
Functional Testing of Feature Model Analysis Tools. A FirstStep∗

Sergio Segura, David Benavides and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

University of Seville

Av Reina Mercedes S/N, 41012 Seville, Spain

{sergiosegura, benavides, aruiz} AT us.es

Abstract

The automated analysis of Feature Models (FMs) fo-
cuses on the usage of different logic paradigms and solvers
to implement a number of analysis operations on FMs. The
implementation of these operations using a specific solver
is an error-prone and time-consuming task. To improve this
situation, we propose to design a generic set of test cases to
verify the functionality and correctness of the tools for the
automated analysis of FMs. These test cases would help to
improve the reliability of the existing tools while reducing
the time needed to develop new ones. As a starting point, in
this position paper we overview some of the classifications
of software testing methods reported in the literature and
study the adequacy of each approach to the context of our
proposal.

1. Introduction

The analysis of an FM consists on the observation of
its properties. Typical operations of analysis allow finding
out whether a FM is void (i.e. it represents no products),
whether it contains errors (e.g. feature that can not be part
of any products) or what is the number of products of the
software product line represented by the model. In partic-
ular, the analysis is generally performed in two steps:i)
First, the model is translated into a specific logic represen-
tation (e.g. Constraint Satisfaction Problem (CSP), [4]),ii)
Then, off-the-shelf solvers are used to automatically per-
form a set of analysis operations on the logic representation
of the model [5].

The available empirical results [6, 7] and surveys [5] in
the context of the automated analysis of FMs suggest that
there is neither an optimum logic paradigm nor solver to

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

perform all the operations identified on FMs. As a result
of this, many authors propose enabling the analysis using
different paradigms such as constraint programming [4],
propositional logic [3, 16] or description logic [9, 15].

Implementing the operations for the analysis of FMs us-
ing a specific solver is not a trivial task. The lack of specific
testing mechanisms in this context difficult the development
of tools and reduce their reliability. To improve this situ-
ation, we propose to design a set of generic test cases to
verify the functionality and correctness of the tools for the
automated analysis of FMs. These test cases would help to
improve the reliability and robustness of the existing tools
while reducing the time needed to develop new ones. As a
starting point, in this position paper we narrow the search
for a suitable testing technique, test adequacy criteria and
test data generation mechanism to be used for our tests. For
that purpose, we overview some of the classification of soft-
ware testing methods reported in the literature and study the
adequacy of each approach to the context of our problem.

The remainder of the paper is structured as follows: In
Section 2 we introduce some common classification of test-
ing techniques and evaluate the adequacy of each approach
for our purposes. Some general classes of test adequacy
criteria and some argumentation about whether they are ap-
propriate for our proposal are presented in Section 3. In
Section 4 we study different mechanisms for the generation
of test data. Finally, we overview our evaluation of the dif-
ferent approaches and describe our future work in Section
5.

2. Selection of testing techniques

Testing techniques can be classified according to multi-
ple factors. Next, we describe some of them and evaluate
the adequacy of each approach to the context of our pro-
posal.

• Knowledge of the source code. According to our
knowledge about the source code of the program un-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


der test, tests can be classify aswhite-box, black-box
or grey-boxtest cases [8, 10, 11, 12, 17]. Black box
test cases are those in which no knowledge about the
implementation is assumed. These test cases are based
exclusively on the inputs and outputs of the system un-
der test. White-box (or, alternatively,glass-box) test
cases consider the entire source code of the program
while grey-box test cases only consider a portion of it.

We want our proposal to be suitable to test any tool
for the automated analysis of FMs independently of
the logic paradigm or solver it uses for the analysis.
Therefore, we will need a black box testing technique
in which only the input and output of the tools are con-
sidered.

• Source of information used.According to the source
of information used to specify testing requirement,
testing techniques can be mainly classified asprogram-
based, specification-basedand interface-based[8,
10, 17]. Program-based testing approaches base on
the source code of the program to create the tests.
Specification-based techniques based on the specifica-
tion (i.e. requirements) of the program to identify fea-
tures to test. Finally, interface-based test cases specify
testing requirements in terms of the type and range of
the inputs without referencing any detail of the pro-
gram or the specification.

Since we have decided to used black box testing tech-
niques we can only consider the approaches not as-
suming any knowledge about the source code, that is,
specification- and interface-based testing. On the one
hand, specification-based testing appears as a suitable
strategy since we assume that the tools for the au-
tomated analysis of FMs share a common functional
specification for the analysis operations. On the other
hand, we presume interface-based is not suitable for
our proposal since it only deals with the informa-
tion provided by the interface without considering any
functional aspect of the software under test.

• Execution-based vs Non-execution based.Testing
can be perform either by running the program to test or
without running it through the usage of so-calledsoft-
ware inspections[10, 12]. Non-execution based meth-
ods usually require to examine the source code of the
program and the documentation that accompanies it.
Thus, we consider that an execution-based technique
is probably the best option to our purpose since we do
not assume any knowledge about the source code.

• Testing level. Testing can be performed at different
levels, mainly:unit, integrationandsystem level[2].
Unit testing focus on the verification of isolated com-
ponent or modules. Integration testing exposes defects

in the interfaces and interaction between integrated
modules. Finally, system testing test the whole system
to verify whether it fulfill the requirements or not.

We intend to verify the functionality of each analysis
operation separately in order to be as accurate as pos-
sible when informing about defects. Consequently, we
consider that unit tests are the most suitable approach
for our needs.

3. Selection of test adequacy criteria

Adequacy criteria define what constitutes a good test.
Zhu et al. [17] identify three generic classes of test ade-
quacy criteria. Next, we introduce them and check whether
they are appropriate for our context of application.

• Fault-based.This criterion measures the adequacy of
a test according to its ability to detect faults. Typical
strategies using this criterion areerror seedingor pro-
gram mutation testing[17]. In these approaches, arti-
ficial faults are introduced into a copy of the program
(or one of the programs) under test. Then, the software
is tested and the number of artificial faults detected is
counted. The proportion of artificial faults detected de-
termines the adequacy of the test.

We consider that the usage of this kind of adequacy
criterion would be suitable for our proposal since the
main goal of our tests is to expose defects in the tools
for the automated analysis of FMs. For instance, once
the test were ready, several mock implementations of
the analysis operations including artificial faults could
be developed and used to measure the ability (i.e. ade-
quacy) of our tests to find them.

• Error-based. Error-based testing requires test cases to
check the software on certain error-prone points [17].
This way, this criterion measures the ability of the tests
to verify that the software does not deviate from its
specification in a typical way.

Our experience in the analysis of FMs has leaded us
to identify several error-prone points when designing
tools for the automated analysis of FMs. These are es-
pecially related with the usage of feature cardinalities
and the detection of dead features [13]. Thus, we con-
sider this adequacy criterion is also a suitable option to
take into account for our purpose.

• Structurally-based. A structurally-based criterion re-
quires the design of a test that covers a particular set of
elements (e.g. statements) in the structure of the pro-
gram or the specification. This test adequacy criterion
is mostly used with program-based testing [10]. Thus,
we do not find it particularly useful for our tests.



4. Selection of mechanisms for test data gener-
ation

We identify different options to generate the test data,
namely:

• Automatedvs manual. The generation of test data can
be either manual or automated [10]. On the one hand,
the automated generation of test data is faster and usu-
ally enables the generation of bigger and more com-
plex program inputs. On the other hand, the manual
generation simplifies the creation of customized tests.

We consider that both approaches are suitable for
our approach and that they could even being com-
bined. This way, the test inputs could be composed by
two groups of automatically- and manually-generated
FMs.

• Random vs systematic. Test data can be generated
either randomly or systematically. On the one hand,
random test data generation approaches relies upon a
random number generator to generate test input values
[10]. On the other hand, systematic approaches follow
some pre-defined criteria to generate the data.

Once again, we consider that a combined approach
would be the most suitable option for our tests. For in-
stance, a set of randomly-generated FMs could be first
used to test the tools using different size and forms of
the input. Then, a second group of FMs could be sys-
tematically designed to exercise some specific error-
prone points in the tools under test. In this context, we
already have a tool, the FAMA1 framework [14], pro-
viding support for the automated generation of random
FMs.

5. Overview and open issues

Figure 1 illustrates an FM summarizing the factors (i.e.
features) we considered for the selection of an adequate test-
ing techniques, test adequacy criteria and test data genera-
tion mechanism. Cross-tree constraints are not included for
simplicity. The studied features are mainly based on the
decomposition of different testing techniques and adequacy
criteria proposed by Binder [8], Kapfhammer [10] and Zhu
et al. [17]. However, we remark that the usage of other clas-
sifications of software testing methods could also be feasi-
ble.

Filled features in Figure 1 illustrate the set of configura-
tions that we evaluated as adequate for our proposal. These
configurations helped us to refine our contribution and mo-
tivated some of the main research questions to be addressed
in our future work, namely:

1http://www.isa.us.es/fama

• What specific technique should be used to define the
tests? We concluded that we should use a black box,
execution- and specification-based technique for unit
testing. However, there still exist a vast array of spe-
cific techniques fulfilling these criteria such asequiv-
alence partitioning, boundary-value analysisor deci-
sion table testing[11, 17]. Selecting one of these tech-
niques and adapting it to our context of application is
one of our major challenges.

• What specific technique should be used to measure
the adequacy of the tests?We concluded that using
a fault-/error-based test adequacy criterion is probably
the best option for the context of our problem. How-
ever, once again we must still select one of the many
available techniques to measure test adequacy using
those criteria such aserror seeding, program mutation
or perturbation testing[17].

• How should the test cases be specified?The speci-
fication of the test cases should be rigorous and clear
in order to provide all the information needed (e.g. in-
puts, expected outputs, etc.) in a widely accepted for-
mat. For that purpose, we plan to revise the literature
of software testing and the related standards [1].

• Which criteria should be followed to generate the
input FMs? The criteria for the generation of in-
put data usually depend on the testing technique used.
However, these techniques are often designed to work
with numeric values and not with complex structures
as FMs. Thus, the adaptation of these criteria to the
context of FMs is a key challenge to decide the num-
ber, size and form of the input FMs to be used in our
tests.

• How could our proposal be integrated into the
FAMA framework? FAMA (FeAture Model Ana-
lyzer) is an extensible framework for the automated
analysis of FMs integrating different logic paradigms
and solvers. Our final goal is to integrate our proposal
into this framework in order to enable the automated
testing of the tools for the automated analysis of FMs.

References

[1] Draft IEEE Standard for software and system test doc-
umentation (Revision of IEEE 829-1998). Technical
report, 2007.

[2] L. Baresi and M. Pezzè. An introduction to software
testing.Electronic Notes in Theoretical Computer Sci-
ence, 148(1):89–111, 2006.



Software Testing

Yes

Specification

Execution-based

No

Unit

Integration

Code knowledge

White Box

Source

Fault

Structural

Level

Test data generation

Black Box

Adequacy Criterion

Manual

Automatic

Interface

Program

Error

Grey Box

System

Random

Systematic

 Testing Technique

Figure 1: Feature-based overview of software testing methods

[3] D. Batory. Feature models, grammars, and proposi-
tional formulas. InSoftware Product Lines Confer-
ence, LNCS 3714, pages 7–20, 2005.

[4] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated reasoning on feature models.LNCS, Advanced
Information Systems Engineering: 17th International
Conference, CAiSE 2005, 3520:491–503, 2005.

[5] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feture
models. InJornadas de Ingenierı́a del Software y
Bases de Datos (JISBD), 2006.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. A first step towards a framework for the auto-
mated analysis of feature models. InManaging Vari-
ability for Software Product Lines: Working With Vari-
ability Mechanisms, 2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. Using java csp solvers in the automated anal-
yses of feature models.LNCS, 4143:389–398, 2006.

[8] R. V. Binder. Testing object-oriented systems: mod-
els, patterns, and tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[9] S. Fan and N. Zhang. Feature model based on descrip-
tion logics. In Knowledge-Based Intelligent Infor-
mation and Engineering Systems, pages 1144–1151.
2006.

[10] G. Kapfhammer.The Computer Science Handbook,
chapter Software Testing. CRC Press, 2nd edition,
June, 2004.

[11] G. J. Myers and C. Sandler.The Art of Software Test-
ing. John Wiley & Sons, 2004.

[12] S. Schach. Testing: principles and practice.ACM
Comput. Surv., 28(1):277–279, 1996.

[13] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés,
and M. Toro. Automated error analysis for the ag-
ilization of feature modeling.Journal of Systems and
Software, in press, 2007.

[14] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura,
and A. Jimenez. Fama framework. InProceedings of
the 12th International Software Product Line Confer-
ence (Tool demonstration), 2008.

[15] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Ver-
ifying Feature Models using OWL.Journal of Web
Semantics, 5:117–129, June 2007.

[16] W. Zhang, H. Zhao, and H. Mei. A propositional
logic-based method for verification of feature models.
In J. Davies, editor,ICFEM 2004, volume 3308, pages
115–130. Springer–Verlag, 2004.

[17] H. Zhu, P. Hall, and J. May. Software unit test cov-
erage and adequacy.ACM Comput. Surv., 29(4):366–
427, 1997.


