
Obtaining cell complexes associated to four dimensional
digital objects

Ana Pacheco1, Jean-Luc Mari2 and Pedro Real1

1 Universidad de Sevilla
Dpto. Matematica Aplicada I

E.T.S.I. Informatica, Avda. Reina Mercedes, s/n 41012 Sevilla (Spain)
2 Aix-Marseille 2 Université

Information and System Science Laboratory (LSIS)
ESIL, Campus de Luminy, case 925, 13288 Marseille cedex 9, France

{ampm,real}@us.es, mari@univmed.fr

Abstract In this paper, we determine a cell complex representation of a 80–adjacent doxel-
based 4-dimensional object. The homological information of this polyhedral cell complex
can be employed to specify topological features and characteristics of a digital object. This
homological information (for example, Euler characteristic, homological classification of cy-
cles, homology generators, relations among them...) of a discrete object can be extracted
from some specific boundary operators for each cell of an object (see [3]). The different (up
to isometry) polyhedral cells are 400 configurations and their local boundary information
can be suitably glued for determining the global boundary of an object and consequently,
its corresponding homological information. This fact allows us to implement this technique
using a look-up table for the different basic configurations and its corresponding boundary
operators.

Keywords digital object; cell complex; weighted complete graph.

1 Introduction

A relevant issue in Digital Image Analysis, Computer Graphics, Pattern Recognition and Com-
puter Vision is to find a topology-based non-redundant representation of a discrete object, useful
to extract geometrical and topological properties as well as for visualization, boundary extraction
and surface generation tasks. Topological information of digital objects can be obtained using
homology. One classical way to specify homological information is making use of a “continuous
analogy” K(X). In most of cases, K(X) is embedded in Rn and it is described in terms of a finite
CW-complex (also called cell complex). In fact, the homological information allows us to describe
the degree of connectivity of the associate cell complex K(X). More concretely, the homological
information can be extracted in terms of its n–dimensional holes (a 0–hole is a connected com-
ponent, a 1–hole is a tunnel and a 2–hole is a cavity in a three dimensional cell complex). In
Figure 1, we see a full cell representation of a digital object and its homological information.

57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: (a) Digital object; (b) Cell complex associated to the digital object, 0–cells, 1–cells,
2–cells and 3–cells are shown in green, brown, yellow and blue respectively; (c) Homological
information expressed in terms of connected components (33), tunnels (0) and cavities (0).

Kenmochi et al. present in [11] a procedure to extract topological features from a sequential
volume data using a polyhedral object representation and its set operations. Our cell represen-
tation approach has as main goal to extract homological information on the 4D discrete object,
that can be useful for analysis, recognition and visualization. The stages of the process are the
following: (a) to determine a grid divided into hypercubes (cubes of dimension 4) in which the
hypervolume is embedded; (b) to assign every point of the grid a binary value (0–points or white
points and 1–points or black points); (c) to associate a cell complex to the hypervolume. All the
different building blocks (up to isometry) composing the cell complex are specified in this paper
in terms of a convex hull and some boundary information of it; and (d) the homology of the
associated cell complex can be computed using methods such these: Smith normal form, gradient
vector fields, incremental homological algorithm, etc. (see [5, 6, 7] for more details). In this paper,
we focus our interest on dealing with the cellularization of the digital object to a fast homological
computation. This homological computation is developing in a near future.

2 Preliminaries

In this section is devoted to introduce the main notions that we use along the paper.
A cell complex is a set K = {K(q)}q≥0 of cells satisfying two conditions: (1) every face of a

cell is a cell; and (2) if σ and σ′ are cells, then their intersection is a common face of both. A cell
complex can be denoted by a pair (K, ∂) where K is the set of cells which composes the complex
and ∂ : Z[K] → Z[K] is a linear map called boundary operator of K, where Z[K] is the free abelian
group constituted by all the finite linear combination of cells of K. The boundary operator of a
p–cell α is a linear combination of all the (p− 1)–cells that are faces of α, and such that ∂ ◦ ∂ = 0.
For more details about cell complexes see [9].

A graph can be seen as a cell complex of dimension 1. That is the reason to use graphs in
Algorithm 1 to obtain the vertices of the pieces which compose the cell complex associated to the
given hypervolume.

A special type of graph is the family of complete graphs. A graph is complete if every pair
of distinct vertices is connected by a edge. Moreover, if we associate to each edge a weight, we
obtain the subfamily of weighted complete graphs (used in this paper to determine the vertices of

58



the pieces which compose the cell complex associated to the given hypervolume). See Figure 2 (a)
for an example.

In a natural way, we say G1 and G2 are isomorphic graphs if exists a bijection between the set
of its vertices which preserves adjacencies (if two vertices of G1 are joined by an edge, then their
images by the bijection must be two vertices of G2 joined by an edge). A stronger concept than
isomorphism is isometry. An isometry is a distance-preserving map between spaces. For example,
the isometries in a 3–dimensional space are rotations, translations and symmetries.

In this paper, we identify a configuration of points on the unit hypercube with its corresponding
associated graph constructed in Algorithm 1. In this way, we say two configurations of points on
the unit hypercube are isometric if and only if its respective associated graphs are isometric, in
the sense of preserving adjacencies and distances.

Information about graph theory can be founded in [8].
An usual tool to represent adjacency relations between vertices of a graph is the adjacency

matrix. The adjacency matrix of a graph with n vertices is an n × n matrix A = (ai,j) in which
the entry ai,j = m if there are m edges from vertex i to vertex j, and it is 0 if there is no edge
from vertex i to vertex j. Figure 2 shows an example of a graph together to its adjacency matrix.

Figure 2: (a) Two representations of the same weighted complete graph (using multiple edges or
using weighted edges). (b) The adjacency matrix of the graph.

In order to define adjacency relations, it is necessary to introduce the notion of neighbor
points.

We say that two points are neighbors if they satisfy a determined distance relation. There are
different types of neighborhood; for example, a 3–dimensional point A = (a1, a2, a3) with its 6
neighbors satisfies the relation N6 = (a1−x)2+(a2−y)2+(a3−z)2 ≤ 1, and with its 26 neighbors
satisfies the relation N26 = (a1 − x)2 + (a2 − y)2 + (a3 − z)2 ≤ 3 (see Figure 3).

59



Figure 3: (a) 4–neighborhood in 2D; (b) 8–neighborhood in 2D; (c) 6–neighborhood in 3D; and
(d) 26–neighborhood in 3D.

It is well-known in digital topology (see [12]) that the maximal number of neighbor points of
a given n–dimensional point is 3n−1. In consequence, the 8, 26 and 80 adjacency relations are
respectively the maximal adjacency for the digital spaces Z2, Z3 and Z4.

3 Grid and neighborhood points

Working with digital objects it is necessary to fix a grid and the relations between the points of
this one.

Let us consider Z4 as the four-dimensional lattice space or discrete space, and the elements of
Z4 the lattice points (see Figure 4).

Figure 4: Z4 space represented by the vertices of a hypercube.

To construct curves, surfaces, volumes and hypervolumes starting from n–simplices in Z4,
we must define a neighborhood between the points which compose the n–simplices. So we can
connect the discrete simplices and to construct discrete complexes in Z4. We can use discrete
complexes to represent objects in Z4. Since discrete complexes can include several parts of different
dimensions from 0 to 4, simultaneously, for representing a hypervolume, they can be referred to
as multidimensional object representations.

In this paper we work with hypervolumes, so our space of lattice points is Z4 and our grid is
consisting on overlapped 2× 2× 2× 2 hypercube formed by 16 mutually 80–adjacent (each point
has 80 neighbors, it is the maximal adjacency in dimension 4) 4–dimensional points. We can watch
an example of this grid in Figure 5.

Then, a thresholding process is applied to the hypervolume embedded in the grid. That
hypervolume is subdivided into pieces contained on the hypercubes such way that the vertices

60



Figure 5: 4–dimensional grid divided into overlapped 2 × 2 × 2 × 2 4–dimensional cubes (its
intersection is a 3–dimensional cube of 8 mutually 80–adjacent 4–dimensional points) formed by
16 mutually 80–adjacent 4–dimensional points.

of each piece are a finite subset of Z4. Now, we can obtain the cell complex associated to the
hypervolume.

4 Cell complex representation

In this section, we get the cell complex associated to the hypervolume X. Each cell (of any
dimension) is contained in an unit hypercube H of the grid. First, we determine the different
subsets of vertices of the hypercube and its corresponding convex hulls.

4.1 Determining basic cells

In this subsection, we assume that all the points in Z4 are assigned binary values (one or zero)
and that all points of a finite subset of Z4 have a value of 1 while all points in its complement
of have a value of 0. We recall that points whose values are 1 and 0 are called 1–points or black
points and 0–points or white points, respectively.

To obtain the different non-isometric configurations (different finite subsets) of points in the
unit hypercube, we develop an algorithm (Algorithm 1) based on graph techniques which consists
on associating to each configuration of points a weighted complete graph whose vertices are the
vertices of the configuration of points and whose edges are determined by the distance between
the points on the hypercube (see Figure 6 for an example).

Figure 6: Representation of the graph of vertices {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)} in Algorithm
1.

61



Algorithm 1

Input: set (CH) of the 16 vertices of a hypercube.
// Ω: empty list to save vertices of non-isometric graphs.
Output: non-isometric configurations of vertices of an unit hypercube.
begin

for c=0,...,16 do
Construct an ordered set Ωc with all the subsets of c vertices of CH .
for ω ∈ Ωc do

Gω weighted complete graph with adjacency matrix
Mω = ((mω)ij) where (mω)ij = kij ,
kij is the number of different coordinates (distance) between vi, vj ∈ CH

while ω ∈ Ωc & ω′ ∈ Ωc & ω′ < ω do
if Gω and Gω′ are isometric then
ω and ω′ are isometric
Ωc = Ωc − {ω}

end if
end while

end for
Ω = Ω

⋃
Ωc

end for

end

The idea of Algorithm 1 is based on building graphs “embedded” in the unit hypercube. The
adjacency matrix of each graph is determined according to the number of different coordinates
(distance) between each pair of these vertices.

Algorithm 1 compares the different graphs built starting from configurations of points of the
unit hypercube, saving only non-isometric graphs. So, identifying non-isometric configurations of
points with their respective associated graphs, we obtain all the non-isometric finite subsets of Z4

using Algorithm 1 for c = 0, ..., 16 (in fact, taking into account complement configurations, it is
only necessary to use the algorithm for c = 0, ..., 8 or for c = 8, .., 16).

The following result is essential to describe our polyhedral cell complex.

Theorem 1. Two configurations of points on the unit hypercube, C1 and C2, are isometric (their
corresponding associated graphs are isometric) if and only if its respective convex hulls CH(C1)
and CH(C2) are isometric.

Proof. By complements, it is only necessary to prove the result for configurations with c points
(for 0 ≤ c ≤ 8 or 8 ≤ c ≤ 16). We reason for these last ones.

If the convex hulls CH(C1) and CH(C2) are isometric, by definition they are isomorphism and
the distance between all its points are preserved. Particulary, the distance between the set of its
vertices C1 and C2 is preserved. Then C1 and C2 are isometric.

We suppose C1 = (pi)i and C2 = (qi)i are two isometric configurations with c points for
8 ≤ c ≤ 16, and let GC1 and GC2 be their corresponding associated graphs. It exists, by definition,
a bijective map f : (pi)i → (qi)i with pi ∈ C1 ⊆ GC1 and qi ∈ C2 ⊆ GC2 such that map f preserves
the distance between pi and qi. We want to prove there is an isometry from R4 to itself which
sends the first configuration to the second one. If c > 8, then we can extract a basis starting from
the system of vectors {pi−p0}1≤i≤c (resp. {qi−q0}1≤i≤c), so the result is obtained from linearity.
If c = 8, then: (a) if we can extract a basis starting from the system of vectors {pi − p0}1≤i≤8

(resp. {qi − q0}1≤i≤8), then we reason as before; (b) if we cannot extract a basis starting from
the system of vectors {pi − p0}1≤i≤8 (resp. {qi − q0}1≤i≤8), then (pi)1≤i≤8 (resp. (qi)1≤i≤8) are
on the same cube, and the faces of a hypercube are isometric.

62



Once obtained the vertices C of the basic cell CH(C) (the convex hull of these points), the
main question is to determine the boundary operator ∂ : Z[CH(C)] → Z[CH(C)] associated to
CH(C). With this algorithmic ingredient, we are able to design a look-up table of contractible
polyhedral cells which will be the building blocks of the cell complex homologically equivalent to
the digital object.

5 Boundary information of the closed cells

In this section we obtain the boundary operator for each constructed basic cell in the previous
section. The idea is that for each configuration of points C on the unit hypercube H, we can fix
the set of cells F on H having at least one point that does not belong to C. Moreover, it is possible
to organize this set by pairwise different ordered pairs (α(p),β(p+1)) (p = 0, 1, 2, 3), such that α is
a p–cell that belongs to F and β(p+1) is a (p+1)–cell such that α is a face of β. An algorithm to
decompose F in this way can be designed in a simple manner, by taking first the pairs vertices-
edges, and then edges-faces, and so on. At the end of the process, we cover all F (an even number of
cells). The next step is to define the combinatorial map φ : Cell(C) → Cell(C) by φ(α(p)) = β(p+1)

for each pair (α(p),β(p+1)) ∈ F . The linear map π : Z[H] → Z[H] is π = Id − dH ◦ φ − φ ◦ dH ,
in which Z[H] is the free abelian group of finite integer linear combination of cells constituting
the unit hypercube H; Id is the identity map; and dH is the boundary operator associated to
the unit hypercube cell complex H. π(H) = {x such that x = π(y) for some y} can be seen as a
cell complex. Establishing a chain contraction (H,π(H),π, g,φ) (where g is the inclusion map)
between this cell complex and the unit hypercube, we obtain the boundary operator of π(H).
Concretely, the boundary operator of π(H) is determined by the formula ∂ = π ◦ dH ◦ g = π ◦ dH .
Let us note that the boundary operator dH can be described using the following result (see [5]):

Lemma 1. Let H = L1 × L2 × L3 × L4 be a hypercube written as the cartesian product of four
segments. The boundary operator of H is given by the formula:

dH = ∂L1 × L2 × L3 × L4 − L1 × ∂L2 × L3 × L4 + L1 × L2 × ∂L3 × L4 − L1 × L2 × L3 × ∂L4

Summarizing, the couple (π(H), ∂) constitutes a basic closed cell and this information can be
saved for all the different point configurations on the unit hypercube H. See Figure 7 for an
example.

Figure 7: The boundary operator of the basic cell C is given by ∂ = π ◦ dH =
(v7, v5, v4, v13, v12, v7, v15, v1) + (v11, v10, v6, v14, v8, v3, v2, v0) + (v11, v6, v5, v14, v13, v7, v15, v3) −
(v10, v9, v4, v12, v8, v2, v1, v0) + (v10, v6, v4, v14, v12, v7, v15, v2) − (v11, v9, v5, v13, v8, v3, v1, v0) −
(v6, v5, v4, v7, v3, v2, v1, v0) + (v11, v10, v9, v14, v13, v12, v15, v8).

63



6 Conclusion and results

In this paper, we have shown a process of obtaining a cell representation of a 4–dimensional
digital object. Once specified the cell complex, homological information (Betti numbers, homology
generators and relation between them, cohomology algebra...) can be obtained using methods like
those employed in [5, 6, 7].

Four hundred configurations have been obtained when running Algorithm 2 using the sym-
bolic computation package Mathematica. These configurations are the pieces composing a 4–
dimensional cell complex associated to a hypervolume. Advanced homological information (in-
cluding homology generators and relations between them) can be obtained using local boundary
information of the basic hyperpolyhedral cells [5, 6, 7].

References

[1] Lorensen W. E. and Cline H. E. Marching cubes: A high-resolution 3d surface construction
algorithm. Computer Graphics, 21:163–169, 1988.

[2] Molina-Abril H., Pacheco A., and Real P. Homology-based cellularization for digital objects.
Submitted to Pattern Recognition Letters, 2010.

[3] Molina-Abril H. and Real P. Cell AT-models for digital volumes. LNCS, 5534:314–323, 2009.

[4] Mari J-L. and Real P. Simplicialization of digital volumes in 26–adjacency: Application to
topological analysis. Pattern Recognition and Images Analysis, 19:231–238, 2009.

[5] Kacynski K., Mischaikov, and Mrozek M. Computational Homology. Springer-Verlag, 2004.

[6] Mrozek M. and Batko B. Coreduction homology algorithm. Discrete and Computational
Geometry, 41:96–118, 2009.

[7] Mrozek M., Pilarczyk P., and Zelazna N. Homology algorithm based on acyclic subspace.
Computers and Mathematics with Applications, 55:2395–2412, 2008.

[8] Diestel R. Graph Theory. Springer-Verlag, Heidelberg, 2005.

[9] Fristch R. and Piccinini R. A. Cellular structure in topology. Cambridge University Press,
1990.

[10] Gonzalez-Diaz R., Jimenez M. J., Medrano B., Molina-Abril H., and Real P. Integral operators
for computing homology generators at any dimension. LNCS, 5197:356–363, 2008.

[11] Kenmochi Y., Imiya A., Nomura T., and Kotani K. Extraction of topological features from
sequential volume data. LNCS, 2059:33–345, 2001.

[12] Kong T. Y. and Rosenfeld A. Digital topology: introduction and survey. Computer Vision,
Graphics, and Image Processing, 48:357–393, 1989.

64


