
SLAWs: Towards a conceptual architecture for SLA enforcement

Jose Antonio Parejo, Pablo Fernandez, Antonio Ruiz-Cortés, José Marı́a Garcı́a

University of Seville

Sevilla, Spain

Emails: {japarejo, pablofm, aruiz, josemgarcia}@us.es

Abstract

Current technologies in Service Oriented Computing

(SOC) provide a solid framework to drive the interaction

of organizations from a functional point of view. In or-

der to introduce non-functional properties in this scenario,

the concept of Service Level Agreement (SLAs) comes into

play as a key element. SLAs can be seen as containers of

the functional and non-functional properties that both par-

ties (the service consumer and the service provider) agree

specifying its rights and obligations during the interaction.

However this SLAs represent an additional responsibility

for the service provider since it motivates the need of a SLA-

Enforcement process in its infrastructure. A proper SLA-

enforcement implies optimized resource usage that meet

SLAs established with consumer, making it possible to the

provider afford a larger number of customers to maximize

its benefits.

Current approaches to SLA enforcement are domain-

specific approaches and/or based on monolithic platforms

(from a SOC point of view).In this paper we propose a con-

ceptual architecture (SLAWs) for SLA enforcement. The

main goal of the proposed architecture is to be used as a

conceptual framework to build a flexible SLA enforcement

layer. This layer could be integrated in a seamless way in

the pre-existing provider infrastructure when is based upon

the service oriented architecture principles.

1. Introduction

In the last years Service Oriented Computing (SOC)

[16]has evolved as a prominent paradigm in system inte-

gration. The set of technologies (such as WSDL or SOAP)

developed around this paradigm is a solid support for the

integration from a functional point of view but the non-

functional properties are still a challenge. Typically, in

real industrial scenarios, the relationship between organi-

zations is guided by a contractual context where rights

and obligations of each party are stated. However, since

most of the integrations correspond to intraorganizational

nature (EAI), non-functional properties has currently been

marginally addressed by real scenarios in industry. On the

contrary, the promising interorganizational (B2B) integra-

tion scenario should be a motivating horizon to fully address

non-functional features; normally, these properties are a ex-

plicit or implicit part of the contractual context.

The minimal scenario of interorganizational integration in

SOC involves two organizations: the Service Consumer and

the Service Provider. In order to materialize the contrac-

tual context amongst parties, the concept of Service Level

Agreement appear as a explicit element to specify the func-

tional and non-functional properties that are guaranteed by

each party.

The usage of SLA is, in principle, attractive for both con-

sumer and provider: on the one hand, the consumer would

get guarantees and reliability from the provider; on the other

hand, provider could achieve a desired fidelity and reputa-

tion by meeting the SLA expectations with an appropriate

SLA enforcement. The enforcement process refers to the

constraining mechanisms to fulfill (and to force a fulfill-

ment of) the terms that compose the SLA for each party (i.e.

consumer and provider); from an operational point of view,

it implies a management of the SLA object (i.e. a mean

to specify and obtain the SLA). As a consequence, on the

one hand from customers̀ perspective, enforcement implies

monitoring of properties associated with the terms stated

on the SLA, and validating their values according to those

terms. On the other hand, from providers perspective, en-

forcement process implies, as well, monitoring and valida-

tion of service invocations by customer, configuring also the

infrastructure to provide an appropriate service. This last el-

ement is a key point of success in terms of business goals.

In this context, the automation of the enforcement process,

would bring important benefits for the provider since the in-

frastructure could act autonomously to optimize the usage

of its resources without a violation of the stated SLAs.

Currently, some important steps have been taken towards

to obtain and express the SLA: In [1], an analysis of the gap

between legal contracts and operational SLAs is discussed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A language to specify and manage machine-processable

SLAs is proposed in [15]. [7] outlines the architectural

foundation for building platforms to create and negotiate

SLAs in an automated way. A method to determine the

mismatch between two QoS offers (SLAs) is proposed in

[18], and in [14] temporal concerns are introduced to com-

plete the QoS specification and offer evaluation. Concern-

ing the SLA enforcement itself, proposals can be divided in

two sets: (i) Specific application-domain approaches (such

as [10]) ; these works are only intended for a particular

business (e. g. from automotive parts production and de-

sign to computation power trading) that are usually based

on monolithic platforms (from a SOC point of view) [5][4].

Additionally, this application-domain focus, usually means

a high adaption cost to other industrial scenarios (ii) A man-

ual approach to the configuration of the infrastructure per-

formed by an human actor [20]. These approaches to the

SLA enforcement bring important drawbacks: On the one

hand, to create an SLA enforcing infrastructure for a new

domain is a cumbersome task since there is a lack of a gen-

eral SLA enforcement architecture. Additionally, it rep-

resents the dependence of a usually intrusive platform for

the service oriented architecture of providers. On the other

hand, a manual approach does not take advantage of an au-

tomated optimization of resources when having a machine

processable SLA.

In this paper, a conceptual architecture (SLAWs) for au-

tomated SLA enforcement is presented. This architecture,

is designed upon the principles of SOC outlining the ele-

ments and its relationships as services and taking into con-

sideration the main standard of interface definition (WSDL

[21]); in particular, it is used as the key element to wrap the

services to perform the functional logic and the control of

non functional properties. The main goal of the proposed

architecture is to provide a conceptual framework to build a

flexible and automated SLA enforcement layer. In so doing,

this layer could be seamlessly integrated in a pre-existing

provider infrastructure when it corresponds to a service ori-

ented architecture.

In the following section, a discussion of the SLA en-

forcement is presented: First, a conceptual background is

provided to identify the key element of the enforcement in

the SLA, then an example scenario is outlined; later on the

section, a comparison for the example scenario is discussed

between a typical aggregated enforcement and the proposed

SLAWs-based enforcement. In section 3, an analysis of re-

lated work is presented. Finally, on section 4, a concluding

summary and future work are discussed.

2. SLA Enforcement in SOC

Current proposals to express SLAs in SOC [15] [6], pro-

vide a way to specify the set of functional and non func-

tional properties that must be guaranteed during the service

transaction. In these SLA languages, functional properties

are expressed using WSDL (i. e. they specify the interface

of invocation of services) while there is a lack of standard

language for expressing non-functional properties. Several

research efforts have been made towards this goal (such as

[17]) but currently ad-hoc languages [8] (with sufficient vo-

cabulary for the concrete domain) remain as the most used

solution to express non-functional properties. In particular,

according to [12], two kinds of non functional properties

can be identified:

• Controllable properties: Providers can control the

value that properties present, performing actions to

change it (e. g. the length of the key used in the en-

cryption algorithm specified in the SLA for a secure

transaction). It is important to point out that the value

of this property can be continuous (not discrete), or

dynamic but in the context of the transaction (with a

valid SLA) the provider guarantees a concrete bounded

value.

• Non-controllable properties: Providers can not mod-
ify the property value (e. g. the nationality of the

provider). These properties are part of the very own

nature of the provider but are expressed in the SLA

since they are important for the consumer (e.g. a con-

sumer only looks for providers in its country).

According to our vision, a proper management of con-

trollable properties is key point from the SLA-enforcement

point of view: First, it implies control capability of SLA

violations. Secondly, an intelligent management of con-

trollable properties means an optimized resource usage that

meet SLAs established with consumer. This optimization

process allows the provider to afford a larger number of

customers maximizing its benefits. In the context of a ser-

vice provider implementing a Service Oriented Architecture

(SOA), two kinds of services are required to provide an ad-

equate SLA enforcement:

• Services that implement functional properties. It usu-

ally correspond to a specific implementation of the

functionality requested by the consumer.

• Services used to configure the provider infrastructure

to give support to the controllability of properties. If

those facilities are not provided natively as services by

their infrastructure, usually an Enterprise Service Bus

(ESB), provider should be able to encapsulate it as new

services.

In order to illustrate the key elements for SLA enforce-

ment, we propose an example scenario (depicted in figure

1), inspired in [15]. In our scenario computing services are



Figure 1. Example Scenario

provided according to previously established SLAs. This

scenario could be useful in research fields that require in-

tensive computation, like bio-informatics and complex sys-

tems simulation. A service accepts jobs that are submitted

to a mainframe for their execution, and returns result ob-

tained to customers. There is a registry that provides access

to the SLAs agreed with consumers where are expressed

the requirements and obligations for completing a job, con-

cretely in this scenario, provider guarantee a specific com-

puting performance (e.g. expressed in floating point opera-

tions per second (Flops)).

The functional part is represented by a service that

launches the process in the mainframe job execution sys-

tem. The non functional service logic is a component that

using a model of the computing performance, it can identify

and set the right values of process priority using the main-

frame process priority management interface. In the follow-

ing sections we will describe how providers could imple-

ment SLA enforcement for this scenario using two different

approaches, an aggregated solution, and a generic solution

using our proposed conceptual architecture (SLAWs based

enforcement).

2.1. Aggregated Enforcement

The aggregated approach in a SOC context is character-

ized as a single web service representing both the SLA en-

forcement logic and the functional part. It is important to

highlight that the majority of platformswith this model usu-

ally have a modular structure but, from a SOC perspective

an unique service is published. In this context, the inter-

nal components are not exposed as services, and only the

functional service is deployed.

Figure 2 shows this general scenario. Main elements of

this approach are: (i) the WSDL port exposing the func-

Figure 2. Aggregated Approach

tional interface. (ii) The implementation of the functional

logic. (iii) the SLA validation logic (iv) the non functional

element that can actuate over the platform to configuring its

parameters; its goal is to modify the functional service de-

ployment to guarantee the non-functional controllable prop-

erties expressed in the SLA.

In this scenario consumer access the service through its

functional interface (as expressed on the WSDL). This en-

forcement process have three stages: First, a location of the

SLA terms (usually in a SLA registry); then, a validation of

the service invocation with the terms stated on the SLA and,

finally, the invocation of the functional logic joint with the

control logic to guarantee the controllable properties.

The main drawback of this approach is the strong cou-

pling amongst the different elements. In particular the SLAs

structure joint with the validation, configuration and func-

tional logic. In this way a change on any of those com-

ponents usually implies the need of modification on oth-

ers. Moreover, most of the approaches with this aggregated

structure, are exposed as a black box that is difficult to mod-

ify and integrate in a pre-existing service oriented architec-

ture.

Figure 3 shows an aggregated enforcement for the job

submission example proposed. The sequence of interac-

tions would be as following:

1. Consumer invokes the service.

2. Enforcer reads SLA Data.

3. Job is submitted to the mainframe (using functional

logic block).

4. The priority of the process is configured (using non-

functional logic block).

5. Mainframe returns job result to enforcer.



Figure 3. Aggregated Approach applied to

Job Execution Scenario

6. Consumer receives the results obtained.

2.2. SLAW-Based Enforcement

In this approach we promote the idea of wrapping the

validation logic in a new service called the Service Level

Agreement Wrapper (SLAW) and force a SOA structure in

the remaining elements. The key principles in a SLAW-

Based enforcement are threefold: First, the SLAW is ex-

posed to the consumer request. Second, the functional im-

plementation service remains intact hidden to the consumer

as a back-end isolated service. Third, the control logic to

actuate over the non functional properties is also wrapped

and exposed as an internal service. Figure 4 shows the con-

ceptual architecture of the SLAW approach in a general sce-

nario.

Concerning the design, main idea behind the approach

is the usage of the proxy and adapter design patterns [9]

following the SOC principles: on the one hand, from a con-

sumer point of view, a proxy behavior is performed hav-

ing the same WSDL both functional and SLAW service.

On the other hand, from a provider point of view, an adap-

tion (or wrapping) is made to perform the SLA-enforcement

based on two services providing the functional and the non-

functional logic.

With the SLAW-Based enforcement a decoupling based

in the idea of SOA is promoted. In this approach, the func-

tional and non-functional logic are decoupled from an in-

frastructure point of view. In doing so, the adaption of ad-

ditional non-functional logic can be done by new services

deployed over the SOA infrastructure.

Moreover, this approach can be less intrusive in pre-

existing SOA environments (without SLA-Enforcement) in

Figure 4. SLAW Approach

its transition to a SLA-driven scenario. In this context, the

pre-existing functional services remain intact and SLAWs

can be created only in areas where an SLA is desirable; e.g.

keep EAI interactions without SLA while enforce the B2B

transactions with SLA.

In figure 5 we present an application of the SLAW-Based

enforcement architecture to the job-execution example pre-

sented.

The sequence of interactions in figure 5 are as following:

1. Customer invokes the service through the SLAW.

2. The SLAW reads the data from the SLA and validates

the invocation.

3. If invocation is invalid the SLAW returns a fault, else it

determines the control service to apply to this service

invocation based on the SLA.

4. The SLAW invokes the functional service that, submits

the Job to the mainframe

5. The SLAW invokes the non-functional service that im-

plements the enforcement logic (providing the agreed

computing performance) so it can change the process

priority if necessary.

6. Mainframe returns job result to enforcer.

7. Consumer receives the results obtained.

3. Related Work

In the last years, several research efforts try to combine

SLA and SOC research lines. In general, those related work

approaches can be grouped in two main sets: SLA creation



Figure 5. SLAW Approach applied to the Job

Execution Scenario

and SLA enforcement. On the one hand, the procurement

process is centered in the way the SLA is obtained: how it

is expressed, negotiated, stored or exchanged are challenges

involved in this research field. On the other hand, once the

SLA is available, a mechanism to enforce the terms of it

should be established; in this context, important issues to

be addressed would be: how services can parametrize its be-

havior to meet the SLA or how violations over the SLA are

detected. Concerning the SLA procurement, some impor-

tant advances have been made; in particular, after a long pe-

riod of incubationWS-Agreement specification has recently

be promoted as a final recommendation by the OGF [15] as

a logical extension to the basic SOA Stack to introduce the

idea of SLA. More concretely, WS-Agreement provide a

basic framework to express the SLA structure and provide

a minimum operational support for the procurement. How-

ever, in order to deal with an specific scenario, this speci-

fication already (and intentionally) require a high degree of

refinement in term of DSL (Domain Specific Languages)

for the specific scenario (such as [8]); additionally, to ad-

dress non-basic scenarios, some important extensions must

be done [14]. To this end, some efforts have been made, in

particular, authors propose FAST [7]; this architecture pro-

pose a general framework to automate the trading of agree-

ments: i.e. the process of reaching an agreement amongst

different parties in complex-scenarios by creating a struc-

tured infrastructure to extend and reuse DSLs, standards and

patterns in a coherent way.

SLA enforcement has been a prominent field of research

in the last years: from a theoretical standing point, in [13]

authors propose a protocol for contract monitoring and en-

forcement based on protocol model checking; in this con-

text, a more general approach of behavioral model in cross-

enterprise interaction is proposed in [11]. Complementary,

in order to deal with real scenarios, some infrastructures

have been proposed; this infrastructures can be decomposed

in two main groups depending on the side they are concern

with: customer or provider side. On the one hand, customer

side infrastructures are focused on the way the consumer

of service deal with a pre-established SLA (or some QoS

properties): in [19] some service tooling and systems are

presented to create transactions where SLA is monitored

and negotiated by service consumers to detect violations

and possible switchings amongst providers; in a similar ap-

proach [2] and [3] projects develops a GRID-oriented in-

frastructure where composed process can be reconfigured to

assure a certain SLA. On the other hand, provider-side pro-

posals deal with the infrastructure to make an SLA-aware

enforcement of services; following in this section, we ana-

lyze a set of four relevant proposals and compare it with our

approach in table 1.

In this study, we expose a comparative analysis of the differ-

ent SLA-provision and SLA-enforcement approaches with

our proposal according to the following properties:

• Automated Enforcement. This property refers whether

the SLA enforcement of the service is performed in an

automated way or base on a human actor.

• NFP Enforcement mechanism. This property relates

to the way that is used to enforce the NFP agreed in

the SLA. In some approaches, there is a application-

specific system, in other approaches, there is an exter-

nal element that is responsible of enforcing the NFP.

• SLA Vocabulary. This property corresponds to the na-

ture of the information expressed in the SLA, whether

it is an open vocabulary that can be extended, or a fixed

set of primitives that are available.

• Application Domain adaption. In order to apply each

of the proposals to different scenarios, someworkmust

to be done. In this property we analyze the possibilities

of application domain adaption; in this context, a way

to extend the core vocabulary and enforcing elements

should be provided.

• Enforcement Policies. This property establishes if the

enforcement mechanism can be parameterized to al-

low a degree of variability; in so doing, the enforce-

ment could be open, or fixed in terms of enforcement

behavior.

• Layered Adaptation. In this case, the property indi-

cates if the architecture of the proposal make it pos-

sible to create a set of different abstraction layers to

create a multi-stage enforcement mechanisms.



Autom. En-

forc.

NFP Enf.

Mechanism

SLA Vocabu-

lary

Domain Ext. Enf. Policies Layered

Adaptation

SAM full auto-

mated

ad-hoc unk. unk. open multi-layer

FRESCO Based on

DSL (SCOL)

external open SLA Vocabu-

lary and ad-

hoc

open single

GRIA full auto-

mated

ad hoc fixed API fixed single

WSMX none external n/a ad-hoc none n/a

Our proposal

(SLAWs)

Proxy base

implement.

external open Through SLA

Vocabulary

open multi-layer

Table 1. Feature comparison

In SAM (SLA Action manager) [4], authors propose a

generic SLA management framework and an integrated set

of advanced service level management technologies; in par-

ticular non functional properties can be managed manually,

or using automated or semiautomated processes. The re-

sult of executing the service-quality management task is

usually a modification of the overall configuration for the

managed utilities and processes. Each SLA is linked with

a SMO (SLA Management Object), that essentially trans-

forms the associated SLA contract into an active computing

entity in the environment that performs evaluations accord-

ing to the business logic, raise quality alerts and associates

SLM (Service level management) processes to the alerts.

An interesting aspect of this approach is a Cross-SLA Qual-

ity Alert Manager that gathers quality alert data form all of

the SMOs, and maintains one or more ordered list of quality

alerts in terms of business impact. Those lists can be dis-

tributed to other service management agents and personnel;

in addition, they provide an optimizing scheduler for SLM

process execution that can be customized based on these

alerts. Finally, it is important to highlight that this approach

outlines a duality of concerns between humans/automatic

processes for validation/management/actuation of Services

and therefore, in some scenarios, it is not clear the degree

of automation of certain tasks.

The Fresco approach [20], describes a framework to cre-

ate SLA management systems especially focused towards

the SOC paradigm. In particular, this proposal elabo-

rates the idea of external systems to monitor and enforce

SLAs, called ”Services Monitoring System (SMS)” and

”SLA Management System (SLAMS)” respectively; how-

ever only allows to configure and state the mapping between

data obtained from the SMS to the data expressed in the

SLA, and configure the actions triggered in the SLAMS. In

this context, it is important to highlight that Fresco frame-

work delegates the functional part of the service to be ful-

filled by the underlying implementation services layer.

GRIA System [10](Grid Resources for Industrial Appli-

cations) establishes an integral infrastructure for SLA man-

agement focused on GRID environments. More concretely,

this proposal establishes a set of building blocks to deploy

specific services according to a particular SLA. The avail-

able infrastructure is oriented towards a basic set of appli-

cation services of data processing and job distribution. In

this context, though GRIA approach has a very mature in-

frastructure for dealing with real scenarios in terms of secu-

rity or reliability issues, it is highly domain oriented for the

initial package of services provided; in doing so, it lacks

of extensibility specially in terms of SLA properties to be

observed and dynamic changes of SLA enforcing mecha-

nisms.

WSMX [22](Web Service Modeling eXecution environ-

ment) is part of a wide initiative for dealing with semantic

web services. This infrastructure gives support for the ex-

ecution of semantically-annotated web services taking ad-

vantage of the semantic technologies to perform complex

reasoning in operations such as matchmaking or dynamic

service composition.

4. Conclusions

In this paper we analyze the Service Level Agreement

(SLAs) enforcement problem in providers with a Service-

oriented Architecture.

During this analysis we have identified the ”control-

lability” of Non-functional properties as a key point for

this problem since it allows a better resource usage man-

agement. A conceptual architecture for SLA enforcement

around the idea of SLA Wrappers (SLAWs) has been pre-

sented. SLAWs services are designed to encapsulate the

SLA validation logic and act as dispatchers to the appro-

priate functional and non-functional control services. The

SLAW-Based enforcement boost the decoupling of func-

tional implementation services and non functional proper-

ties using a Service Oriented Architecture (SOA) approach;



as a consequence, a flexible applicability is described.

Future work includes the development of a prototype de-

ployable on an Enterprise Service Bus (ESB) in a non intru-

sive way. The use Java Business Integration (JBI) standard

for an automated deployment and component model is cur-

rently being studied. Additionally, the application to other

industrial scenarios will be developed to validate the current

approach.

Acknowledgment

This work has been partially supported by the European

Commission (FEDER) and Spanish Government under CI-

CYT project Web-Factories (TIN2006-00472) 00472), and

Andalusian Government project ISABEL (TIC-2533).

References

[1] A. Arenas, M. Wilson, S. Crompton, D. Cojocarasu,

T. Mahler, and L. Schubert. Bridging the gap between

legal and technical contracts. Internet Computing, IEEE,

12(2):13–19, March-April 2008.

[2] ASG. Adaptive services grid. Integrated Project sup-

ported by the European Commission. Web site: http://asg-

platform.org.

[3] AssessGrid. Advanced risk assessment & management for

trustable grids. Project funded by the EU. Web site:

http://www.assessgrid.eu.

[4] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf,

and P. S. Yu. Utility computing sla management based upon

business objectives. IBM Syst. J., 43(1):159–178, 2004.

[5] C. Dumitrescu and I. Foster. GRUBER: A Grid Resource

Usage SLA BrokER. Proc. of 11th Intl. Euro-Par Confer-

ence, Portugal, 2005.

[6] ebXML. ebxml. www.ebxml.org.

[7] P. Fernandez, M. Resinas, and R. Corchuelo. A conceptual

framework for automated service trading. In J. C. Riquelme

and P. Botella, editors, Proceedings of JISBD06, volume 1,

pages 273–282. Jornadas de Ingeniera del Software y Bases

de Datos 2006, 2006.

[8] G. G. Forum. Job submission de-

scription language (jsdl) specification.

http://www.gridforum.org/documents/GFD.56.pdf, De-

cember 2005.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns. Addison-Wesley Professional, January 1995.

[10] GRIA. Service oriented collaborations for industry and

commerce. Project funded by EC, December. Web site:

http://www.gria.org/.

[11] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulka-

rni, and S. Neal. A unified behavioural model and a contract

language for extended enterprise. Data and Knowledge En-

gineering, 51(1):5–29, October 2004.

[12] O. Martı́n-Dı́az. Automatic matching of web services using

constraing programming. PhD thesis, Dept. of Cumputer

Languages and Systems. University of Seville, 2007.

[13] C. Molina-Jimenez, S. Shrivastava, and J. Warne. A method

for specifying contract mediated interactions. In EDOC ’05:

Proceedings of the Ninth IEEE International EDOC Enter-

prise Computing Conference (EDOC’05), pages 106–118,

Washington, DC, USA, 2005. IEEE Computer Society.

[14] C. Müller, O. Martı́n-Dı́az, A. R. Cortés, M. Resinas,

and P. Fernandez. Improving temporal-awareness of ws-

agreement. In ICSOC, pages 193–206, 2007.

[15] OGF. Grid resource allocation agreement protocol wg

(graap-wg): Web services agreement specification (ws-

agreement) (v. gfd.107) (2007).

[16] M. Papazoglou. Service-oriented computing: concepts,

characteristics and directions. Web Information Systems En-

gineering, 2003. WISE 2003. Proceedings of the Fourth In-

ternational Conference on, pages 3–12, 10-12 Dec. 2003.

[17] A. Ruiz Cortés. A semi-cualitative approach to the auto-

mated management of Quality Requirements. PhD thesis,

Dept. of Cumputer Languages and Systems. University of

Seville, 2002.

[18] A. Ruiz-Cortés, O. Martı́n-Dı́az, A. Durán Toro, and

M. Toro. Improving the automatic procurement of web ser-

vices using constraint programming. Int. J. Cooperative Inf.

Syst., 14(4):439–468, 2005.

[19] SeCSE. Service centric systems engineering. 17 partners

from 8 countries, September. Web site: http://secse.eng.it.

[20] C. Ward, M. Buco, R. Chang, L. Luan, and E. So. Fresco:

a Web services based framework for configuring extensible

SLA management systems. ICWS 2005. Proceedings. 2005

IEEE International Conference on Web Services, pages 237–

245, 2005.

[21] WSDL. Web services description language (wsdl)

1.1. W3C Starndard., March. Document available at:

http://www.w3.org/TR/wsdl.

[22] WSMX. Web service modelling execution envi-

ronment. Open source reference implementation of

WSMO (Web Service Modelling Ontology). Web site:

http://www.wsmx.org/.


