-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by idUS. Depésito de Investigacion Universidad de Sevilla

A First Approach to Model SLAs for Composite
Services, using WS-Agreement*

Carlos Miiller, J. A. Parejo, A. Ruiz-Cortés

Dpto. Lenguajes y Sistemas Informaticos
ETS. Ingenieria Informatica - Universidad de Sevilla
41012 Sevilla (Spain - Espana)

{cmuller, japarejo, aruiz}Qus.es

Abstract. When organizations began to use intensively services ori-
ented applications (SOA) they arose the need of service level agreements
(SLAs) to provide the confidence needed on quality of service (QoS).
Nowadays, we have a consensus on what an SLA for a service is and
as consequence, languages to specify SLAs as WS-Agreement have been
proposed and they are becoming popular. One of the key topics in SOA
research at present are composite services (CS). CS have been tackled
by many authors and there is a consensus on their definition. However,
not many works deal with SLAs for CS. The reason could be the lack
of an intensive use of CS applications in business context. But in future
CS applications comprised by heterogeneous services -defined in diverse
specification languages or supported by different platforms- may gain the
attention of companies and they will need a QoS support. Then, we con-
sider interesting to obtain a general definition of SLAs for CS starting
from current proposals. In this paper we analyze different meanings given
in the literature for the expression “SLAs for CS”, we find the shared as-
pects, we study the unshared ones and we propose to include important
additional elements into our abstract model for defining SLAs for CS,
such as temporal information and QoS properties about the whole CS.
Finally, we promote the use of WS-Agreement with some non-intrusive
extensions proposed by us for the establishment of SLAs for CS according
to our abstract model, including several use cases.

1 Introduction

Services oriented applications (SOA) have been widely studied by many authors
and now exists a consensus on the definition of services. Services are basically
functional components with non-functional properties -also called quality of ser-
vice (QoS) properties- offered by a provider in a distributed context. When
organizations began to use intensively SOA, arose the need of a QoS assurance.
In this context, the service level agreements (SLAs) were developed and nowa-
days there is a consensus on what an SLA for a service should include. That is:

* This work has been partially supported by the European Commission (FEDER),
Spanish Government under CICYT project Web-Factories (TIN2006-00472), and
project P07-TIC-2533 funded by the Andalusian local Government.

https://core.ac.uk/display/51389473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(1) information about the agreement context as parties involved; (2) a group of
terms including the offered /demanded operations -functional properties- and the
guaranteed /required QoS; (3) other information as preferences, penalties, etc.
As consequence, general purpose languages to specify SLAs as WS-Agreement
(WS-Ag) [7] -a proposed recommendation of the Object Grid Forum, including
a XML-based specification language for SLAs- have been proposed and they are
becoming popular.

One of the most recent challenges in SOA are composites services (CS). CS
have been tackled by many authors and most of them define a CS as a group of
services working together to get a global functionality. The definition elements
of a CS given in literature are: (1) services that compound the CS, (2) structural
information about how component services are connected -also called topology
or topological information-, (3) QoS properties of each component service (local
QoS properties), (4) QoS properties of the whole CS (global QoS properties),
usually depending on local QoS properties. Instead of this established ideas on
CS, not many works deal with SLAs for CS. A possible reason could be the
lack of an intensive use of CS applications in a business context. However, in
future this kind of applications may gain the attention of SOA organizations -
those that bet on SOA-. Consequently, it will be needed a management of several
CS comprised of heterogeneous services defined in diverse specification languages
and implemented in several platforms. Thus, we consider essential to get support
of QoS assurance for CS. For instance: imagine the manager of a SOA company
using a CS for getting travel information. If the CS fails, he needs an alternative
to keep working. If an SLA for cited CS would have been established, it could
have included a term which considers a CS failure.

Related works show that there are different shades of meaning on SLA for
CS. So, we consider interesting to obtain an abstract definition of SLAs for CS
supporting all of them. Then, we analyze in this paper the different meanings
given in the literature for SLAs for CS and we include into our model: (1) the
shared aspects such as: local QoS properties, local QoS terms, local SLAs -one
SLA per component service-, and global QoS aggregated from local properties;
(2) the unshared aspects such as: topology of CS and standard languages use;
and (3) some elements slightly dealt in the literature as QoS attributes and
terms of the whole CS, and temporality. Finally, we instantiate our model by
implementations according to our abstract model. These implementations use
WS-Ag with some non-intrusive extensions for the establishment of SLAs for CS
-understanding non-intrusive as an extension which makes good use of extension
point prefixed in the WS-Ag specification-.

The remainder is organized as follows. Section [2] include the comparative
analysis of current proposals, new needs, and an abstract model for SLAs for
CS. In section [3] we make an overview of WS-Ag. Section [] studies the SLA for
CS support by current WS-Ag and proposes some extension to completely cover
our model. Section [5] shows two use cases, a black-box use case and a use case
with all elements of our abstract model. Finaly, Section [6] presents conclusions
and future work.

2 SLAs for Composite Services

The expression: “SLAs for CS” is commonly used in the related works, but with
different shades of meaning. We have compared current proposals in this context
and we have found that although most aspects of the SLAs for CS definitions are
used in a similar way -as you can see on table[I}, there are some aspects whose
meaning is not exactly the same for all authors. In 2.I] we include an analysis of
the current status including shared and unshared aspects. In 2.2] we enunciate
several needed elements of SLAs for CS that were laxly used in previous works.
And in we propose an abstract definition for SLAs for CS considering all
mentioned aspects of SLAs for CS.

2.1 Current Status

Related work shows aspects with similar meaning concern to: (1) the component
service of CS -local QoS properties, local QoS constraints, and local SLAs-; (2)
the entire CS -global QoS properties, global QoS constraints, and a global SLA
for the CS-. But it is important to highlight that these global aspects of the CS
are defined generally in function of local aspects of component services. For in-
stance a global QoS property as “cost for the CS” is calculated by an aggregation
on the local QoS properties called “service cost”. The same meaning is given for
global constraints and global SLAs. Thus, current proposals understood them in
relation with local constraints and SLAs.

However some few authors as [I] change the cited meaning of the global as-
pects to get more expressiveness in specific scenarios. For instance using a kind
of global constraint by means of a called “service selection constraint” similar to:
“if you choose a service of this provider, you must choose those others services
from the same provider”, which allows the expression of stateful services depen-
dences. If we consider each service individually, that constraint does not makes
sense. This and other new needs -such as temporality or topology information-
in “SLAs for CS” are discussed in the following section.

2.2 New Needs

In [I] the authors consider important to use a global QoS constraints -concretely
to define dependences between component services- which only makes sense re-
lated to a CS. So, this kind of global QoS constraint can be considered more
abstract than global constraints that only makes sense as a function of local
constraints. Moreover, we consider a more abstract SLA for the whole CS which
could include that kind of global QoS constraints and in addition, global QoS
properties related to the whole CS -not necessarily aggregated from properties
of component services-. Thus we could work with SLAs for CS as now with SLAs
for single services. It allows to conceive a CS+SLA as a black box; and for in-
stance a manager could interchange a CS used in his company by another one
without any idea of their component services.

The topological information of the CS is considered as an essential aspect in
most of studied works: [TI2J5/4I6IQIT2IT3]. The topology of a CS include infor-
mation about mutually exclusive execution paths and parallel execution paths
generally. This kind of structural information is really useful for management
of CS at runtime. Thus, we think that it is interesting to include in a global
SLA information about the local SLAs, considering if a local SLA is mandatory
or optionality and parallel or not. With this information the execution of a CS
could be stopped if a mandatory term has not been fulfilled.

We consider temporality as another key aspect of an SLA for CS. In a previous
work [8], we proposed a temporal domain specific language which can be used
to express validity periods over the entire SLA or many of their components
such as terms or preferences. Increasing the level of abstraction we could use
the same proposal to express validity periods in SLA for CS and their elements,
giving more expressiveness to the SLA. With this temporal awareness, we could
express a validity period for:

— The whole CS

— Any set of terms from global or local SLAs -it allows to express temporal
dependencies between different component services. For instance two par-
allel component services could have terms with the same validity period,
determining the parallelism-.

— Preferences over any set of terms from local or global SLAs -it allows to
express preferences in different periods. For instance in a validity period an
optional local SLA could be the best option for user, but in other period the
same local SLA could be the last option-.

Finally we consider using standard specifications for the SLAs for CS as a
good practice. Only three of the studied proposals [6/9/10] include into their
works support for standard SLA languages. [6] and [I0] use WSLA -one of the
predecessor of WS-Ag- and [9] uses Ws-Ag. The rest of studied works use ad hoc
specifications for expressing SLAs or BPEL to model the execution process of
the CS. In this paper we promote the use of WS-Ag with some extensions as a
possible general specification language for the abstract model discussed in next
section.

=i
— —
= = =
= = o —| &
n | | C =
= —| =] .9 | . =
E . 2= g™ = g
iR EREIVICIEIR:
SlAale 27| w A= %0
< O . = © | =
@ || 0 1) B
AR IR IR
S RRTEIR IR g
wn| = |2 g Slal=] 8 o0 | o o
OIS |F|FE|S| 0|0 W Sl gl
o © = | &0 Al 8| 9| 0|2
olu| 8| 8| &= S| o (N 8|S
2 B> oS | /|| &| & |l &84
MO AIE|IDIMIAID|<|A|Z|H
Local QoS Properties VIVIVIVIVIVIVIVIVIVIV
Local QoS Constraints VIVIVIVIVIVIVIVIVIVIV
Local SLAs VIVIVIVIVIVIVIVIVIVIV
Global QoS Properties Vi v~~~ v~~~ ~
Global QoS Constraints | v/ | ~ ~ N~~~ |~
Global SLA v ~Nl~~]~ ~ ~ |~
Topology of CS VIVIVIVIVIV v v
Temporality VT |T T
Standard Language V' | sta| sta Std
v'=aspect included, ~=aspect included as an aggregation of the locals.
T=some temporal aspects naively included, Std=some standard language used.

Table 1. Included Aspects in the Definition of SLAs for CS

2.3 Abstract Definition

Considering the current status and new needs mentioned, we could express an
abstract definition of SLA for CS as follows:

SLAc ={S, Ps, P.,Ts, T, Ctz}

Where:

S is a set of component services;

— P; is a set of local QoS properties;

— P, is a set of global QoS properties -expressed in relation with the whole CS,
or expressed as a function on the elements of P;-;

— T is a set of terms related with a specific component service -it allows two
kinds of terms: (1) temporal-aware service terms: defining the operations
of the service, allowing validity periods; and (2) temporal-aware guarantee
terms: including the QoS guaranteed or required by the parties, allowing
validity periods-;

— T, is a set of terms related to the whole CS, or in relation with the elements
of Ts as a function -it also allows two kinds of terms: (1) temporal-aware
composition terms: defining the CS operations and even topology, allowing
validity periods; and (2) temporal-aware guarantee terms: including the QoS
guaranteed or required by the parties in relation with the whole CS, allowing
validity periods-;

— Ctx is a context which includes information related to the SLA such as: a

global validity period for the whole CS, the mandatory SLAs list, the parties

involved and their roles or any other information.

Figure [I] denotes the mentioned elements of our abstract definition, showing
a composite service with three component services representing global and local
QoS properties by means of connected rhombus. Figure includes local and global
SLAs with a generic WS-Agreement structure which will be explained in the
following section. Then in local SLAs it is shown by simplicity only a set of
terms (ST in figure) and a set of guarantee terms (GT in figure) defined on QoS
properties. The global SLA (SLA¢ in figure) is comprised of the mentioned new
needs for CS (highlighted in a discontinuous square in figure), such as: (1) a set, of
temporal-aware composition terms giving the information about the whole CS,
(2) a set of guarantee terms defined on the global QoS properties, (3) a context
supporting a global validity period definition for the whole CS. In addition, the
SLAq allows to specify the information included in local SLAs by means of
aggregations of its service terms and guarantee terms defined as a function on
the local QoS properties (showed at bottom of terms in figure).

3 WS-Agreement in a nutshell

WS-Ag specifies an XML-based language and a protocol for advertising the ca-
pabilities of service providers, creating agreements based on agreement offers.

s
1

e ||t || O]
\Needs ‘ ::
:

\

Serviceg

pmmmmmemmmmemme——a=- - SLA
CT = CompositionTerms
GT = Guarantee Terms ST | 6T

| |

' i

] ! . .

! ST = Service Terms ! : SEI’VICEA
1 = QoS Property !

Fig. 1. Elements of SLAs for Composite Services.

The structure of an agreement for WS-Ag is comprised of: (1) Name: identifies
the agreement and can be used for reference. (2) Context: it includes informa-
tion such as the name of the parties and their roles of initiator or responder of
the agreement. Additionally, it can refer to an agreement template if needed. In
this element, an agreement lifetime can be defined by means of an element called
“ExpirationTime”. (3) Terms: agreement terms are wrapped by term composi-
tors, which allow simple terms or sets of terms to be denoted by “ExactlyOne”,
“OneOrMore”, or “All”. The two main types of terms are: (a) Service terms: they
provide information to instantiate or identify services and operations involved
in the agreement. Additionally, it can comprise of information about the mea-
surable service properties. (b) Guarantee terms: they describe the service level
objectives (SLO) agreed by the parties. It also includes the scope of the term (e.g.
a certain operation of a service or the whole service itself); a “QualifyingCondi-
tion” that specifies the validity conditions under which the term is applied; and
information about business properties in the “BusinessValueList” element such
as “Importance”, “Penalty” or “Reward” and “Preference”.

In order to create agreements, WS-Ag allows us to specify templates with the
above structure, but including agreement “Creation Constraints” that describe
the variability allowed by a party and it should be taken into account during
the agreement creation process. In a template the initiator can leave elements
empty to negotiate it later.

4 WS-Agreement to Specify SLAs for Composite Services

Current WS-Ag specification allows the definition of SLAs for a set of services
by means of:

— Several variables into the “service properties” element -to include local QoS
properties-;

— Several “service description terms” -one per component service of the CS, at
least-;

— Several “guarantee terms” referring to one or more service description terms
and including the QoS guaranteed or required by the parties;

— Some of the mentioned context information as the information about the
parties involved and their roles could be included in the context of WS-Ag.

With these allowed aspects WS-Ag only has completely covered some ele-
ments of the previous abstract definition, concretely the underlined here:

SLAc ={S,Ps, P.,Ts,T.,Ctx}. To cover P, and T, we would need a way
for specifying global QoS properties, CS guarantee terms and CS description
terms, allowing temporal and topological information; all of them not necessary
computed as function of local aspects of component services. And to cover C'tx
we would need a way for specifying temporal information over the entire CS and
the mandatory SLAs list.

A study of the temporality allowed by current WS-Ag specification is included
in [8]. Basically WS-Ag include an expiration time for the SLAs and it only allows
a disjoint period of time; and to express temporality on terms.

We propose to use some non-intrusive extensions for WS-Ag to tackle the
problem of specifying the cited uncover aspects. We consider their non-intrusive
because we do not change the current WS-Ag specification structure. We make
good use of different extension points established in WS-Ag, concretely:

— To specify temporal information, we promote the use of the improvement of
temporal-awareness for WS-Ag developed in [8] but applied now to SLAs for
CS. Thus we could specify: (1) a global validity period for the entire SLA
for CS using the context element of WS-Ag; and (2) validity periods for any
term -allowing to determine the parallel execution on any set of component
services, as we show later in Section [5} or any preference definition -allowing
to express temporal-aware preferences over the optional component services,
as we show later in Section [p} using the qualifying condition element of
WS-Ag.

— CS guarantee terms can be expressed as guarantee terms of WS-Ag scoping
to the whole CS -or a part-;

— To specify CS properties and CS description terms we propose two alterna-
tives such as: (a) to use service properties and service description term, both
elements from current WS-Ag -which implies to change the original meaning
of those items, because we add properties and description term related to
the CS, not to a single service-; or (b) to create another term type called
“CS Term” with two subtypes called “CS Properties” and “CS Description

Term” -That second alternative is our selected for the use cases of Section [
because it does not change the meaning of service terms from current WS-Ag
as occurs in first-.

— To include topology information inside the CS description terms we will use:
(1) Validity Periods inside guarantee terms, scoping to the concrete part of
the CS described in a CS description term. That periods will determine which
operations are parallel or optional -if two validity periods for operations have
temporal instants in common-; (2) the compositor term elements of WS-Ag
are used to join different set of mandatory operations which contain one
optional operation at least.

5 Use Cases

. - t 1 -@® - t5 t
AttractionSearching BikeRental f
)

o - - 1y

DrivingTimeCalculation

@ - i) [i3 -@ ts
FlightTicketBooking HolelBooking CarRental
Legend State | And-state = Transition . Toilal State ® Pisd Seate

Fig. 2. Travel-planner composite service of Zeng et al [13].

We base our case study on the “Travel-Planner” of zeng et al. [13], showed in
Figure [2| because it is commonly used in literature: [53]. However, to validate
our model we include some additional information or constraints, such us:

— The number of distinct provider for the CS must be less than 4.

— A list of mandatories SLAs is included in context to make easier to invalidate
an agreement if any agreement term of a mandatory SLA is violated.

— CSDTs showing each CS operation as elements which include the SDT name
of the service which perform the operation -coulding be the same SDT for
different operations-.

— The optionality is solved by means of preferences defined at validity periods.

— Topological information included:

e Parallelism is included with the validity periods of each operation inside
guarantee terms.

e Optionality is included by means of two CSDTs including inside each
one optional operation -separated by compositor elements of WS-Ag-.

It is important to highlight again that to specify the validity periods, we stand
on the proposal made for us in [§]. So, in our study cases we will use the ele-
ments “GlobalPeriod” (GP) and “QualifyingCondition” (QC), to define the va-
lidity periods for the whole agreement and for concrete agreement parts. But,
for simplicity, we will use natural expressions to define the concrete intervals
comprising the validity periods.

A “Black-Box” study case -without any topological information nor SDT
name fixed- is denoted in Figure[3] The key of this study case is the independent
definition of a CS by the initiator party of an agreement. To define the CS it is
not necessary to include concrete providers for each operation, it only include
the constraint on the number of distinct provider. So, in future the initiator will
be able of use the same template with different providers.

<Template>

<Context>
<GP>...</GP> <!-A global validity period definition-->
<MandatorySLAsList>...</ MandatorySLAsList>

</Context>
<All1>
<CSDT Name=’TravelPlanner’>
<AttractionSearchingSDTName> </AttractionSearchingSDTName>
<FlightTicketBookingSDTName> </FlightTicketBookingSDTName>
<HotelBookingSDTName> </HotelBookingSDTName>
<DrivingTimeCalculationSDTName> </DrivingTimeCalculation>
<BikeRentalSDTName> </BikeRentalSDTName>
<CarRentalSDTName> </CarRentalSDTName>
<DistinctProv> </DistinctProv>
</CSDT>
<CSProperties>
DistinctProv (Location \CSDT\DistinctProv)
</CSProperties>

<GT Name=’ProviderLimit’>
<Scope> CSDT </Scope>
<SLO> DistinctProv < 4 </SLO>
</GT>
</A11>

</Template>

Fig. 3. Black-Box WS-Agreement Template.

In the following example we have included a more complete study case with
the following topological embedded information and SDTs fixed:

1. Topological info:

— Optionality in transport rental (with two CSDTs with the same validity
period definition). This optionality is solved by means of preferences
inside the agreement. You can see how the bike rental operation is chosen
when sun is shining and the car rental is chosen at nights.

— Parallelism in attraction searching and bookings (with the same validity
period definition)
2. Some SDT Fixed:
— We can fix any part of SDT: (Provider, Cost, ...). In this case we have
fixed the provider of some CS operations.

<Template>

<Context>
<GP>...</GP> <!-A global validity period definition-->
<MandatorySLAsList>...</ MandatorySLAsList>

</Context>
<Al1>
<Exactlyone>

<CSDT Name=’BikeCSDT’>
<AttractionSearchingSDTName> </AttractionSearchingSDTName>
<FlightTicketBookingSDTName> t2 </FlightTicketBookingSDTName>
<HotelBookingSDTName> t3 </HotelBookingSDTName>
<DrivingTimeCalculationSDTName> </DrivingTimeCalculation>
<BikeRentalSDTName> t5 </BikeRentalSDTName>
<DistinctProv> </DistinctProv>

</CSDT>

<CSDT Name=’CarCSDT’>
<AttractionSearchingSDTName> </AttractionSearchingSDTName>
<FlightTicketBookingSDTName> t2 </FlightTicketBookingSDTName>
<HotelBookingSDTName> t3 </HotelBookingSDTName>
<DrivingTimeCalculationSDTName> </DrivingTimeCalculation>
<CarRentalSDTName> t6 </CarRentalSDTName>
<DistinctProv> </DistinctProv>

</CSDT>

</Exactlyone>

<SDT Name=’t2’>

<Provider> "Amadeus" </Provider>
<Cost> - </Cost>
</SDT>

<SDT Name=’t3’>

<Provider> "Amadeus" </Provider>
<Cost> - </Cost>
</SDT>

<SDT Name=’t5’>

<Provider> "RentABike" </Provider>
<Cost> - </Cost>
</SDT>

<SDT Name=’t6’>

<Provider> "CarRentalCorp" </Provider>
<Cost> - </Cost>
</SDT>
<CSProperties>
<Variables>

...DistinctProv (Location \CSDT\DistinctProv)
...BikeRentalSDTName (Location \CSDT\BikeRentalSDTName)
...CarRentalSDTName (Location \CSDT\CarRentalSDTName)
...AttractionSearchingSDTName (Location \CSDT\AttractionSearchingSDTName)
...FlightTicketBookingSDTName (Location \CSDT\FlightTicketBookingSDTName)
...HotelBookingSDTName (Location \CSDT\HotelBookingSDTName)
</Variables>
</CSProperties>

<GT Name=’ProviderLimit’> <!-not a distinct provider for each service-->
<Scope> CSDT </Scope>

<SLO> DistinctProv < 4 </SLO>
</GT>

<GT Name=’OptionalTransportValidityPeriod’>
<QC> <!-Optional validity period definition--> </QC>
<Scope>
CSDT\BikeRentalSDTName
CSDT\CarRentalSDTName
</Scope>
<SLO>
(BikeRentalSDTName <> null) and (CarRentalSDTName <> null)
</SLO>
</GT>

<GT Name=’AttractionSearchingValidityPeriod’> <!-parallel with 2 next GTs-->
<QC> <!-Attraction validity period definition-->

Jan, 1st 2009:09:00 - Jan, 1st 2009:09:05
</Qc>
<Scope>
CSDT\AttractionSearchingSDTName
</Scope>
<SLO> (AttractionSearchingSDTName <> null) </SLO>

</GT>

<GT Name=’FlightBookingValidityPeriod’>
<QC> <!-Flight Booking validity period definition-->

Jan, 1st 2009:09:01 - Jan, 1st 2009:09:02
</QC>
<Scope>
CSDT\FlightTicketBookingSDTName
</Scope>
<SLO> (FlightTicketBookingSDTName <> null) </SLO>

</GT>

<GT Name=’HotelBookingValidityPeriod’>
<QC> <!-Hotel Booking validity period definition-->

Jan, 1st 2009:09:03 - Jan, 1st 2009:09:04
</QC>
<Scope>
CSDT\HotelBookingSDTName
</Scope>
<SLO> (HotelBookingSDTName <> null) </SLO>

</GT>

<GT Name=’BikeRentalPreference’>
<QC> <!- BikeRentalPreference validity period definition-->

"When Sun Shining" : (periodical interval)
</QC>
<SLO> (BikeRentalSDTName <> null) </SLO>
<BVL>

<Preference> <!-original WS-Ag preference (only a utility value)-->
<SDTReference> BikeCSDT </SDTReference>
<Utility> 1.0 </Utility>
<SDTReference> CarCSDT </SDTReference>
<Utility> 0.0 </Utility>

</Preference>

</BVL>
</GT>

<GT Name=’CarRentalPreference’>
<QC> <!- CarRentalPreference validity period definition-->

"At nights" : (periodical interval)
</QC>
<SLO> (BikeRentalSDTName <> null) </SLO>
<BVL>

<Preference> <!-original WS-Ag preference (only a utility value)-->
<SDTReference> BikeCSDT </SDTReference>
<Utility> 0.0 </Utility>

<SDTReference> CarCSDT </SDTReference>
<Utility> 1.0 </Utility>

</Preference>
</BVL>
</GT>
</A11>
</Template>

6 Conclusion and Future Work

An abstract model for SLAs for CS is needed, specially on management of CS
-including activities such as: monitoring, binding of component services, orches-
trating heterogeneous component services defined in different specification lan-
guages or stored in diverse platforms. Thus, in this paper we have established
a novel abstract model for SLAs for CS. We also propose an instantiation of
our model, exposing two alternative implementations with WS-Ag. In order to
do so, we make good use of WS-Ag extension points and other temporal exten-
sion proposed in a previous work [§]. Once developed a general framework with
our abstract model, in future works we will develop an advance management
of CS taking into account the mentioned new needs for task such as: the SLA
monitoring, the SLA renegotiation, etc. And finally, we plan to adapt to CS a
previously presented proposal of services binding using constraint satisfaction
problems. [I1].

References

1. D. Ardagna and B. Pernici. Adaptive service composition in flexible processes.
Software Engineering, IEEE Transactions on, 33(6):369-384, 2007.

2. Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux. A declarative approach
for qos-aware web service compositions. pages 422—-428. 2007.

3. V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti. In IW-SOSWE’07: 2nd
international workshop on Service oriented software engineering, New York, NY,
USA.

4. Anis Charfi, Rania Khalaf, and Nirmal Mukhi. Qos-aware web service compositions
using non-intrusive policy attachment to bpel. pages 582-593. 2007.

5. M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno. In GECCO’07:
Proceedings of the 2007 conf. on Genetic and evolutionary computation, London,
England, UK.

6. Dmytro Dyachuk and Ralph Deters. Using sla context to ensure quality of service
for composite services. In Pervasive Services, IEEE International Conference on,
pages 64-67, 2007.

7. OGF Grid Resource Allocation Agreement Protocol WG (GRAAP-WG). Web
Services Agreement Specification (WS-Agreement) (v. gfd.107), 2007.

8. C. Miiller, O. Martin-Diaz, A. Ruiz-Cortés, M. Resinas, and P. Fernandez. Im-
proving Temporal-Awareness of WS-Agreement. In Proc. of the 5™ International
Conference on Service Oriented Computing (ICSOC), pages 193-206, Vienna, Aus-
tria, Sept 2007. Springer Verlag.

10.

11.

12.

13.

G. Di Modica, O. Tomarchio, and L. Vita. A framework for the management of
dynamic SLAs in composite service scenarios. In Proc. of the 1°* Non Functional
Properties and Service Level Agreements in Service Oriented Computing Workshop
(NFPSLA-SOC’07), Vienna, Austria, Sept 2007. Springer Verlag.

N. Narendra, Karthikeyan Ponnalagu, Jayatheerthan Krishnamurthy, and
R. Ramkumar. Run-time adaptation of non-functional properties of composite
web services using aspect-oriented programming. pages 546-557. 2007.

A. Ruiz-Cortés, O. Martin-Diaz, A. Duran, and M. Toro. Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on
Cooperative Information Systems, 14(4), 2005.

Dirk Thiflen and Pimjai Wesnarat. Considering qos aspects in web service compo-
sition. pages 371-377.

L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-Aware Middleware for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5):311-327, May 2004.

	A First Approach to Model SLAs for Composite Services, using WS-Agreement
	Carlos Müller, J. A. Parejo, A. Ruiz-Cortés

