
Mapping Feature Models onto Component Models to Build Dynamic Software
Product Lines

Pablo Trinidad, Antonio Ruiz–Cortés, Joaqúın Pẽna and David Benavides
Universidad de Sevilla
41012, Seville (Spain)

{ptrinidad,aruiz,joaquinp,benavides}@us.es

Abstract

Systems such as adaptative and context–aware ones
must adapt themselves to changing requirements at runtime.
Modeling and implementing this kind of systems is a diffi-
cult operation. Software Product Lines (SPL) approach has
already coped with modeling a set of software products that
share a common base of features by means of feature mod-
els. We propose using feature models to model the potential
states of a product in what it is called Dynamic SPL. The ob-
jective of this paper is generating a component architecture
that supports the dynamics of products and which is easily
inferred from a feature model. The resultant model performs
an automated analysis of the feature model in real–time to
correctly response to changes.

1 Introduction

Context–aware and adaptative systems that must recon-
figure to adapt themselves to changes in requirements or
context, are more and more common. Fields such as ambi-
ent intelligence where systems must response to changes in
the context and real–time systems where changes in require-
ments cannot harm the system availability are demanding
this kind of dynamic systems.

Software Product Lines (SPL) intend to build a set of
products that share an important amount of features paying
attention to product commonalities.

SPL may be the approach that fits better to build dynam-
ically adaptable products because modeling techniques that
represent an SPL can be used to describe all the products
which can derive from the original one. Feature modeling is
a modeling technique proposed in the FODA method [10] to
describe all the products in an SPL in terms of their features.
A feature is a distinctive characteristic of a product that may
refer to a requirement[9], a component in an architecture[7]
or pieces of code[3, 8]. It seems intuitive to use feature

models to model the potential states or configurations of a
product

A main problem is building an architecture that dynam-
ically adapts itself to changing requirements. In this paper
we propose a process for the generation of a component ar-
chitecture from a feature model. The generated architecture
is able to activate or deactivate features making use of a con-
figurator component that performs some analysis operations
on feature models to make decisions.

This paper is structured as follows: Section 2 summa-
rizes the current proposals to produce a software architec-
ture from a feature model. Our proposal to transform fea-
ture models into component models to implement a dy-
namic SPL is presented in Section 3. A case study that
applies our ideas to a TV production and broadcasting sys-
tem is presented in Section 4. Section 5 remarks the feature
model analysis operations needed to support the dynamic
behaviour of the SPL. Lastly, we give some conclusions
emphasizing the extension points of our proposal that will
guide our future work in Section 6.

2 Mapping feature models to software archi-
tecture

The aim of inferring a design or an implementation from
feature models is the common point of several contributions
in software product lines. we focus on those that propose a
direct mapping from feature models onto component mod-
els. Among all these works we distinguish three that can
summarize the state of the art:

• Liu et al. [12] proposes a natural mapping from
a feature model onto a software architecture. They
consider a feature to be ahigher–level abstraction
of a set of relevant detailed software requirements,
and is perceivable by users or customers. So a fea-
ture model is a requirements model whose functional
and non–functional requirements can be mapped onto
a software architecture. Based on this assumptions,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


they propose a feature–oriented requirements model-
ing process to build a feature model with the soft-
ware architecture in mind. Although this work is very
promising in its first steps, only some traces and guide-
lines are given to manually producing a software archi-
tecture from a feature model.

• Sochoset al. [14] proposes the Feature–Architecture
Mapping (FArM) as a way to progressively transform
a feature model into architectural component model.
They establish the precondition that the feature model
has been designed by thinking in components. Four
transformations are proposed to sequentially produc-
ing a software architecture. It is worth to mention the
special emphasis on categorizing the types of interact
and hierarchy relations which helps on defining the re-
lations among components based on the relationships
among features in the feature model. Although it is
an interesting proposal, they lack of a domain anal-
ysis method to produce the initial feature model and
no support is given for a dynamic SPL. First issue can
be solved by using existing domain analysis methods
such as FODA [10] or [12]. Dynamic SPL support
is slightly commented by suggesting the usage of de-
sign patters to support runtime variability but it is not
a main issue in their method as it should be in dynamic
SPL.

• Feature–Oriented Reuse Method(FORM) [11] relies
on the FODA proposal [10] and describes how a fea-
ture model is used to develop the domain architecture
and components for reuse. Guidelines and a process
are given to develop these artifacts, but no support for
dynamic SPL is given.

Analysing these proposals, they share the premise that
a feature can be mapped onto a component so the feature
model must be defined with this point in mind. Although
a manual process is given to produce architectural models
they do not place the emphasis on producing a dynamic
SPL, i.e. no solution is given for dynamically changing
a product by activating or deactivating its features at run–
time.

With the aim of filling this gap, this paper focuses on
the production of a component model which is built with
the evolutionary and dynamic issues of a dynamic SPL in
mind.

3 Our proposal

In order to produce a component model that represents
the software architecture of a dynamic SPL, we assume that:

1. A feature can be mapped onto a component in the com-
ponent model, and

2. The feature model is built thinking about component
structure.

We propose following 4 steps to produce a traceable
component model from a feature model:

Step 1: Defining the core architecture

The core of our component–based software architecture will
be compounded by the features that are common to every
product. First, we have to extract from the feature model
which are those features. How this operation can be per-
formed is described in next Section.

Once the core set of features is obtained, we start defin-
ing the component model by creating a component for each
feature. The component responsibilities will be those as-
signed to its respective feature.

The components will connect among them depending on
the relationships among features in the feature model. For
each hierarchical relationship between a parent feature and
a child feature, a dependency from the parent component
to the child component is created. For each cross-tree con-
straint (dependsandexcludesrelationships) a dependency
in the direction of the constraint is created between the re-
spective components.

Step 2: Defining the dynamic architecture

The non–core features are used to generate the dynamic ar-
chitecture. Analogously to first step, a (feature) component
is created for each non–core feature, and its responsibilities
will also be those assigned to the feature. Afeature com-
ponentwill provide a set of interfaces that will vary from
its responsibilities, and will require some functionalities to
its child features by means of input interfaces. It is not the
objective of this paper to propose a method for extracting
information about the provided and required interfaces of
each component.

To connect the features each other, a (relationship) com-
ponent will be created for each relationship in the feature
model that connects at least one non–core feature. A rela-
tionship component joins those features that are connected
by the respective relationship in the feature model. It pro-
vides and requires the interfaces of the feature components
that it joins, acting as an intermediary among feature com-
ponents and reducing the coupling among them.

As a last consideration, the relationship components that
link a core and a non-core feature will be considered as a
part of the core architecture.

Step 3: Adding the configurator

A configurator is the component in the architecture that pro-
vides the dynamic behaviour for a product. Among its re-
sponsibilities we enumerate the following:



<<interface>>

Configurator

+ activate(FeatureList fList, boolean forceActiv): boolean

+ deactivate(FeatureList fList, boolean forceDeactiv): boolean

<<interface>>

Feature

+ activate(): boolean

+ deactivate(): boolean

<<interface>>

Relationship

+ unlink(Feature f): boolean

+ link(Feature f): boolean

Figure 1. The interfaces described to provide
the dynamic behaviour of a product

• It knows the feature model.

• It centralizes the feature de/activation requests.

• It checks for the requests to produce valid configura-
tions.

• It delegates to the respective features the responsibility
of de/activating themselves and their relationships.

• It decides which features must be de/activated as a con-
sequence of another feature de/activation.

The configurator component provides an interface for the
feature components to communicate it the de/activation of
a set of non–core features. A description of the operations
that theConfigurator interface provides, are depicted
in Figure 3.

The configurator will communicate with every feature
for de/activation. This is the reason why every feature com-
ponent must provide aFeature interface that allows the
feature de/activation. The concrete interface operationsare
depicted in Figure 3.

A feature component is coupled with relationship com-
ponents that must be aware of any de/activation that affects
the features it links. For this reason, all the relationship
components must provide aRelationship interface for
the coupled features to communicate any change in their
state. Communicating these changes is responsibility of the
affected features and never of the configurator component.

Step 4: Defining the initial product

An initial product will be defined by a selection of the non–
core features that will be initially active. The configurator
component will be in charge of activating the selected fea-
tures when the product is firstly launched. It is important to
previously validate the configuration.

4 A Case Study

The mapping described in this paper has successfully
been applied to generate an industrial real–time television
SPL[6]. The objective was developing a system that could
be adapted to changing requirements coming not only from
a customer but many potential customers. An SPL approach
was used to develop the system and a feature model used to
describe the SPL requirements.

The system aims to broadcast a video composed by soft-
ware, mixing TV signals, stored videos, Flash animations
and any other kind of images or layers. Some kinds of ef-
fects wanted to be applied to the layers, such as black and
white effect and lummakey and chromakey effects (remove
colors ranging on a chromatic or luminance range). Differ-
ent user interfaces (UI) are needed to interact with the appli-
cation. At least a basic UI that allows managing layers and
effects is required. Other UI are demanded to schedule TV
compositions and to download SMS messages from a server
and sending it to a Flash animation. From this information,
the domain analysis process elicits a set of requirements for
the products in the SPL:

• A product should draw an image as a result.

• Several layers compose the final image, such as TV
signals, stored video and Flash animations. New layers
can be added in the future.

• Effects or transformations may be applied to one or
more layers. Currently, black and white, chroma and
lumma key effects are required but others can be de-
manded in the future.

• Some UIs are required to interact with the application,
to automatically change the configuration by means of
the scheduler and to communicate SMS messages to
Flash layers.

• A product must work 24 hours, seven days a week and
cannot stop broadcasting. Therefore, any update or
change must be performed without affecting the broad-
casting.

From this information, we build a feature model which is
depicted in Figure 2. Next, we follow the 4 steps to produce
a component model from the feature model:

Step 1: Defining the core architecture

To define the core architecture, we need to deter-
mine the core set of features. In our case,TV Plat-
form,Layers,Effects,User Interfaceand Basic UI features
will compose the core architecture.

A component is created for each feature and they are
connected by dependencies that come fromR1, R2, R3 and
R5 relationships.



TV Platform

Layers User Interface
Effects

TV Capture AVI Flash

Basic UI SMS UI

Shedule TV

Black &

White
Chroma Key

Set-Relation

R1
R3

R2

R4

R5
R6

<0..2> R7

R8

Mandatory Feature Optional Feature

Requires Excludes

<0..3><1..3>

Lumma Key

Figure 2. Feature Model describing the TV platform SPL case study

Step 2: Defining the dynamic architecture

For each remaining features, a feature component is cre-
ated that provides theFeature interface. The relationship
components must be added now.R4, R6, R7 andR8 rela-
tionship components are created and connect the respective
feature components. AsR4, R6 andR7 relationships in the
feature model link a core feature with a non–core one, they
are considered as part of the core architecture.

Step 3: Adding the configurator

The configurator component is added and coupled with the
non–core features. As it can be seen, the configurator is not
coupled with the relationships, as it is responsibility of the
feature components to communicate them any change in the
configuration.

The component model is generated at this point and de-
picted in Figure 3. Although it is not depicted in the com-
ponent model, it is important to remark that theBasic UI
component is in charge of de/activating any non–core fea-
ture and controlling any update of the feature components.

Step 4: Defining the initial product

Depending on the customer, the initial product have to be
defined. For example, we can just activate the features
needed to broadcast a TV signal with no effect, that will
imply to initially activate only theTV Capture compo-
nent.

Case Study Conclusions

In the resultant component model, if a customer demands
a new kind of layer, only a component that implements the
Layer interface must be developed. However, this change
will affect the feature model by adding a new feature in
theR4 relationship, so the configurator component must be
conscious of that change. This process will be analogous
for effects and user interfaces.

5 Feature Models Analysis Operations

In any resultant model following the proposed mapping,
the configurator component plays a determinant role in the
dynamic behaviour of a product. This component must
know the SPL feature model and extract relevant informa-
tion to make decisions. From the responsibilities assigned
to the to the configurator component and the operations
needed for the mapping process, we determine the analysis
operations on feature models that we need, and how current
proposals give solutions to them:

• Determining the core–assets: in the first step to pro-
duce the component model, it is necessary to deter-
mine which are the features that compose the core ar-
chitecture. Commonly, the core architecture is com-
posed by those features that are shared by every prod-
uct. However in some cases there are features which
commonality is so high that it is interesting to consider
them to be core features. In [13] a solution is given
for this operation supported by the commonality fac-
tor which calculus and implementation based on con-
straint satisfaction problems(CSP) is described in [4].



TVPlatform

User Interfaces Layers

Effects

UserInterface

BasicUI R6

UserInterface

SMSScheduler

R4

Layer

R7
Effect

Effect

Layer

Core Architecture

Black&White

Lumma Key

Chroma Key

TVCapture

AVI

Flash

Feature

Feature

Feature

Feature

Feature

Feature

Feature
Feature

Relationship

Relationship

Relationship

Configurator
Configurator

SMSProvider
R8

Relationship

SMSProvider

Figure 3. Component model for the TV platform SPL case study

• Determining if a product is valid: either for the initial
configuration of a product or for any change suggested
to the configurator, it must be checked whether it is
possible to configure the product with the demanded
features. This analysis operation is described by Bena-
videset al. [4] and an implementation that uses CSP
solvers is proposed.

• Propagating decisions: when a feature is de/activated
it usually has consequences for other features and
relationships. To determine which are the features
affected, Logic Truth Maintenance Systems(LTMS)
and SAT solvers can be used to propagate feature
de/activation[1].

• Explanations: in some cases, some features are de-
manded to be de/activated but the resultant product is
not valid. In products such as real–time or critical sys-
tems it is important to de/activate a feature indepen-
dently from the current configuration. The configura-
tor must de/activate the features and reach a valid prod-
uct. Explanations are used to determine which are the
additional features that must be de/activated to become

the product valid. This operation is firstly described in
[2] and implemented to detect and explain modeling
errors in feature models in [15]. The proposed imple-
mentation that uses CSP solvers, could be adapted to
support the fore mentioned case of explanation.

These operations implementation relies on both CSP and
SAT solvers to implement the solutions. The configurator
could make use of the multiparadigm structure of FAMA
tool [5] to support all these operations. However, the quick-
est response is needed for every operation, as they must be
performed at run–time. As commented in Section 6, it is
needed a benchmark of current implementations to deter-
mine the best techniques and algorithms that could be inte-
grated intoConfiguratorcomponent.

6 Conclusions and Future Work

A process to automatically build a component model
from a feature model is proposed based on the assumption
that a feature can be modeled as a component. This ap-
proach can be useful in a service-oriented SPL where each



component corresponds to a web service or to ubiquitous
systems where each component corresponds a service pro-
vided by several sensors and actuators.

We envision that relationship components can be de-
scribed as white–boxes whose implementation depends on
the kind of relationship in the feature model. In [6] we
implement each set-relationship component applying a dy-
namic abstract factory design pattern that we think that can
be used in other contexts. Our future work will head for
proposing transformation patterns with a higher complex-
ity.

We remark the necessity of an automated support for
some analysis operations on feature models. Currently,
there exist solutions for some of operations, but others still
need a thorough study to provide a real–time response. Our
future work will focus on extending our current feature
model analysis(FAMA) framework [5] with the operations
that we have demanded in this paper. Furthermore, a quick
response for the analysis operations is needed. We need
benchmarks to determine the techniques and algorithms
with the best performance so we could integrate them in
the configurator component to provide real–time responses.

References

[1] D. Batory, “Feature models, grammars, and proposi-
tional formulas.” inSoftware Product Lines Confer-
ence, LNCS 3714, 2005, pp. 7–20.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés, “Auto-
mated analysis of feature models: Challenges ahead,”
Communications of the ACM, vol. 49, no. 12, pp. 45–
47, 2006.

[3] D. Batory, J. Sarvela, and A. Rauschmayer, “Scal-
ing step-wise refinement.”IEEE Trans. Software Eng.,
vol. 30, no. 6, pp. 355–371, 2004.

[4] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Auto-
mated reasoning on feature models,”LNCS, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, vol. 3520, pp. 491–503,
2005.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Corts, “FAMA: Tooling a framework for the auto-
mated analysis of feature models,” inProceeding of
the First International Workshop on Variability Mod-
elling of Software-intensive Systems (VAMOS), 2007,
pp. 129–134.

[6] J. Bermejo, P. Trinidad, D. Benavides, and A. Ruiz-
Corts, “Telvent: System families variability man-
agement using design patterns,” inSoftware Product
Lines in Action, F. van der Linden, K. Schmidt, and

E. Rommes, Eds., vol. por determinar. Springer–
Verlag, 2007.

[7] M. Bernardo, P. Ciancarini, and L. Donatiello, “Archi-
tecting families of software systems with process al-
gebras,”ACM Transactions on Software Engineering
and Methodology, vol. 11, no. 4, pp. 386–426, 2002.

[8] K. Czarnecki and U. Eisenecker,Generative Pro-
gramming: Methods, Techniques, and Applications.
Addison–Wesley, may 2000, iSBN 0–201–30977–7.

[9] S. Jarzabek, W. C. Ong, and H. Zhang, “Handling vari-
ant requirements in domain modeling,”The Journal
of Systems and Software, vol. 68, no. 3, pp. 171–182,
2003.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Pe-
terson, “Feature–Oriented Domain Analysis (FODA)
Feasibility Study,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep. CMU/SEI-
90-TR-21, Nov. 1990.

[11] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh, “FORM: A feature–oriented reuse method
with domain–specific reference architectures,”Annals
of Software Engineering, vol. 5, pp. 143–168, 1998.

[12] D. Liu and H. Mei, “Mapping requirements to soft-
ware architecture by feature-orientation,” pp. 69–76,
2003.

[13] J. Pea, M. Hinchey, A. Ruiz-Corts, and P. Trinidad.,
“Building the core architecture of a multiagent sys-
tem product line: With an example from a future nasa
mission.” in7th International Workshop on Agent Ori-
ented Software Engineering. LNCS, 2006.

[14] P. Sochos, M. Riebisch, and I. Philippow, “The
feature-architecture mapping (farm) method for
feature-oriented development of software product
lines.” in ECBS. IEEE Computer Society, 2006, pp.
308–318.

[15] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cort́es,
and M. Toro, “Automated error analysis for the ag-
ilization of feature modeling,”Journal of Systems and
Software, in revision, 2006.


