SLO> ExtraMTBRCost = 0 and ExtraMTTRCost = 0 </...>

</GuaranteeTerm>
</OneOrMore>

</All>
</Agreement>

Figure 1. Example of a WS-Agreement document with all kinds of compositors.

<metricXML>
<Availability type=’’integer’’ min=’’1’’ max=’’100’’/>
<MTBR type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<MTTR type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<InitCost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<Cost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<ExtraMTBRCost type=’’integer’’ min=’’1’’ max=’’unbounded’’/>
<ExtraMTTRCost type=’’integer’’ min=’’1’ max=’’unbounded’’/>

</metricXML>

Figure 2. Ad-hoc XML document for the variable domains of Figure 1.

Definition 6 (A WS-Agreement* document). A WS-Agreement* docu-
ment α is a set of variables υi, variable domains δi, and a set of terms T ,
including service description terms, guarantee terms and terms compositors as
follows:

α = (υi, . . . , υn, δi, . . . , δn, T1, . . . , Tm) , where Ti =


λυ
γ
Ti1 � . . .� Tik
Ti1 ⊗ . . .⊗ Tik
Ti1 ⊕ . . .⊕ Tik


3.2 Mapping WS-Agreement* onto CSP

Figure 3 depicts the mapping (µ) of a WS-Agreement* document (α) onto an
equivalent CSP, (ψα). The variables (υ) defined inside the service properties are
the CSP variables; the variable domains (δ) included in the document specified
by the metric attribute are the CSP variable domains; and the constraints from
the service description terms (λυ), guarantee terms (γ) and term compositors
(� as a logic “AND”, ⊗ as logic “XOR”, and ⊕ as logic “OR”) are the CSP
constraints.

Thus, in general, our WS-Agreement* to CSP mapping can be defined as
follows:

Definition 7 (Mapping an WS-Agreement* to CSP). The mapping (µ :
α → ψ) of a WS-Agreement* document (α) to a CSP (ψ) can be defined as
follows:

µ(α) = µ (υ1, . . . , υn, δ1, . . . , δn, T1, . . . , Tm) =

= ({υ1, . . . , υn} , {δ1, . . . , δn} , {µT (T1, . . . , Tm)}) = ψα

where µT : T → C is a mapping function of terms into constraints defined as
follows:

µT (T) ≡


υ = λυ if T is a service description term (λυ)
σ if T is a guarantee term without qualifying condition (γσ)
κ⇒ σ if T is a guarantee term with a qualifying condition (γσ,κ)∧k

i=1
µT (Ti) if T is a composite term (T1 � . . .� Tk)∧k

i=1
µT (Ti) ⇔ (

∧k

j=1\j 6=i
¬µT (Tj)) if T is a composite term (T1 ⊗ . . .⊗ Tk)∨k

i=1
µT (Ti) if T is a composite term (T1 ⊕ . . .⊕ Tk)



<Agreement>

< or or >

<ServiceProperties>
…<variable name=‘’ 1’’ metric=‘‘metricXML:δ1’’>

<location>
1
</…>

</variable> …
…<variable name=‘‘ n’’ metric=‘‘metricXML:δn’’>

<location>
n
</…>

</variable> …
</ServiceProperties>

<ServiceDescriptionTerm (1)>
…<

1
> value(

1
) </

1
> …

<
n
> value(

n
) </

n
> …

</ServiceDescriptionTerm>

<GuaranteeTerm name=‘‘ 1’’ (2)>
<SLO> </SLO>

</GuaranteeTerm>

<GuaranteeTerm name=‘‘ m’’ (k)>
<QualifyingCondition> </QualifyingCondition>
<SLO> </SLO>

</GuaranteeTerm>

</ or or >

</Agreement>

<<WS-Agreement*>>

<metricXML>

< δ1 type=‘‘…’’ min=‘‘…’’ max=‘‘…’’> …

< δn type=‘‘…’’ min=‘‘…’’ max=‘‘…’’>

</metricXML>

<<metricXML>>

CSP
variables

=
{

(Equivalent CSP)

CSP
variable
domains

CSP
constraints

1,
…,

n,

δ1,
…,
δn,

1,
…,

m

(
i
)≡ i = value(

i
)

(1) ≡

i ≡ i

(m) ≡

( or or)

δi ≡ δi

{{

{{

{

(

(
Figure 3. Summary of WS-Agreement* to CSP mapping.

Using this mapping, the ψα for the example of Figure 1 is mapped as follows:
ψα = ({ Availability, MTBR, MTTR, InitCost, Cost, ExtraMTBRCost, ExtraMTTRCost },

{ [1 . . . 100], [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), [1 . . . ∞), },

{ InitCost = 20,

MTBR ≥ 5 and MTBR ≤ 60,

MTTR ≥ 1 and MTBR ≤ 10,

Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost,

((MTBR ≥ 10) ⇒ (Availability ≥ 90 and Availability ≤ 100)) ⇔

⇔ ¬ ((MTBR < 10) ⇒ (Availability ≥ 95 and Availability ≤ 100)),

(MTBR < 10 ⇒ ExtraMTBRCost = 15) ∨

∨ (MTTR < 5 ⇒ ExtraMTTRCost = 15) ∨

∨ ((MTBR ≥ 10 and MTTR ≥ 5) ⇒ ExtraMTBRCost = 0 and ExtraMTTRCost = 0) }

)

The following table denotes constraints mapped from the example of Figure
1.

Example term (Ti) name Equivalent mapped (µT (Ti))
InitCost InitCost = 20

MTBRDomain MTBR >= 5 and MTBR <= 60
MTTRDomain MTTR >= 1 and MTTR <= 10
CostDefinition Cost = InitCost + ExtraMTBRCost + ExtraMTTRCost

LowerAvailabilityDomain (MTBR ≥ 10) ⇒ (Availability ≥ 90 and
Availability ≤ 100)

HigherAvailabilityDomain (MTBR < 10) ⇒ (Availability ≥ 95 and
Availability ≤ 100)

MTBRIncrement (MTBR < 10) ⇒ (ExtraMTBRCost = 15)
MTTRIncrement (MTTR < 5) ⇒ (ExtraMTTRCost = 15)

CheaperCost (MTBR ≥ 10 and MTTR ≥ 5) ⇒
(ExtraMTBRCost = ExtraMTTRCost = 0)

ExactlyOne (LowerAvailabilityDomain ⇔ ¬ HigherAvailabilityDomain) ∧
(HigherAvailabilityDomain ⇔ ¬ LowerAvailabilityDomain)

OneOrMore MTBRIncrement ∨ MTTRIncrement ∨ CheaperCost
All InitCost ∧ MTBRDomain ∧ MTTRDomain ∧

∧ CostDefinition ∧ ExactlyOne ∧ OneOrMore

Table 1. Mapping example terms to CSP constraints

4 Checking and Explaining WS-Agreement*
Inconsistencies

Checking the consistency of WS-Agreement documents involves both syntactic
and semantic checking. The former involves checking the document against the
WS-Agreement XML Schema. The latter, however, is harder to check on and is
thus the focus of this paper.

Figure 4 depicts our consistency checking process. In this scenario, it is im-
posed by a human error, an MTBR value definition inside the service description
term with a value of 61. Thus, the ψα would not be satisfiable by the MTBR
domain definition. As depicted in Figure 4, we propose to use the agreement
specified with WS-Agreement* in conjunction with the XML document which
defines the variables metrics as the two inputs for a mapping component which
implements the mapping defined in section 3.2. Once the agreement is mapped
to a CSP, the explanation engine of the CSP explainer component will obtain
whether the SLA document is consistent or not. In the latter case, the component
sends to a tracing component the explanations for the problem. In this case, the
explanations for the problem are εMTBR: [MTBR = 61; MTBR ≥ 5 and MTBR
≤ 60]. The tracing component converts the explanations into the equivalent in-
consistent original terms in order to give useful information to users. This is
done by naming constraints mapped from an SLO as the name of the guarantee
term which includes it; and if the constraint was mapped from a value definition
inside a service description term, we name it “SDT”, concatenate with the name
of the variable. Then, the previous explanation for MTBR would be traced by us
to the inconsistent term “SDTMTBR” constraint, showing that it is the MTBR

<<WS-Ag*>>

<<metricXML>> W
S-

A
g*

 t
o

C
SP Mapping

C
SP

 S
o

lv
er

+
Ex

p
la

n
at

io
n

CSP
Explainer

Consistent

Inconsistent

Explanations
• MTBR = 61
• MTBR ≥ 5
• MTBR ≤ 60

Tracing

C
SP

 t
o

W
S-

A
g*

<<WS-Ag*>>

x

x

Inconsistent Terms
• “MTBRDefinition”
• “MTBRDomain”

CAN’T YOU DO
ANYTHING RIGHT?

Figure 4. WS-Agreement compliant process for explaining SLA inconsistencies.

value assignment and the domain restriction of the “MTBRDomain” guarantee
term. The user should then grasp that the MTBR value definition is inconsistent
with the MTBR domain.

5 A proof-of-concept

We have developed a proof-of-concept with the Choco constraint solver [1] and
the Palm explanation engine [3]. This proof-of-concept receives two XML docu-
ments as input: the SLA WS-Agreement* document and the metric XML docu-
ment. After processing the inputs, our consistency checker returns whether the
document is consistent or not and its explanation in the latter case. We have
excluded the syntax consistency checking for simplicity.

The current Palm library included in Choco v.1.2.03 only gives complete
support to integer variables and constraints with logical operators like≥,≤,=, 6=,
. . .. Boolean operators and implications like if constraint1 then constraint2 and
assignments like var1 = var2 × var3 are excluded. Thus, to test our proof-of-
concept, we have simplified our previous SLA example as follows:

– Variables remain equal, unlike in the previous example, because they are all
integer variables. But we choose only three of them: availability, cost and

increment, and we have added a new initial cost. The unbounded integer
domains must be bounded and we assign a maximum value of 10.000 by
default as Figure 5 depicts.

<metricXML>
<Availability type=’’integer’’ min=’’1’’ max=’’100’’/>
<Cost type=’’integer’’ min=’’1’’ max=’’10000’’/>
<Increment type=’’integer’’ min=’’1’’ max=’’10000’’/>
<InitCost type=’’integer’’ min=’’1’’ max=’’10000’’/>

</metricXML>

Figure 5. Ad-hoc XML document for the variable domains of Figure 6.

– We have removed the qualifying conditions from the guarantee terms be-
cause implications are not supported currently. As a consequence, the term
compositor elements OneOrMore and ExactlyOne do not make sense in the
simplified example, so an unique All term compositor element is included
in the new SLA. Finally we have included an inconsistency in the definition
of the value of the InitCost property. The new SLA is shown in Figure 6.

After mapping the example of Figure 6 to the equivalent CSP ψα, our proof-
of-concept processes the explanation problem and returns a minimal subset of
inconsistent constraints of the ψα. Then, it traces these constraints to the in-
consistent agreement terms. For this example, the proof-of-concept consistency
checker returns the following subset [CostLET15, CostDefinition, SDTInitCost],
because the InitCost definition inside the ServiceDescriptionTerm is incon-
sistent according to the CostDefinition and CostLET15 terms. If the user solves
the inconsistency of these terms, the checker would check again whether the new
agreement document is consistent or not and it would return the minimal subset
of inconsistent constraints in the second case.

6 Related Work

As far as we know, there are no proposals that deal with providing explanations
for the SLA inconsistencies of WS-Agreement documents. Previously, in [6], we
proposed mapping SLAs to CSPs, aimed at checking their consistency and con-
formance. However, in that paper no explanation about the inconsistency of the
terms was provided. In addition, [6] dealt with its own SLA specification instead
of using a standard format such as WS-Agreement.

Other similar work is [5], in which Oldham et al. create a description logic-
based ontology of WS-Agreement that could be used to check consistency and
conformance of SLAs using a description logic reasoner. However, the authors
do not detail what the consistency checking process is. Furthermore, they do not
support the explanations for the inconsistent terms.

<Agreement ‘‘id=simplifiedExampleScenario’’>

<Context> ... </...>

<All>
<ServiceDescriptionTerm Name=’’ComputingService’’>

<...>
...
<InitCost> 20 </...>
<Availability> 95 </...>
<Increment> 15 </...>
...

<...>
</ServiceDescriptionTerm>

<ServiceProperties>
...

<Variable name=’’Availability’’ metric=’’metricXML:Availability’’>
<Location> \\Availability </Location>

</Variable>
<Variable name=’’Cost’’ metric=’’metricXML:Cost’’>

<Location> \\Cost </Location>
</Variable>
<Variable name=’’Increment’’ metric=’’metricXML:Increment’’>

<Location> \\Increment </Location>
</Variable>
<Variable name=’’InitCost’’ metric=’’metricXML:InitCost’’>

<Location> \\InitCost </Location>
</Variable>

...
</ServiceProperties>

<GuaranteeTerm Name=’’CostDefinition’’>
<SLO> Cost = InitCost + Increment </...>

</GuaranteeTerm>

<GuaranteeTerm Name=’’InitCostLET15’’>
<SLO> InitCost <= 15 </...>

</GuaranteeTerm>
<GuaranteeTerm Name=’’CostGET20’’>

<SLO> Cost >= 20 </...>
</GuaranteeTerm>

<GuaranteeTerm Name=’’CostLET30’’>
<SLO> Cost <= 30 </...>

</GuaranteeTerm>
</All>

</Agreement>

Figure 6. Simplified example of a WS-Agreement* document for the proof-of-concept.

7 Conclusions and Future Work

In this paper we have motivated the need for explaining inconsistencies of WS-
Agreement documents and we have presented a first approach to reach this
goal. More specifically, we present the problem of explaining WS-Agreement
inconsistencies as a constraint satisfaction problem (CSP), and then we use a
CSP solver together with an explanation engine to check the consistency and
return the inconsistent terms.

To this end, we have defined WS-Agreement*, which is a subset of WS-
Agreement that limits the expressiveness of WS-Agreement, but still allows
defining complex SLAs such as the one depicted in Figure 1. Then, we have
detailed the mapping of WS-Agreement* to a CSP and we have described the
steps that involve the process of checking and explaining WS-Agreement incon-
sistencies. Finally, we have presented a proof-of-concept implementation that
uses the Choco solver and the Palm explanation engine to perform the explana-
tion of SLA inconsistences on a simple example.

In summary, the main contributions of this paper are the following:

1. we define a subset of WS-Agreement that can be useful for implementations
that do not require the full expressiveness of WS-Agreement;

2. we define a mapping of WS-Agreement* to CSPs that enables the use of
CSP solvers to check the consistency of SLAs;

3. we describe a CSP solver-independent process to check and explain incon-
sistencies of SLAs.

However, there are still some open issues that require further research: first,
extending the mapping to CSPs to full WS-Agreement; second, checking the
consistency of WS-Agreement with the temporal extension we detailed in [4],
and third, using the CSP solver to check not only the consistency, but also the
conformance of an agreement offer with an agreement template.

References

1. Choco constraint solver web site, 2008. http://choco-solver.net/.
2. OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG). Web Ser-

vices Agreement Specification (WS-Agreement) (v. gfd.107), 2007.
3. Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based

constraint programming. In Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, a post-conference workshop of CP 2000, pages
118–133, Singapore, September 2000.

4. C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fernández. Im-
proving Temporal-Awareness of WS-Agreement. In Proc. of the 5th International
Conference on Service Oriented Computing (ICSOC), pages 193–206, Vienna, Aus-
tria, Sept 2007. Springer Verlag.

5. N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-Agreement
Partner Selection. In 15th International WWW Conf., 697–706. ACM Press, 2006.

6. A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro. Improving the Auto-
matic Procurement of Web Services using Constraint Programming. Int. Journal
on Cooperative Information Systems, 14(4), 2005.

7. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. Tools with Artificial Intelligence, 1993. TAI ’93. Proceedings.,
Fifth International Conference on, pages 48–55, 8-11 Nov 1993.

8. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

