v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by idUS. Depésito de Investigacion Universidad de Sevilla

A first step towards a framework for the automatec
analysis of feature models

David Benavides, Sergio Segura, Pablo Trinidad, Antonio fRgrés
Dpto. of Computer Languages and Systems
University of Seville
{benavides, sergio, trinidad, ardi@tdg.lsi.us.es

Abstract— Feature modelling is a common mechanism for of them. To the best of our knowledge, this is the first test tha
variability management in the context of software product lines. measures the performance of solvers dealing with different
After years of progress, the number of proposals to automaticidy logic representations of FMs.

analyse feature models is still modest and the data about the . . .
performance of the different solvers and logic representations The remainder of the paper is Structureq as fqllows. in
used in such area are practically non—existent. Three of the most Section Il the automated analysis of FMs is outlined and
promising proposals for the automated analysis of feature models details on how to translate a FM into a CSP, BDD and SAT are
are based on the mapping of feature models into CSP, SAT and presented. Section Il focuses on the results of the exgeim

BDD solvers. In this paper we present a performance test betwee ; ; ;
three off-the-shelf Java CSP, SAT and BDD solvers to analyse ng:l?nwseeizgnnrqglze our conclusions and describe our éutur

feature models which is a novel contribution. In addition, we
conclude that the integration of such proposals in a framework

will be a key challenge in the future. Il. AUTOMATED ANALYSIS OF FEATURE MODELS

Index Terms—Software Product Lines, Variability Manage- QOnce a FM is translated into a suitable representation it is
ment, Feature Models. possible to use off-the—shelf solvers to automaticallyquer
a great variety of operations such as calculating the number
I. INTRODUCTION of possible combinations of features, retrieving configare

Feature Models (FMs) are one of the most common Vaﬁ:_)llowmg a criteria, finding the minimum cost configuratjon

ability mechanisms. Good tool support is needed to deb ¢ [6].)))
extract information and in summary analyze FMs in order to There is a great variety of techniques and tools that can be

select them as a variability mechanism in a Software Proddb?ted in the automated ana}lysis of FMs. This paper focus. on
Line (SPL) approach. A FM represents all possible produ ree WP?” knov_vn prqblems in the area of automated reasoning
of a SPL in a single model using features. FMs can be usedCanStralnt Satisfaction Problems (CSP), Boolean Satiliiab

different stages of development such as requirements eaigin Phroblems (SAT) gnd Bri]nary Decki)sion Dia?rﬁmsd(BDDg._Allh
ing [10], [11], architecture definition or code generatidj, [those representations have not been yet fully adopted in the

[3]. A FM is a tree—like structure and consists ofrelations automated analysis of FMs. In the next sections we will give
between a parent feature and its child featuféscross—tree & brief overview of each of them and finally we will introduce

constraints that are typically inclusion or exclusion etag¢nts how translating a FM into a CSP, SAT and BDD.
of the form “if feature F is included, then feature X must also
be included (or excluded)”. A. Constraint Satisfaction Problem

Automated analysis of FMs is an important challenge in constraint Programming can be defined as the set of tech-
SPL research [1], [2]. It can be performed using off-thexiques such as algorithms or heuristics that deal with CSPs.
shelf solvers to automatically extract useful informatioh A csp consists on a set of variables, finite domains for those
the SPL such as the number of possible combinations \pfriapnles and a set of constraints restricting the values of
features, all the configurations following a criteria, findli {he variables. A CSP is solved by finding states (values for
the minimum cost configuration, etc. Although there haugyaples) in which all constraints are satisfied. CSP selve
been some promising proposals based in the representafigR geal with numerical values such as integer domains. The

of FMs as a Constraint Satisfaction Problem (CSP), boolegpin igeas concerning the use of constraint programming on
SATisfiability problem (SAT) and Binary Decision Diagramsg), analysis were stated in [6], [7].

(BDD) the performance of the solvers working with such
representations is unknown for the SPL community. o

In a previous work, we presented a performance comparisgn Boolean Satisfiability Problem (SAT)
of two CSP java solvers analysing FMs [8]. In this paper we go A propositional formula is an expression consisting on a
further integrating different solvers and logic represéiohs. set of boolean variables (literals) connected by logic aper
First we give a complete mapping for the three solvers (BDIprs (—, A, V, —, «>). The propositional satisfiability problem
SAT and CSP) and then we present a performance compari$8AT) consists on deciding whether a given propositional

https://core.ac.uk/display/51389494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

formula is satisfiable, that is, if logical values can be gissd N. of Features | N. of instances | Dependencies

to its variables in a way that makes the formula true. [158)(;_110:3) 28 802:22(2
The problem is restricted by using the propositional formu- 150-200) 50 0%-25%

las in conjunctive normal form (CNF), that is, propositibna 200-300] 50 0%-25%

formulas composed by a conjunction of clauses in which each TABLE |

clause is a disjunction of literalg.g.((L1V L2) A(L3V L4) A EXPERIMENTS

(L5VLG))). Every propositional formula can be converted into
an equivalent formula in CNF by using logical equivalences.
The basic concepts about the using of SAT in the automatdd The Experiment

analysis of FMs were introduced in [1]. we used four group of 50 randomly generated FMs. Each
group included FMs with a number of features in an specific
range ([50-100),[100-150),[150-200) and [200-300)) wéh

C. Binary Decision Diagrams (BDD) double aim: test the performance of small, medium and large

instances and working out averages from the results in order

A Binary Decision Diagram (BDD) is a data struciure use% avoid as much exogenous interferences as possible. After

to represent a boolean function. A BDD is a rppted, directe, mulating each one as a CSP, BDD and SAT, we proceeded
acyclic graph composed by a grqup of decision _nodes "’\W/ h the execution. Each FM was executed several times
two terminal nodes called 0-terminal and 1-terminal. Ea(mcreasing the number of cross—tree constraints from otie un

node in the graph represents a variable in a boolean funct ﬁl& 2506 of the number of the features in the EM in order
and has two child nodes representing an assignment of

e,. . . .
. . f h fl h f .
variable to 0 and 1. All paths from the root to the 1-termin ind out how dependencies influence in the performance

represents the variable assianments for which the re o he dependencies were added randomly as well, but cheking
b © varl Ignme wh mm. "That the same feature can not appear in more than one cross—
boolean function is true meanwhile all paths to the O-teahin

represents the variabl ianments for which the r tree constraint and that a feature can not have a cross—tree
epresents the varnable assighments To ch the eim“;enconstraint with any of its ancestors. Averages were obthine

boolean function is false. from all the FMs in each range with the same percentage of

Although the size of BDDs can be reduced according {Qqss_tree constraints. Table | summarizes the charstitsri
some established rules, the weakness of this kind of represgs o experiments.

tation is the size of the data structure which may vary betwee g exposed in [6], [7], there are some operations that can be
a linear to an exponential range depending upon the orderfg,med. For our experiments we performed two operations
of the variables. Calculating the best variable orderin@ns ;y finging out if a model is satisfiable, that is, if it has at last
NP-hard problem. In the context of the automated analysis §fg go|ytion andi) finding the total number of configurations

FMs there are some tools that claim the internal use of BD[B;; a given FM. The first one is the simplest operation while

[9] the second is the hardest one in terms of performance because
it is necessary to work out the total number of possible
combinations. The data extracted from the tests were:

« Average memory used by the logic representation of the

Rules for translating FMs to constraints are listed in Figur ~ FM (measured in Kilobytes)
1. In all cases the notation more common in the bibliography * Average execution time to find one solution (measured in
has been used. The final representation of the FM is the Milliseconds). _ _ _
conjunction of the translated relations following the miisf ~ * Total number of solutions, that is, the potential number

Figure 1 plus an additional constraint selecting the roattvh of products represented in the FM. _
is included in all products. « Average execution time to obtain the number of solutions

(measured in milliseconds).

In order to evaluate the implementation, we measured its
I1l. EXPERIMENTAL RESULTS performance and effectiveness. We implemented the saolutio
using Java 1.5.04. We ran our tests on a WINDOWS XP
The experiments focused on a performance comparisonRROFESSIONAL SP2 machine equipped with a 3Ghz Intel
three off-the—shelf Java solvers working with CSP, SAT arRentium IV microprocessor and 512 MB of DDR RAM
BDD in order to test how these representations can influenggmory.
in the automatic analysis of FMs. The comparison resultgwer
obtained from the execution of a number of FMs mapped gs The Results

CSP, BDD and SAT in three of the most popular Java solvers

within the research community: JaCoRCSP), JavaBDB The experimental comparison revealed some interesting
(BDD) and Sat4j (SAT) ' ' results. The first evidence was that JavaBDD is on average

96% faster than JaCoP and 75% faster than Sat4j finding
Ihttp:/www.cs.Ith se/home/Radoslaymanek/ one solution. Howeyer, JavaBDD revealed a memory usage
2http:/ljavabdd.sourceforge.net on average 928% higher than JaCoP and 1672% higher than
Shttp://www.sat4j.org Sat4j. On the other hand, although JaCoP and Sat4j showed

D. Mapping

RELATION Csp BDD SAT

>

1P

E P=C P&C (PVOA(CVP)

Z

:

< 13 7(P=0

S i(.) C—P —CuP

& o =

°
i#(P>0)

. am(GG,.., C)in{l.n} PSCVCVNC) “PvG VG V. VCIANG VPIA
dse (~C,VP)A.. A(C, v P)

G=0,G,=0..,C,=0

£ #(P>0) . (€ >(~C, Ae. A—C, AP) A GVvGV..vCv=P)A

LZ—‘ sun(G C,,.., C)indl.. 1} (€, >(—C Ao A=C, AP) A (G VLC)A NG VLCIN-GVPA
E ke (€, <>(—G A—Cy A. A=C,, AP) (G V)R AN V=CIAG VPN
5 G =0G=0..,C,=0 (G, VLCIANC,, VPAC, vV P)
s e I o

E B>0

Weis) 7o inp s

EXCLUDES

Fig. 1. Mapping

Qa

a similar memory usage, SAT representation showed bet@er7 x 1034 solutions of the worst case.

results in both aspects, memory and especially in time. TheFinally, we found some unexpected results or outliers in the
performance of the solvers was similar in the four groups dfta obtained from the experiments with JaCoP and JavaBDD.
experiments. Figures 2 and 3 presents the results for thegpgr@®©n the one hand, JaCoP showed in a few consecutive ex-
of FMs with a number of features between 100 and 150. ecutions a huge number of backtracks and consequently a

In fact, Figure 2 can be confusing in the sense that in tQLeat time penalty. On the other hand, JavaBDD revealed in

worst case the memory usage is insignificant (in the order of2/€W €xperiments a huge r;:emorybusagedwhicrc]j seemed to
Mb) but this behavior seems to be exponential with the numb&f'¢ase gqunentlally W't_h the number of depen encies. we
of features and dependencies. For instance, in the range?E investigating the possible causes of these behaviprs [5

(200-300) features, we found some cases where the memory
used by the solver was around 300 Mb. We think that in bigger. Discussion

FMs (e.g. 1000 features) this can be even a bigger problem.-l-he great superiority of JavaBDD on finding the total

What Figure 2 try to stress is the difference in the use %mber of solutions is because for calculating the number of
memory of the three solvers. solutions, in general, CSP and SAT solvers have to retrive a
The results obtained from finding the total number dhe solutions (which is a #P-complete problem [12]) mean-
configurations of a given FM showed a great superioritwhile BDD solvers use efficient graph algorithms to calaelat
of JavaBDD. While JaCoP and Sat4j were computationaltiie total number of solutions without the need of calcutatin
incapable of performing that operation in a reasonable timeall the solutions. The huge memory usage of BDD solvers
most of the cases, JavaBDD lasted 5312 ms to work out tepends on the variable ordering for representing the BDD.

EMemory BDD EMemory CSP DM emory SAT|

1800
1600
1400
1200
1000
800
600 1
400 1
200 1

Memory (KB)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

Fig. 2. Memory Usage

W Time BDD W Time CSP OTime SAT

60

Time (ms)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

Fig. 3. Average time to get one solution

As stated earlier, the size of BDDs can be reduced withfaster than using SAT or CSP. On the other hand, FMs mapped

good variable ordering, however, calculating the bestadei as BDDs required a bigger memory usage in comparison with

ordering is a NP-hard problem. CSP and SAT. The test also revealed that while FMs mapped
To the best of our knowledge, there is only a proposal &ts SAT and CSP are computationally incapable of finding the

include feature attributes in the automated analysis dfifea total number of configurations in most of medium and large

models [6]. This proposal uses CSP solvers for that aim and siee FMs, FMs mapped as BDDs can get it in a very low time.

are not aware of any result where BDD or SAT solvers could We think that there is not an optimum representation for

be used to deal with feature attributes in order to maximizdl the possible operations that can be performed on FMs,

or minimize values. therefore a framework for the automated analysiss of featur
As a result of the test, we claim that there is not amodels is needed.

optimum representation for all the possible operationsc¢ha

be performed on FMs. Therefore, we think that a framework

for the automated analysis of feature models is needed. The

framework will be designed to be open to other solvers whereWe thank Don Batory and Jean-Christophe Trigaux for their

formal semantics of feature models will play a fundament&elpful comments on an earlier draft of this paper.

role [13]. The development of such a framework is the seed

of our ongoing research [4]. REFERENCES

ACKNOWLEDGEMENTS

V. C = W [1] D. Batory. Feature models, grammars, and propositionahftas. In
- CONCLUSION AND FUTURE WORK Software Product Lines Conference, LNCS 37dages 7—-20, 2005.

In this paper we integrated the use of different solvers i@l D. Batory, D. Benavides, and A. Ruiz-Cés. Automated analysis
pap 9 of feature models: Challenges ahea@ommunications of the ACM

the automated analysis of FMs. We presented how to translate congitionally accepted, 2006.
a feature model into a CSP, SAT and BDD and we performefs] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling stisg-wefine-
a comparative test between three off-the—shelf Java solver ment IEEE Trans. Software Eng30(6):355-371, 2004.

. ith h . Th | h d H{ﬂ D. Benavides, A. Duan, A. Ruiz-Corés, P. Trinidad, and S. Segura. A
managing with each representation. e results showed t framework for the automated manipulation of software prodnets!. In

using BDDs for determining satisfiability in a FM is much preparation

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

D. Benavides, A. Ruiz-Cogs, B. Smith, Barry O’'Sullivan, and
P. Trinidad. Computational issues on the automated analydesitore
models using constraint programmirigternational Journal of Software
Engineering and Knowledge Engineerjrig preparation, 2006.

D. Benavides, A. Ruiz-Cogs, and P. Trinidad. Automated reasoning
on feature modelsLNCS, Advanced Information Systems Engineering:
17th International Conference, CAISE 20(520:491-503, 2005.

D. Benavides, A. Ruiz-Cogss, and P. Trinidad. Using constraint pro-
gramming to reason on feature modelsThe Seventeenth International
Conference on Software Engineering and Knowledge EngimgeBEKE
2005 2005.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-EartUsing java
csp solvers in the automated analyses of feature mod®&ES to be
asigned:to be asigned, 2006.

K. Czarnecki and P. Kim. Cardinality-based feature maugland
constraints: A progress report. IRroceedings of the International
Workshop on Software Factories At OOPSLA 202805.

S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handlimawva
requirements in domain modelinghe Journal of Systems and Software
68(3):171-182, 2003.

M. Mannion. Using First-Order Logic for Product Line Mel Valida-
tion. In Proceedings of the Second Software Product Line Conference
(SPLC2) LNCS 2379, pages 176-187, San Diego, CA, 2002. Springer.
G. Pesant. Counting solutions of csps: A structuralraagh. InlJCAI,
pages 260-265, 2005.

P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps.tureea
Diagrams: A Survey and A Formal Semantics. Rroceedings of the
14th IEEE International Requirements Engineering Confees(RE’06)
Minneapolis, Minnesota, USA, September 2006.

