
An XML–based Approach for the Automatic
Verification of Software Requirements Specifications?

Amador Durán, Beatriz Bernárdez, Antonio Ruiz, and Miguel Toro

Facultad de Informática y Estadística
Universidad de Sevilla

{amador,beat,aruiz,mtoro}@lsi.us.es

Abstract In this paper, we present an approach for the automatic verification of
software requirements specifications. This approach is based on the representa-
tion of software requirements in XML and the usage of the XSLT language not
only to automatically generate requirements documents, but also to verify some
desired quality properties and to automatically compute some metrics. These
ideas have been implemented in REM, an experimental requirements manage-
ment tool that is also described in this paper.

Keywords: requirements engineering, requirements verification, XML, XSLT

1 Introduction

Quality related activities in the requirements engineering process are basically require-
ments verification and validation. Paraphrasing Boehm [8], requirements validation and
verification could be informally defined by the questions:

validation: "Am I building the right requirements?"
verification: "Am I building the requirements right?"

In other words, the goal of requirements validation is to ensure that requirements
documents contain actual requirements and that these requirements are all the known
requirements by the time the requirements documents are baselined. On the other hand,
the goal of requirements verification is to ensure the quality of requirements according
to desired quality properties. Some of these quality properties have to do with require-
ments semantics but others have to do with syntactic, structural or pragmatic aspects
of requirements (see [18] for a complete classification of quality properties of require-
ments).

Verification of semantic properties of requirements is closely related to require-
ments validation and requires human participation. In fact, distinction between verifi-
cation of semantic properties of requirements and requirements validation is sometimes
subtle and many authors use both terms interchangeably. We think that verification of
non–semantic properties should be as automated as possible.

? This work is partially funded by the Spanish CICYT project GEOZOCO TIC 2000–1106–
C02–01 and by the international CYTED project WEST.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we present an automated approach for the verification of some quality
properties of requirements and for the automatic computing of requirements metrics.
Most of these properties can be classified as non–semantic, but we have also developed
some heuristics to check potential problems with some semantic properties. Our ap-
proach is based on the emergent technology built around XML [5] and its companion
language XSLT [4].

The rest of the paper is organized as follows. First, we briefly describe the basics
of XML and XSLT needed to understand the following sections. Then, we describe
REM, an experimental requirements management tool [13, 14], the XML model of
requirements used by REM and how XSLT can be used to verify some quality properties
of requirements expressed in XML. Finally, we discuss some related work, present some
results and point out future work.

2 XML and XSLT

2.1 XML Basics

There are millions of web pages written in HTML available in Internet. In these web
pages, pure information is mixed with formatting elements, making the automatic pro-
cessing of information very difficult. XML [5] is a language designed for representing
pure information in Internet. Information in XML is represented by elements. An XML
element is made up of a start tag, an end tag, and other tags or data in between. For
example, for representing the information about a book, we might have the following
XML element named book:

<book isbn="X-XXX-XXXX-X">
<author>Miguel de Cervantes</author>
<title>El Quijote</title>

</book>

As you can see, the information about a book is between the <book> and </book>
tags and it is easy to parse by a computer program. In fact, there are many XML parsers
available in Internet for almost any programming language. The author and title ele-
ments are considered as children of the book element, thus forming a hierarchy. An
XML document must always have one and only one root element at the top of its hier-
archy.

In order to allow information interchange between two or more parties using XML,
they must agree about element grammar and semantics. Element grammar is specified
as regular expressions in DTDs (Document Type Definitions) 1 [5]. For example, the
DTD fragment for the previous XML data might be the following:

<!ELEMENT book (author+,title)>
<!ATTLIST book isbn ID #REQUIRED>

<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

1 There exists an alternative to DTD, called XML Schemas, which is currently in a recommen-
dation status [6].

where it is denoted that a book element can contain one o more author elements and
only one title element. Possible cardinalities are represented by the ?, + and * symbols,
meaning zero or one, one or more and zero or more respectively. An XML element can
also have attributes. For example, isbn is defined as a required identification attribute
of book, i.e. there cannot exist two books with the same value for the isbn attribute
in the same XML document. Those elements that contain only text are said to contain
#PCDATA, that stands for parsed character data.

2.2 Transforming XML

There are many situations in which XML data need to be transformed. For example,
for representing the same information according to another set of tags or for presenting
XML data in an HTML page. XSLT [4] is a language based on transformation patterns.
An XSLT stylesheet, which is also a an XML document, searches for patterns in the
XML data and applies programmed transformations, thus generating some output re-
sults. For example, if we wanted to show information about books in a web browser,
we could apply the following XSLT transformation rule:

<xsl:template match="book">
<xsl:value-of select="title"/>
(ISBN <xsl:value-of select="@isbn"/>)
was written by
<xsl:value-of select="author[1]"/>

</xsl:template>

The informal semantics of this XSLT rule are "when you find a book element, generate
its title in boldface, then its ISBN attribute (notice the @ prefix for attributes), and then
its first author in emphasized mode". In the XSLT code, text literals like HTML tags
can be mixed with element values, which are obtained by means of the xsl:value-of
statement. If we applied this XSLT rule to the previous XML data, the result of the
transformation would be something like this when rendered in a web browser:

El Quijote (ISBN X-XXX-XXXX-X) was written by Miguel de Cervantes

Although there are many more details about XML and XSLT, we think that this brief
introduction should be enough for those readers not familiar with XML technologies in
order to understand the rest of this paper.

3 REM: An XML–based Requirements Management Tool

REM (REquirements Manager) is an experimental requirements management tool de-
veloped by one of the authors as part of his PhD. Thesis [13, 14]. In REM, a require-
ments engineering (RE) project is considered to be composed by three documents:

1. a customer–oriented requirements document (the requirements document [19]),
usually containing requirements in natural language expressed in terms of cus-
tomer’s vocabulary, also known as C–requirements [10].

2. a developer–oriented requirements document (the specification document [19]),
usually containing requirements models and more technical information, also called
D–requirements [10].

3. a registry for detected conflicts and negotiation support.

In REM, C–requirements and conflicts are expressed in natural language using pre-
defined requirements templates and some linguistic patterns (see [14] for details). For
expressing D–requirements, we have chosen a subset of the UML [9] with strong influ-
ences from [11] and [12].

3.1 REM Architecture

REM documents, i.e. RE projects composed by the three documents previously de-
scribed, are stored in relational light–weight databases. When the user creates a new
REM document, the basic structure is taken from a REM base document (see figure 1),
that can be empty or can contain the mandatory sections of software requirements stan-
dards like [1] or [21]. Any ordinary REM document can be selected as a base document,
so users can create their own base documents or reuse other REM documents.

������

���
��������
���

��������

�������	�
��
�
�
���

�������	�
��
�
�
���

����
����������
����

����������

���
����
���
����

���
����	��
��� ����
����

���
����	��
��� ����
����

���
����
���
����

���
����	��
��� ����
����

���
����	��
��� ����
����

���
���
���
��� 	
������ �����������

�������
����������	

����������� �����	

��� �����	

���
������	��
���

������	��
�����	�
���

�����	�
���

��� ����
��������
��� ����
��������

Figure1. REM Architecture

In order to provide immediate feedback on user actions, REM generates XML data
corresponding to the document being edited, applies an external XSLT stylesheet that
transforms XML data into HTML and shows the resulting HTML to the user. In this

�������� ���	
���������� ���	
��

��� ������� ������

�� ���� �������

�� ���� �����

������� ����������� ����

Figure2. REM User Interface

way, whenever the user changes a requirements document, he or she can see the effects
immediately.2

In a similar way the REM base document can be tailored, the user can also change
document appearance by selecting or creating different external XSTL stylesheets. The
default XSLT stylesheet generates a highly hyperlinked document, easing navigation of
requirements documents (see right side of figure 2).

Other configurable aspect of REM is the language of the user interface. The user can
choose it by selecting an external resource dynamic link library (DLL). At the moment
of writing, we have developed two external resource DLLs for REM, one in Spanish
and other in English. Another one in Portuguese is under development.

3.2 REM User Interface

The user interface of REM presents two different views to the user (see figure 2). On
the left, the user can see a tabbed view with three tree views, one for each requirements
document in the RE project. On the right hand, the result of the XSLT transformation
of the XML data is presented to the user in a embedded web browser.

2 Actually, the performance of XSLT transformations depends on the size of the XML data,
i.e. the requirements, and the XSLT transformations to be applied. For big documents, the
transformation takes a few seconds and cannot be considered as immediate.

In any of the three tree views, the user can directly manipulate objects by drag and
drop or by context menus. Only actions that have sense can be performed, following
a correct–by–construction approach, thus increasing quality and saving verification ef-
fort. For example, actions of use case steps can be of three different classes (see figure
4): actor action, if the action is performed by an actor; system action if the action is
performed by the system, or use case action, if the action consists of performing other
use case, i.e. an use case inclusion or extension [9]. Actor actions and use case actions
can be created only if some actor or another use case have been previously created. In
general, objects can be created by means of context menus on potential parents or by
means of the creation toolbar.

4 XML Model of Requirements in REM

REM is based on an object–oriented model of requirements described in [13] (a partial
view of this model is shown in figures 3 and 4). The main object class of the model
is the Requirements Document, that is composed of a sequence of REM objects (see
figure 3 for a classification of REM objects).

REMObject

Section/Appendix Paragraph/GlossaryItem

ExternalGraphicFile TraceabilityMatrix

Organization

Stakeholder

Meeting C-Re quirement

Objectiv e

Actor

InformationRequirement

ConstraintRequirement FunctionalRequirement

NonFunctionalRequirement

D-Requirement

ObjectType ValueType AssociationType

SystemOperation

Conflict

{al ias= UseCase }

Figure3. Classification of objects in REM

We have translated our UML model of requirements into a relational schema and
into a DTD following the heuristics described in [7]. As an example, the UseCase
class in figure 4 has been translated into the following DTD element definition:

<!ELEMENT rem:useCase (
rem:name, rem:version, rem:authors?, rem:sources?, rem:comments?,
rem:importance, rem:urgency, rem:status, rem:stability,
rem:isAbstract?, rem:triggeringEvent, rem:precondition, rem:postcondition,
rem:frequency, rem:step*)>

<!ATTLIST rem:useCase oid ID #REQUIRED>

name
version
comments

REMObject

importance
urgency
status
stability

C-Requirement

isAbstract
tr iggeringEvent
precondition
postcondition
frequency

UseCase Step*
{ordered}

0. .1

description

Condition

*
description
termination

Exception

Action

1..1

1. .1

description

ActorAction

description
performance

SystemAction

{dis joint}

Actor

UseCaseAction
*

*

1..1

1. .1

...

...

{disjoint }

{dis joint }

Stakeholder

Trace

*
sources

*
authors

source

1. .1

1..1 target

Figure4. UML model of use cases in REM

Many of the elements in the previous DTD fragment (comments, triggeringEevent,
pre and postcondition), contains only text, i.e. natural language. In REM, text can be
composed of any combination of free text, references to other objects and TBD (To Be
Determined) marks, defined as follows:

<!ELEMENT rem:text (#PCDATA|rem:ref|rem:tbd)*>
<!ELEMENT rem:ref (#PCDATA)>

<!ATTLIST rem:ref oid IDREF #REQUIRED>
<!ELEMENT rem:tbd EMPTY>

where the rem:ref element must have a required attribute called oid that it is declared
as an IDREF, i.e. a reference to other element with a matching identification attribute
value. The concept of an IDREF attribute is very similar to the foreign key concept in
relational databases.

The rem:tbd element is declared as an EMPTY element, i.e. it cannot have neither
subordinate elements nor data. It is simply a mark.

The DTD elements corresponding to use case steps and actions of figure 4 have
been described as follows:

<!ELEMENT rem:step (
rem:number, rem:condition?,
(rem:systemAction | rem:actorAction | rem:useCaseAction),
(rem:stepException*),
rem:comments)>

<!ATTLIST rem:step oid ID #REQUIRED>

<!ELEMENT rem:systemAction (
rem:description, rem:performance?)>

<!ELEMENT rem:actorAction (rem:description)>
<!ATTLIST rem:actorAction actor IDREF #REQUIRED>

<!ELEMENT rem:useCaseAction EMPTY>
<!ATTLIST rem:useCaseAction useCase IDREF #REQUIRED>

<!ELEMENT rem:stepException (
rem:condition,
(rem:systemAction | rem:actorAction | rem:useCaseAction),
rem:termination,
rem:comments)>

<!ATTLIST rem:stepException oid ID #REQUIRED>

Elements not defined in the previous DTD code (condition, description, termina-
tion, etc.) are defined as containing only text. For example:

<!ELEMENT rem:condition (#PCDATA|rem:ref|rem:tbd)*>

5 Using XSLT as a Requirements Verification Language

In the following sections we describe how some of the quality factors described in [15]
can be automatically verified using XSLT when requirements are electronically stored
in XML format according to the REM DTD.

5.1 Unambiguity

A requirement is unambiguous if and only if has only one possible interpretation [1].
Obviously, this is a semantic property of a requirement and cannot be automatically
verified, but we can give some hints about potential ambiguities in a requirements doc-
ument.

We agree with Leite [16] in the importance of understanding the language of the
problem and in the importance of building a glossary (called Language Extended Lex-
icon, LEL, in [16]). Following Leite, the glossary should follow two principles: the

principle of circularity, (the glossary must be as self–contained as possible) and the
principle of minimal vocabulary (use as much glossary items as possible in your re-
quirements descriptions). Leite’s principles cannot guarantee unambiguity, but they can
help to build unambiguous, understandable, verifiable, consistent, concise, and cross–
referenced requirements [15].

XSLT can be used to measure glossary circularity (GLC) and minimality of vocabu-
lary (MOV). GLC can be measured as the ratio between glossary items and references to
glossary items from other glossary items, according to the following formula expressed
using a Z–like notation [24]:

GLC =
#GlossaryItem

#

[
fg : GlossaryItem � g :ref g

where the numerator is the number of glossary items and the denominator is the size
of the union of all sets of references inside the text of all glossary items. The following
XSLT code, where we have declared a variable for the sake of readability, can be used
for computing GLC:

<xsl:variable name="GLC"
select="count(//rem:glossaryItem) div

count(//rem:glossaryItem//rem:ref)"/>

<xsl:value-of select="format-number($GLC, ’#0.00’)"/>

where the expression //rem:glossaryItem is an XPath expression [3] meaning "any
rem:glossaryItem element descendant of the root", whereas the expression //rem:glos-
saryItem//rem:ref means "any rem:ref element descendant of any rem:glossaryItem
descendant of the root". In XPath, the language for building navigation expressions over
XML trees, an element is considered as descendant of other element if it is its child at
any level of depth in the hierarchy.

A similar ratio between the number of references to glossary items in requirements
and the number of requirements can be used to measure MOV:

MOV =

#

[
freq : Requirement � req :ref g

#Requirement

From the MOV viewpoint, it is also possible to detect those "suspicious" require-
ments that do not have any reference to any glossary item in their text. Since those
requirements are not using the vocabulary of the customer, they should be checked for
potential problems of ambiguity or understandability [15]. For example, if we want to
know what use cases are "suspicious", we can use the following XSLT code:

<xsl:template match="rem:useCase[not(.//rem:ref)]"/>
Use case
<xsl:value-of select="rem:name"/>
does not use any glossary item

</xsl:template>

where the match expression uses brackets to select only those use cases with no de-
scendant references. Another possibility is to determine a threshold value for the num-
ber of references per requirement and consider as suspicious all requirements with a
number of references under the threshold. In that case, the match expression would be
rem:useCase[count(.//rem:ref) < m], with m being the MOV threshold. We are cur-
rently researching proper values for the MOV threshold taking our students’ projects as
reference data.

5.2 Completeness

A requirements document is complete if it includes [15]:

1. Everything that the software is supposed to do, i.e. all the requirements
2. Responses of the software to all classes of input data in all realizable situations
3. Page numbers, figure and table names and references, a glossary, units of measure

and referenced material
4. No sections marked as TBD

The two first completeness conditions have to do with semantic properties of re-
quirements and are therefore out of the scope of our approach. On the other hand,
the third completeness condition is partially satisfied by means of the correct–by–
construction paradigm of REM: figure and table names are automatically generated,
references are automatically inserted and updated, and the user can easily create a glos-
sary. If we want to be sure about the existence of a section named Glossary, we can
apply the following XSLT code:

<xsl:choose>
<xsl:when test="//rem:section[rem:name=’Glossary’]"/>
There is a glossary

</xsl:when>
<xsl:otherwise>
There is no glossary

</xsl:otherwise>
</xsl:choose>

where the structure formed by xsl:choose, xsl:when and xsl:otherwise is basically an
if–else–endif statement with multiple else branches. Notice that if we want to check
the existence of an element we cannot use an XSLT template. If there is no such an
element, the template will never match and we will have no output.

Similar XSLT code can be used to verify if requirements documents are organized
[15], i.e. if they have mandatory sections in the mandatory order with mandatory con-
tent.

The fourth condition of completeness, the absence of TBD marks, can be easily
verified using XSLT. If we want to know how many TBD marks are in a requirements
document we can apply the following XLST code:

There are
<xsl:value-of select="count(//rem:tbd)"/>
TBD marks

that would generate in the output the number of occurrences of elements of type rem:tbd
anywhere in the XML data. If we want to be more precise and we want to know, for
example, what use cases have TBD marks inside their text and how many TBD marks
they have, we can write the following XSLT code:

<xsl:template match="rem:useCase[.//rem:tbd]"/>
Use case <xsl:value-of select="rem:name"/>
has <xsl:value-of select="count(.//rem:tbd)"/>
TBD marks

</xsl:template>

in which the select expression "rem:useCase[.//rem:tbd]" means "any use case with
at least one descendant element of type rem:tbd".

5.3 Traceability

In [15], a requirements document is said to be traceable if and only if it is written in
a manner that facilitates the referencing of each individual requirement. Since REM
assigns automatically an unique identifier to every requirement (the required identifier
attribute oid, see the DTD for use cases in section 4 as an example), this quality factor
does not have to be verified explicitly.

What it must be checked is if the origin of every requirement is clear, i.e. if require-
ments are traced in the sense described in [15]. In our UML model of requirements, any
REM object can be traced to and from other REM objects and to their human sources
and authors (see figure 4). Checking if a requirement has sources and authors and if it
is traced to or from other requirements is easy with XSLT. For example, the following
XSLT template will match all use cases with no human sources:

<xsl:template match="rem:useCase[not(rem:sources)]">
Use case <xsl:value-of select="rem:name"/>
has no defined sources

</xsl:template>

And this XSLT template will match all non functional requirements not traced to
other REM objects:

<xsl:template match="rem:nonFunctionalRequirement">
<xsl:if test="not(//rem:trace[@source=current()/@oid])">
Non functional requirement <xsl:value-of select="rem:name"/>
is not traced to any object

</xsl:if>
</xsl:template>

In REM, traces are defined as elements with two required attributes of type IDREF,
namely source and target. The user of REM can also use traceability matrices for
visual checking of non–traced requirements (see figure 5).

Figure5. REM Traceability matrix example

5.4 Other verifiable quality factors

Applying the same ideas, other quality factors defined in [15] can be verified using
XSLT, for example:

– What requirements are not annotated with relative importance, relative stability or
version.

– What requirements have potentially ambiguous words in their description, like easy
to, user–friendly, etc. by means of XSLT string functions like contains [4].

– If use cases are not well structured, i.e. if there are too few or too many includes or
extends relationships (see figure 6).

– What use cases have too few [17] or too many steps, or too much exceptions, i.e.
too many alternative courses (see figure 6).

– What actors do not participate in any use case [17].

6 Related Work

Most work on automated requirements verification is based on Natural Language Pro-
cessing (NLP), like [18] or [20]. Those approaches, focused on semantic analysis of
requirements, usually make requirements engineers write requirements in a subset of
natural language, demand many computer resources and have not been widely adopted
in industry, probably because of their complexity.

Figure6. REM Verification report example

The Automated Requirement Measurement (ARM) tool [22], is probably the most
related work to the approach presented in this paper. It is a simple yet powerful tool
that scans requirements documents searching for indicators, i.e. words that have been
identified as indicators of good or bad quality properties.

Our approach does not use NLP but an open, simpler and lighter technology like
XML/XSLT. We can offer the same functionality of ARM plus all additional verification
described in previous sections. What is more, the user of REM can define his or her own
XSLT verification stylesheets. From a practical point of view, we think that our results
are useful for the average requirements engineer.

7 Conclusions and Future Work

In this article we have briefly presented an automated approach for the verification of
software requirements. Our approach is based on a open technology like XML and
XSLT. In fact, if requirements are represented in XML using a different DTD, many
of the XSLT code presented in this paper should be easily adapted. Our approach does
not need hard computer resources and it has proved to be useful when used with our
students at the University of Seville.

Our future work is focused in developing quality metrics, so we can detect potential
problems with requirements comparing quantitative values. We expect to identify some
useful metrics soon by applying data mining techniques to the requirements documents
generated by our students at the University of Seville and in other universities in the
context of the CYTED project WEST, where the REM tool will be used soon.

Another lines for future work will be the developing of XSLT stylesheets for com-
puting use case points [23] and for visualization of computed values in web browsers
using VML (Vector Markup Language) [2].

References

[1] IEEE Recommended Practice for Software Requirements Specifications. IEEE/ANSI Stan-
dard 830–1998, Institute of Electrical and Electronics Engineers, 1998.

[2] Vector Markup Language (VML). W3C Note, May 1998.
[3] XML Path Language (XPath) 1.0. W3C Recommendation, November 1999.
[4] XSL Transformations (XSLT) 1.0. W3C Recommendation, November 1999.
[5] Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation, Octo-

ber 2000.
[6] XML Schema Part 0: Primer. W3C Recommendation, May 2001.
[7] M. Blaha and W. Premerlani. Object-Oriented Modeling and Design for Database Appli-

cations. Prentice–Hall, 1998.
[8] B. W. Boehm. Verifying and Validating Software Requirements and Design Specifications.

IEEE Software, 1(1):75–88, 1984.
[9] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.

Addison–Wesley, 1999.
[10] J. W. Brackett. Software Requirements. Curriculum Module SEI–CM–19–1.2, Software

Engineering Institute, Carnegie Mellon University, 1990.
[11] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.

Object–Oriented Development. The Fusion Method. Prentice–Hall, 1994.
[12] D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks with UML: The

Catalysis Approach. Addison–Wesley, 1999.
[13] A. Durán. A Methodological Framework for Requirements Engineering of Information

Systems (in Spanish). PhD thesis, University of Seville, 2000.
[14] A. Durán, B. Bernárdez, A. Ruiz, and M. Toro. A Requirements Elicitation Approach Based

in Templates and Patterns. In WER’99 Proceedings, Buenos Aires, 1999.
[15] A. Davis et al. Identifying and Measuring Quality in a Software Requirements Specifica-

tion. In Proceedings of the 1st International Software Metrics Symposium, 1993.
[16] J. C. S. P. Leite et al. Enhancing a Requirements Baseline with Scenarios. In Proceedings

of the 3rd IEEE International Symposium on Requirements Engineering (RE’97), 1997.
[17] J. C. S. P. Leite et al. A Scenario Construction Process. Requirements Engineering Journal,

5:38–61, 2000.
[18] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri. Achieving Quality in Natural

Language Requirements. In Proceedings of the 11 th International Software Quality Week,
1998.

[19] B. L. Kovitz. Practical Software Requirements: A Manual of Content & Style. Manning,
1998.

[20] N. A. Maiden, M. Cisse, H. Perez, and D. Manuel. CREWS Validation Frames: Patterns
for Validating Systems Requirements. In Fourth International Workshop on Requirements
Engineering: Foundation for Software Quality (RESFQ), 1998.

[21] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, and R. Stevens. Software
Engineering Standards. Prentice–Hall, 1994.

[22] L. Rosenberg, T. Hammer, and J. Shaw. Software Metrics and Reliability. In 9th Interna-
tional Symposium on Software Reliability Engineering, 1998.

[23] G. Schneider and J. P. Winters. Applying Use Cases: a Practical Guide. Addison–Wesley,
1998.

[24] J. M. Spivey. The Z notation: a Reference Manual. Prentice Hall, 2a edition, 1992.

