
1

A first step towards a framework for the automated
analysis of feature models

David Benavides, Sergio Segura, Pablo Trinidad, Antonio Ruiz-Cort́es
Dpto. of Computer Languages and Systems

University of Seville
{benavides, sergio, trinidad, aruiz}@tdg.lsi.us.es

Abstract— Feature modelling is a common mechanism for
variability management in the context of software product lines.
After years of progress, the number of proposals to automatically
analyse feature models is still modest and the data about the
performance of the different solvers and logic representations
used in such area are practically non–existent. Three of the most
promising proposals for the automated analysis of feature models
are based on the mapping of feature models into CSP, SAT and
BDD solvers. In this paper we present a performance test between
three off-the-shelf Java CSP, SAT and BDD solvers to analyse
feature models which is a novel contribution. In addition, we
conclude that the integration of such proposals in a framework
will be a key challenge in the future.

Index Terms— Software Product Lines, Variability Manage-
ment, Feature Models.

I. I NTRODUCTION

Feature Models (FMs) are one of the most common vari-
ability mechanisms. Good tool support is needed to debug,
extract information and in summary analyze FMs in order to
select them as a variability mechanism in a Software Product
Line (SPL) approach. A FM represents all possible products
of a SPL in a single model using features. FMs can be used in
different stages of development such as requirements engineer-
ing [10], [11] , architecture definition or code generation [1],
[3]. A FM is a tree–like structure and consists of:i)relations
between a parent feature and its child features.ii) cross–tree
constraints that are typically inclusion or exclusion statements
of the form “if feature F is included, then feature X must also
be included (or excluded)”.

Automated analysis of FMs is an important challenge in
SPL research [1], [2]. It can be performed using off–the–
shelf solvers to automatically extract useful informationof
the SPL such as the number of possible combinations of
features, all the configurations following a criteria, finding
the minimum cost configuration, etc. Although there have
been some promising proposals based in the representation
of FMs as a Constraint Satisfaction Problem (CSP), boolean
SATisfiability problem (SAT) and Binary Decision Diagrams
(BDD) the performance of the solvers working with such
representations is unknown for the SPL community.

In a previous work, we presented a performance comparison
of two CSP java solvers analysing FMs [8]. In this paper we go
further integrating different solvers and logic representations.
First we give a complete mapping for the three solvers (BDD,
SAT and CSP) and then we present a performance comparison

of them. To the best of our knowledge, this is the first test that
measures the performance of solvers dealing with different
logic representations of FMs.

The remainder of the paper is structured as follows: in
Section II the automated analysis of FMs is outlined and
details on how to translate a FM into a CSP, BDD and SAT are
presented. Section III focuses on the results of the experiment.
Finally we summarize our conclusions and describe our future
work in Section IV.

II. A UTOMATED ANALYSIS OF FEATURE MODELS

Once a FM is translated into a suitable representation it is
possible to use off–the–shelf solvers to automatically perform
a great variety of operations such as calculating the number
of possible combinations of features, retrieving configurations
following a criteria, finding the minimum cost configuration,
etc [6].

There is a great variety of techniques and tools that can be
used in the automated analysis of FMs. This paper focus on
three well known problems in the area of automated reasoning:
Constraint Satisfaction Problems (CSP), Boolean Satisfiability
Problems (SAT) and Binary Decision Diagrams (BDD). All
those representations have not been yet fully adopted in the
automated analysis of FMs. In the next sections we will give
a brief overview of each of them and finally we will introduce
how translating a FM into a CSP, SAT and BDD.

A. Constraint Satisfaction Problem

Constraint Programming can be defined as the set of tech-
niques such as algorithms or heuristics that deal with CSPs.
A CSP consists on a set of variables, finite domains for those
variables and a set of constraints restricting the values of
the variables. A CSP is solved by finding states (values for
variables) in which all constraints are satisfied. CSP solvers
can deal with numerical values such as integer domains. The
main ideas concerning the use of constraint programming on
FM analysis were stated in [6], [7].

B. Boolean Satisfiability Problem (SAT)

A propositional formula is an expression consisting on a
set of boolean variables (literals) connected by logic opera-
tors (¬,∧,∨,→,↔). The propositional satisfiability problem
(SAT) consists on deciding whether a given propositional

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

formula is satisfiable, that is, if logical values can be assigned
to its variables in a way that makes the formula true.

The problem is restricted by using the propositional formu-
las in conjunctive normal form (CNF), that is, propositional
formulas composed by a conjunction of clauses in which each
clause is a disjunction of literals(e.g.((L1∨L2)∧(L3∨L4)∧
(L5∨L6))). Every propositional formula can be converted into
an equivalent formula in CNF by using logical equivalences.
The basic concepts about the using of SAT in the automated
analysis of FMs were introduced in [1].

C. Binary Decision Diagrams (BDD)

A Binary Decision Diagram (BDD) is a data structure used
to represent a boolean function. A BDD is a rooted, directed,
acyclic graph composed by a group of decision nodes and
two terminal nodes called 0-terminal and 1-terminal. Each
node in the graph represents a variable in a boolean function
and has two child nodes representing an assignment of the
variable to 0 and 1. All paths from the root to the 1-terminal
represents the variable assignments for which the represented
boolean function is true meanwhile all paths to the 0-terminal
represents the variable assignments for which the represented
boolean function is false.

Although the size of BDDs can be reduced according to
some established rules, the weakness of this kind of represen-
tation is the size of the data structure which may vary between
a linear to an exponential range depending upon the ordering
of the variables. Calculating the best variable ordering isan
NP-hard problem. In the context of the automated analysis of
FMs there are some tools that claim the internal use of BDDs
[9]

D. Mapping

Rules for translating FMs to constraints are listed in Figure
1. In all cases the notation more common in the bibliography
has been used. The final representation of the FM is the
conjunction of the translated relations following the rules of
Figure 1 plus an additional constraint selecting the root which
is included in all products.

III. E XPERIMENTAL RESULTS

The experiments focused on a performance comparison of
three off–the–shelf Java solvers working with CSP, SAT and
BDD in order to test how these representations can influence
in the automatic analysis of FMs. The comparison results were
obtained from the execution of a number of FMs mapped as
CSP, BDD and SAT in three of the most popular Java solvers
within the research community: JaCoP1 (CSP), JavaBDD2

(BDD) and Sat4j3 (SAT).

1http://www.cs.lth.se/home/Radoslawzymanek/
2http://javabdd.sourceforge.net
3http://www.sat4j.org

N. of Features N. of instances Dependencies
[50-100) 50 [0%-25%]
[100-150) 50 [0%-25%]
[150-200) 50 [0%-25%]
[200-300] 50 [0%-25%]

TABLE I

EXPERIMENTS

A. The Experiment

we used four group of 50 randomly generated FMs. Each
group included FMs with a number of features in an specific
range ([50-100),[100-150),[150-200) and [200-300)) witha
double aim: test the performance of small, medium and large
instances and working out averages from the results in order
to avoid as much exogenous interferences as possible. After
formulating each one as a CSP, BDD and SAT, we proceeded
with the execution. Each FM was executed several times
increasing the number of cross–tree constraints from one until
the 25% of the number of the features in the FM in order
to find out how dependencies influence in the performance.
The dependencies were added randomly as well, but cheking
that the same feature can not appear in more than one cross–
tree constraint and that a feature can not have a cross–tree
constraint with any of its ancestors. Averages were obtained
from all the FMs in each range with the same percentage of
cross–tree constraints. Table I summarizes the characteristics
of the experiments.

As exposed in [6], [7], there are some operations that can be
performed. For our experiments we performed two operations:
i) finding out if a model is satisfiable, that is, if it has at last
one solution andii) finding the total number of configurations
of a given FM. The first one is the simplest operation while
the second is the hardest one in terms of performance because
it is necessary to work out the total number of possible
combinations. The data extracted from the tests were:

• Average memory used by the logic representation of the
FM (measured in Kilobytes)

• Average execution time to find one solution (measured in
milliseconds).

• Total number of solutions, that is, the potential number
of products represented in the FM.

• Average execution time to obtain the number of solutions
(measured in milliseconds).

In order to evaluate the implementation, we measured its
performance and effectiveness. We implemented the solution
using Java 1.5.004. We ran our tests on a WINDOWS XP
PROFESSIONAL SP2 machine equipped with a 3Ghz Intel
Pentium IV microprocessor and 512 MB of DDR RAM
memory.

B. The Results

The experimental comparison revealed some interesting
results. The first evidence was that JavaBDD is on average
96% faster than JaCoP and 75% faster than Sat4j finding
one solution. However, JavaBDD revealed a memory usage
on average 928% higher than JaCoP and 1672% higher than
Sat4j. On the other hand, although JaCoP and Sat4j showed



3

Fig. 1. Mapping

a similar memory usage, SAT representation showed better
results in both aspects, memory and especially in time. The
performance of the solvers was similar in the four groups of
experiments. Figures 2 and 3 presents the results for the group
of FMs with a number of features between 100 and 150.

In fact, Figure 2 can be confusing in the sense that in the
worst case the memory usage is insignificant (in the order of 2
Mb) but this behavior seems to be exponential with the number
of features and dependencies. For instance, in the range of
(200-300) features, we found some cases where the memory
used by the solver was around 300 Mb. We think that in bigger
FMs (e.g. 1000 features) this can be even a bigger problem.
What Figure 2 try to stress is the difference in the use of
memory of the three solvers.

The results obtained from finding the total number of
configurations of a given FM showed a great superiority
of JavaBDD. While JaCoP and Sat4j were computationally
incapable of performing that operation in a reasonable timein
most of the cases, JavaBDD lasted 5312 ms to work out the

7.77 × 1034 solutions of the worst case.
Finally, we found some unexpected results or outliers in the

data obtained from the experiments with JaCoP and JavaBDD.
On the one hand, JaCoP showed in a few consecutive ex-
ecutions a huge number of backtracks and consequently a
great time penalty. On the other hand, JavaBDD revealed in
a few experiments a huge memory usage which seemed to
increase exponentially with the number of dependencies. We
are investigating the possible causes of these behaviors [5].

C. Discussion

The great superiority of JavaBDD on finding the total
number of solutions is because for calculating the number of
solutions, in general, CSP and SAT solvers have to retrieve all
the solutions (which is a #P-complete problem [12]) mean-
while BDD solvers use efficient graph algorithms to calculate
the total number of solutions without the need of calculating
all the solutions. The huge memory usage of BDD solvers
depends on the variable ordering for representing the BDD.



4

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

M
em

o
ry

(K
B

)

Memory BDD Memory CSP Memory SAT

Fig. 2. Memory Usage

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

T
im

e
(m

s
)

Time BDD Time CSP Time SAT

Fig. 3. Average time to get one solution

As stated earlier, the size of BDDs can be reduced with a
good variable ordering, however, calculating the best variable
ordering is a NP-hard problem.

To the best of our knowledge, there is only a proposal to
include feature attributes in the automated analysis of feature
models [6]. This proposal uses CSP solvers for that aim and we
are not aware of any result where BDD or SAT solvers could
be used to deal with feature attributes in order to maximize
or minimize values.

As a result of the test, we claim that there is not an
optimum representation for all the possible operations that can
be performed on FMs. Therefore, we think that a framework
for the automated analysis of feature models is needed. The
framework will be designed to be open to other solvers where
formal semantics of feature models will play a fundamental
role [13]. The development of such a framework is the seed
of our ongoing research [4].

IV. CONCLUSION AND FUTURE WORK

In this paper we integrated the use of different solvers in
the automated analysis of FMs. We presented how to translate
a feature model into a CSP, SAT and BDD and we performed
a comparative test between three off–the–shelf Java solvers
managing with each representation. The results showed that
using BDDs for determining satisfiability in a FM is much

faster than using SAT or CSP. On the other hand, FMs mapped
as BDDs required a bigger memory usage in comparison with
CSP and SAT. The test also revealed that while FMs mapped
as SAT and CSP are computationally incapable of finding the
total number of configurations in most of medium and large
size FMs, FMs mapped as BDDs can get it in a very low time.

We think that there is not an optimum representation for
all the possible operations that can be performed on FMs,
therefore a framework for the automated analysiss of feature
models is needed.

ACKNOWLEDGEMENTS

We thank Don Batory and Jean-Christophe Trigaux for their
helpful comments on an earlier draft of this paper.

REFERENCES

[1] D. Batory. Feature models, grammars, and propositional formulas. In
Software Product Lines Conference, LNCS 3714, pages 7–20, 2005.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis
of feature models: Challenges ahead.Communications of the ACM,
Conditionally accepted, 2006.

[3] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise refine-
ment. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[4] D. Benavides, A. Duŕan, A. Ruiz-Cort́es, P. Trinidad, and S. Segura. A
framework for the automated manipulation of software product lines. In
preparation.



5

[5] D. Benavides, A. Ruiz-Cortés, B. Smith, Barry O’Sullivan, and
P. Trinidad. Computational issues on the automated analyses of feature
models using constraint programming.International Journal of Software
Engineering and Knowledge Engineering, in preparation, 2006.

[6] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning
on feature models.LNCS, Advanced Information Systems Engineering:
17th International Conference, CAiSE 2005, 3520:491–503, 2005.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint pro-
gramming to reason on feature models. InThe Seventeenth International
Conference on Software Engineering and Knowledge Engineering, SEKE
2005, 2005.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using java
csp solvers in the automated analyses of feature models.LNCS, to be
asigned:to be asigned, 2006.

[9] K. Czarnecki and P. Kim. Cardinality-based feature modeling and
constraints: A progress report. InProceedings of the International
Workshop on Software Factories At OOPSLA 2005, 2005.

[10] S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant
requirements in domain modeling.The Journal of Systems and Software,
68(3):171–182, 2003.

[11] M. Mannion. Using First-Order Logic for Product Line Model Valida-
tion. In Proceedings of the Second Software Product Line Conference
(SPLC2), LNCS 2379, pages 176–187, San Diego, CA, 2002. Springer.

[12] G. Pesant. Counting solutions of csps: A structural approach. InIJCAI,
pages 260–265, 2005.

[13] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature
Diagrams: A Survey and A Formal Semantics. InProceedings of the
14th IEEE International Requirements Engineering Conference (RE’06),
Minneapolis, Minnesota, USA, September 2006.


