
A Service Ranker based on Logic Rules Evaluation and
Constraint Programming

José Marı́a Garcı́a1, Ioan Toma2, David Ruiz1, and Antonio Ruiz-Cortés1?

1 University of Sevilla
E.T.S. Ing. Informática, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

{josemgarcia, druiz, aruiz}@us.es
2 Semantics Technology Institute - STI Innsbruck, University of Innsbruck

Technikerstrasse 21a, A-6020 Innsbruck, Austria
ioan.toma@sti2.at

Abstract. Ranking of Semantic Web Services is usually performed based on
user preferences descriptions. These descriptions are expressed in terms of an
underlying logical formalism, which limits their expressiveness. Thus, there are
some kind of descriptions, such as utility functions, that cannot be handled by
reasoners currently being used to perform Semantic Web Services tasks, though
utility functions provide a higher level of expressiveness. In this work, we present
a hybrid solution to allow the introduction of utility functions in user preferences
descriptions, using both Logic Programming rules evaluation and Constraint Pro-
gramming to perform the ranking process. This proposal is based on the Web
Service Modeling Ontology, extending it with a highly expressive framework to
specify user preferences, and enabling the integration of different engines to per-
form the ranking process.

Keywords: Semantic Web Services, Ranking, Non-Functional Properties, Rules
Evaluation, Constraint Programming.

1 Introduction

Semantic Web Services (SWS) technologies enable the automatization of service re-
lated tasks, such as discovery, ranking, and selection. In particular, discovery of ser-
vices that fulfill certain user requirements have been widely treated in several proposals,
such as [3, 5, 6, 12]. These proposals are mostly based on Description Logics reasoners,
which match service descriptions with user requirements. These discovered services
need to be ranked in order to select the best service according to stated user prefer-
ences.

Ranking and selection proposals use specific descriptions to perform these tasks.
These descriptions, i.e. user preferences, are based on non-functional properties of ser-
vices, which specify preferences with respect to properties that cannot be considered
? This work is partially supported by the European Commission (FEDER) and Spanish Govern-

ment under CICYT project Web-Factories (TIN2006-00472), by the Andalusian Government
under project ISABEL (TIC-2533), and by the EU FP7 IST project 27867, SOA4ALL - Ser-
vice Oriented Architectures For All.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

functional or behavioral, such as price, security, reliability, etc. Thus, discovered ser-
vices are ranked and selected depending on their non-functional properties. Although
there are several proposals that provide a semantic framework to express these proper-
ties in a selection scenario, such as [7, 15, 17], preferences can only be expressed using
tendencies or order conditions. Other proposals use utility functions to describe prefer-
ences [4, 9], which provide higher expressiveness and make use of Constraint Program-
ming (CP). However, those approaches do not provide a semantic framework to define
these utility functions.

Our proposal presents a hybrid architecture to perform service ranking integrated
in the Web Service Modeling Ontology (WSMO)[8]. Thus, user preferences are mod-
eled using the Web Service Modeling Language (WSML)[11], adding support to utility
functions. The proposed architecture integrate a reasoning engine that support rules
evaluation and a CP solver. Our hybrid approach decouples user preferences descrip-
tions with the engines that perform the ranking, so these engines can be interchanged.
This also allows a high expressiveness when describing preferences, by means of utility
functions.

The rest of the paper is structured as follows: Section 2 presents how services de-
scriptions and user preferences are modeled using utility functions within WSMO and
its language WSML. Then, in Sec. 3 the proposed architecture for service ranking is in-
troduced, describing its components and implementation requirements. A run-through
scenario is described in Sec. 4 for further illustration of the proposed architecture. Re-
lated work is discussed in Sec. 5. Finally, Sec. 6 sums up our contribution and outlines
further research that should be addressed.

2 Modeling Approach

In this section we briefly introduce our approach for modeling non-functional properties
of services and user preferences. We use WSMO and WSML to model services and user
requests. We are mainly interested in modeling non-functional properties perspectives
of service providers and service requestors. The rest of the section provides model-
ing details for both service descriptions (Sec. 2.1) and user requests and preferences
(Sec. 2.2).

2.1 Service Descriptions

In WSML[11], non-functional properties are modeled in a way similar to which capa-
bilities could be currently modeled in WSML. Non-functional properties are defined
using logical expressions same as pre/post-conditions, assumptions and effects are be-
ing defined in a capability. The terminology needed to construct the logical expressions
is provided by non-functional properties ontologies (c.f. [13]).

For exemplification purposes we use the SWS Challenge3 Shipment Discovery sce-
nario. We are mainly interested in two aspects of shipment services for this particular

3 http://sws-challenge.org/

scenario, namely discounts (pricing) and obligations. The shipping services allows re-
questors to order a shipment by specifying, sender’s address, receiver’s address, pack-
age information and a collection interval during which the shipper will come to collect
the package.

Listing 1.1 displays a concrete example on how to describe one non-functional prop-
erty of a service (i.e. Runner), namely obligations. Due to space limitations the listing
contains only the specification of obligations aspects without any functional, behav-
ioral or any other non-functional descriptions of the service. In an informal manner,
the service obligations can be summarized as follows: (1) in case the package is lost or
damaged Runner’s liability is the declared value of the package but no more than 150$
and (2) packages containing glassware, antiques or jewelry are limited to a maximum
declared value of 100$.

Listing 1.1. Runner’s obligations¨ ¥
namespace { ”WSRunner.wsml#”,

runner ”WSRunner.wsml#”, so ”Shipment.wsml#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”,
up ”UpperOnto.wsml#”}

webService runnerService
nfp

up#hasObligations hasValue runner#DefinitionObligations
up#hasObligationsFunction hasValue runner#hasPackageLiability

endnfp
nonFunctionalProperty DefinitionObligations
definition
definedBy

//in case the package is lost or damaged Runner’s liability is
//the declared value of the package but no more than 150 USD
hasPackageLiability(?package, 150):− ?package[so#packageStatus hasValue ?status] and
(?status = so#packageDamaged or ?status = so#packageLost) and
packageDeclaredValue(?package, ?value) and ?value>150.

hasPackageLiability(?package, ?value):− ?package[so#packageStatus hasValue ?status] and
(?status = so#packageDamaged or ?status = so#packageLost) and
packageDeclaredValue(?package, ?value) and ?value =< 150.

//in case the package is not lost or damaged Runner’s liability is 0
hasPackageLiability(?package, 0):− ?package[so#packageStatus hasValue ?status] and
?status != so#packageDamaged and ?status != so#packageLost.

//packages containing glassware, antiques or jewelry
//are limited to a maximum declared value of 100 USD
packageDeclaredValue(?package, 100):−
?package[so#containesItemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
(?type = so#Antiques or ?type = so#Glassware or ?type = so#Jewelry) and ?value>100.

packageDeclaredValue(?package, ?value):−
?package[so#containesItemsOfType hasValue ?type, so#declaredValue hasValue ?value] and
((?type != so#Antiques and ?type != so#Glassware and ?type != so#Jewelry) or ?value<100).

capability runnerOrderSystemCapability
interface runnerOrderSystemInterface§ ¦

Runner’s obligations are expressed as logical rules in WSML. Additionally, it is
necessary to explicitly define which predicate is actually being used to obtain the value
of the Runner’s obligations, by means of the hasObligationsFunction property.
Similarly other non-functional properties can be encoded using WSML rules.

2.2 User Preferences

User preferences express how important certain non-functional properties are from the
service user’s point of view. Thus, preferences are taken into account when performing
ranking tasks. Utility functions are a highly expressive formalism to describe user pref-
erences. An utility function is defined as a normalized function (ranging over [0, 1])
whose domain is a non-functional property, giving information about the preferred
range of values for that non-functional property. Figure 1 shows two utility functions
defined as piecewise functions. On the one hand, lower price values are preferred. Thus,
the highest utility value is returned by that function if price is below 60 dollars, decreas-
ing that value linearly until 300 dollars, where the utility is at its minimum. On the other
hand, the user prefers higher obligations values, so the utility function is modeled as
shown in Fig. 1, varying from the minimum utility value (0) when the liability value is
below 50, and growing linearly until liability reaches 130, where the utility is maximum
(1).

00,20,40,60,81

0 60 120 180 240 300 360
Utility

Price ($) 00,20,40,60,81

0 50 100 150
Utility

Obligation (liability value)Fig. 1. Price and obligations utility functions.

In order to express user preferences combining several non-functional properties,
each utility function has to be associated with a relative weight. Thus, in a multi-criteria
ranking process, the user preference value that is used to rank services is a weighted
composition of the associated utility function values. That user preferences definitions
are included as a part of a goal. For instance, from the goal description shown before,
a user may want to rank services with respect to the utility functions for price and
obligations from Fig. 1, with associated weights of 0.6 and 0.4, respectively.

Listing 1.2 contains the WSML encoding of the previous presented user prefer-
ences. Such preferences are expressed as part of the user request that we call goal. Pref-
erences are encoded as WSML rules which enables reasoning which in turn provides
support for service related tasks in which preferences are considered (e.g. discovery,
selection, and ranking). As discussed later in Sec. 3, besides the actual reasoning with
WSML rules, a translation of the user preferences expressed as rules to CP is provided.
This enables the use of utility functions for modeling preferences which provide high
expressiveness.

To model preferences in WSML we defined a binary predicate hasPreference
that takes as first argument the identifier of a non-functional property and as second
argument the preferred value of that non-functional property. For each interval in the
domain of preference function, a WSML rule is defined. At runtime, namely during
ranking process, one of the rules will fire and the value of the preference function is de-
termined. Additionally, another binary predicate hasComplexPreference is used
in cases where the preferred value of the non-functional property identified in its first
argument is computed using WSML built-in numeric functions.

Listing 1.2. Goal description with preferences encoded in WSML¨ ¥
namespace { ”Goal1.wsml#”, req ”Goal1.wsml#”, so ”Shipment.wsml#”,

dc ”http://purl.org/dc/elements/1.1#”,
wsml ”http://www.wsmo.org/wsml/wsml−syntax/”,
pref ”http://www.wsmo.org/ontologies/nfp/Preferences.wsml#”,
up ”http://www.wsmo.org/ontologies/nfp/upperOnto.wsml#”}

goal Goal1
nfp

up#order hasValue pref#ascending
up#nfp hasValue {up#hasObligations, up#hasPrice}
up#nfpFunction hasValue {up#hasObligationsFunction, up#hasPriceFunction}
up#instances hasValue req#GumblePackage
up#hasPreference hasValue req#DefinitionPreferences
up#hasWeights hasValue req#DefinitionWeights

endnfp

capability requestedCapability
postcondition
definedBy
?order[so#to hasValue Gumble,so#packages hasValue GumblePackage] memberOf so#ShipmentOrder and
Gumble[so#firstName hasValue ”Barney”, so#lastName hasValue ”Gumble”,
so#address hasValue GumbleAddress] memberOf so#ContactInfo and
GumbleAddress[so#streetAddress hasValue ”320 East 79th Street”,
so#city hasValue so#NY, so#country hasValue so#US] memberOf so#Address.

ontology requestOntology

instance GumblePackage memberOf so#Package
so#length hasValue 10
so#width hasValue 2
so#height hasValue 3
so#weight hasValue 10
so#declaredValue hasValue 150
so#containesItemsOfType hasValue so#Glassware
so#packageStatus hasValue so#packageLost

axiom DefinitionPreferences
definedBy

hasPreference(up#hasObligations, 100):−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue >= 130.

hasPreference(up#hasObligations, 0):−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 50.

hasComplexPreference(up#hasObligations, ?obligationsPreferenceValue) :−
up#hasObligations[value hasValue ?hasObligationsValue] and ?hasObligationsValue < 130 and
?hasObligationsValue >= 50 and ?obligationsPreferenceValue=((10∗?hasObligationsValue−500)/8).

hasPreference(up#hasPrice, 100):−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue < 60.

hasPreference(up#hasPrice, 0):−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue >= 300.

hasComplexPreference(up#hasPrice, ?pricePreferenceValue) :−
up#hasPrice[value hasValue ?hasPriceValue] and ?hasPriceValue < 300
and ?hasPriceValue >= 60 and ?pricePreferenceValue=((3000−10∗?hasPriceValue)/24).

axiom DefinitionWeights
definedBy

hasWeight(up#hasObligations, 40).
hasWeight(up#hasPrice, 60).§ ¦

3 A Hybrid Architecture for Service Ranking

Having modeled the service non-functional properties and user requests and preferences
as described in Sec.2, we provide in this section a service ranking approach that uses
hybrid descriptions of services and user requests, i.e. a combination of Logic Program-
ming (LP) Rules and Constraint Programming (CP). LP Rules expressed as WSML log-
ical expressions/axioms are mainly used to model services descriptions. User requests
and preferences in terms of non-functional properties are expressed using a combina-
tion of LP Rules and CP formulas, being encoded with the use of the same WSML
logical expressions/axioms. These expressions allow to define different kinds of utility
functions.

To handle WSML logical expressions/axioms we use the IRIS4 reasoner. In fact, any
other reasoner that can handle WSML rules evaluation could be used, e.g. KAON25 or
MINS6, provided that it is integrated using the WSML2Reasoner framework [10]. For
the CP part the Choco7 system is used. The overall envision architecture is provided in
Fig. 2.

As depicted in Fig. 2, the architecture of the hybrid ranking system contains a set
of loosely coupled components. The user submits a request formalized as a WSML
goal through an Access interface component. The request is formalized as presented in
Sec. 2. Once submitted to the system the request is processed by the Extractor compo-
nent. The job of the Extractor component is to parse the given request, and to identify
the requested non-functional properties and their weights. Each non-functional prop-
erty has an associated weight (i.e. numerical value) which gives the importance of non-
functional property in user’s view, relative to the other requested non-functional proper-
ties. The weights are encoded using a predefined axiom DefinitionWeights. This
axiom is being parsed and a matrix of non-functional properties and weights is created
by the Extractor component.

The Evaluator component is responsible for the evaluation of WSML rules that
are used to encode the non-functional properties of the services. Only the rules/axioms
that encode the non-functional properties requested by the user are evaluated. In the
current prototype we use the IRIS reasoner. IRIS is an extensible reasoning engine
for expressive rule-based languages that supports safe and un-safe datalog, negation
as failure, function symbols, support for XML data types, and built-in predicates. The

4 http://sourceforge.net/projects/iris-reasoner/
5 http://kaon2.semanticweb.org/
6 http://dev1.deri.at/mins/
7 http://choco-solver.net/index.php?title=Main Page

Fig. 2. Hybrid Architecture for Service Ranking.

overall process is based on our previous work described in [14]. In a nutshell each of
the rules corresponding to a non-functional property of a service is evaluated, and the
values obtained are normalized.

For the goal evaluation we use a CP approach to evaluate user preferences. More
precisely, user preferences that are formalized as WSML rules are being translated to
CP format using the Rule2CP component. The translated representation is evaluated
using the Choco implementation. Choco is a Java library that allows the modeling of
classical constraint satisfaction problems, optimization, scheduling and explanation-
based CP, programmatically. During this evaluation step the rank values corresponding
to each service that were evaluated using the IRIS reasoner are being used in the CP
evaluation. Additionally, for each service, we perform an aggregation of the weighted
non-functional properties values.

Finally the associated ranking values for each service are ordered and the ranked
list of services is retuned to the user. The ordered list is being constructed by the Sorter
computer. This list can be used as the input for the services selection process.

The integration of both main components, i.e. IRIS and Choco, allows to separate
different stages of the ranking process where each stage is performed by the optimal
engine. Thus, the IRIS reasoner initially evaluates rules about non-functional properties
so their actual values are obtained for each candidate service to be ranked. The role of
the Choco system is to solve a Constraint Satisfaction Optimization Problem (CSOP)
that is obtained from the WSML axioms of the goal. Using this formalism, it is possible
to define and better handle complex expressions and utility functions, which are then
used for the service ranking process. Therefore, the optimization stage of the ranking

process is performed by a more suited system to solve the corresponding CSOP, i.e.
Choco as opposite of IRIS.

4 A Use Case Scenario

Using the Shipment Discovery scenario shown in Sec. 2, a run-through of the prototype
implemented is presented in the following. This prototype has been developed following
the architecture introduced in Sec. 3, so its main purpose is precisely to evaluate the
soundness of our architecture.

First of all, our ranker loads the user goal that contains the user preferences (cf.
Listing 1.2). Previously, in a whole discovery scenario, a set of service descriptions
that match the requested capability from the goal, must have been discovered. Thus,
our ranker also loads the discovered service descriptions, as the excerpt shown in List-
ing 1.1. In both goal and service descriptions, information about which non-functional
properties are going to be used to rank services is extracted by the extractor com-
ponent. In this case, using the nfp and nfpFunction properties from the goal in
our use case scenario, the extractor considers hasObligations and hasPrice as
the non-functional properties to use for the ranking process. Correspondingly, the con-
crete predicates within each service description that are used to evaluate the associated
non-functional property value are extracted from hasObligationsFunction and
hasPriceFunction properties of those service descriptions.

Once the non-functional properties and their corresponding evaluation predicates
are extracted from the loaded descriptions, each property is evaluated using IRIS. Thus,
a query for each pair property-service is built, storing the resulting value for the next
stage of the process. These values are passed to the Rule2CP component in order to
incorporate them into the generated CSOPs.

This translator component takes preference definitions from the goal and non-func-
tional properties values previously computed and parses them, generating the corre-
sponding CSOPs. In order to perform that parsing, hasWeight, hasPreference,
and hasComplexPreference predicates from the goal are traversed so the CSOP
can be built incrementally using the Choco library. For each service, a different CSOP
is created using its corresponding values previously stored. Thus, the Choco compo-
nent is invoked for each generated CSOP, returning the global preference value for each
service being ranked.

Finally, global preference values are sorted by the Sorter component, using an as-
cending order, as it is stated in the order property of the goal. Thus, previously dis-
covered services are finally ranked in terms of their global preference values computed
using our hybrid service ranker. This sorted list of services can be used by a selec-
tion component, so the best service that fulfills the user goal (including capabilities and
preferences) is finally selected.

5 Related Work

There are some ranking and selection proposals that are based on non-functional prop-
erties. Thus, Pathak et al. use domain specific ontologies so services are ranked de-

pending on matching degrees and weighted functions [7]. Similarly, Zhou et al. rank
services using matching degrees and provide an extension to DAML-S in order to in-
clude quality-of-service profiles [17]. Concerning WSMO, there is also an extension
proposed by Wang et al. that define a ranking model based on a quality matrix, where
user preferences are defined in terms of preferred tendencies and weights between each
non-functional property [15]. Another WSMO extension, which our proposal is based
on, is proposed in [14], where a multi-criteria ranking approach is presented.

Although not specifically focused on ranking services, [16] presents an approach
where service composition is optimized using defined utility functions within an Integer
Programming algorithm. Utility functions are also used to express user preferences in
[9]. In that work, Ruiz-Cortés et al. perform the ranking using CP. This paradigm is
also used in [4], where an ontology of non-functional properties is introduced to define
them, though user preferences are not semantically defined. In [1] a generic hybrid
model to perform discovery, ranking and selection is proposed, which is contextualized
to WSMO in this paper. Moreover, in [2] a preliminary version of this work is presented.

6 Conclusions and Future Work

In this work, a SWS ranking proposal, which is based on semantic descriptions of non-
functional properties and user preferences, is described. The modeling approach taken is
to model non-functional properties of services as WSML rules. Furthermore, user pref-
erences and weights are also modeled using rules within goals. These descriptions are
processed by a hybrid service ranker, whose architecture is also depicted in this work,
along with a run-through using an implemented prototype and the Shipment Discovery
scenario from SWS Challenge.

Our approach extends WSMO descriptions in order to express user preferences with
utility functions. Moreover, our hybrid architecture allows to perform service ranking
tasks using different reasoners and CP solvers, decoupling preferences definition with
actual reasoners used.

As future work, we plan to further test the prototype of our hybrid service ranker,
using several use case scenarios in order to perform a thoroughly evaluation of it. Ad-
ditionally, we plan to study and integrate different reasoners and CP solvers, comparing
their performance and features. Thus, more complex utility functions have to be tested
within our proposal, possibly defining a comprehensive catalog of user preferences def-
initions.

References

1. J. M. Garcı́a, D. Ruiz, A. Ruiz-Cortés, O. Martı́n-Dı́az, and M. Resinas. An hybrid, QoS-
aware discovery of semantic web services using constraint programming. In B. Krämer,
K.-J. Lin, and P. Narasimhan, editors, ICSOC 2007, volume 4749 of LNCS, pages 69–80.
Springer, 2007.

2. J. M. Garcı́a, I. Toma, D. Ruiz, A. Ruiz-Cortés, Y. Ding, and J. M. Gómez. Ranking semantic
web services using rules evaluation and constraint programming. In JSWEB 2008, pages
111–119, 2008. To appear.

3. J. González-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. Technical Report HPL-2001-265, Hewlett Packard Labs, 2001.

4. K. Kritikos and D. Plexousakis. Semantic QoS metric matching. In ECOWS 2006, pages
265–274. IEEE Computer Society, 2006.

5. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Int. World Wide Web Conference, pages 331–339, 2003.

6. C. Lutz and U. Sattler. A proposal for describing services with DLs. In Int. Workshop on
Description Logics, 2002.

7. J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A framework for semantic web services
discovery. In WIDM ’05: Proceedings of the 7th annual ACM international workshop on
Web information and data management, pages 45–50, New York, NY, USA, 2005. ACM
Press.

8. D. Roman, H. Lausen, and U. Keller (Ed.). Web service modeling ontology (WSMO). Work-
ing Draft D2v1.4, WSMO, 2007. Available from http://www.wsmo.org/TR/d2/v1.4/.

9. A. Ruiz-Cortés, O. Martı́n-Dı́az, A. Durán-Toro, and M. Toro. Improving the automatic
procurement of web services using constraint programming. Int. J. Cooperative Inf. Syst,
14(4):439–468, 2005.

10. H. Lausen S. Grimm, U. Keller and G. Nagypal. A reasoning framework for rule-based
WSML. In In Proceedings of 4th European Semantic Web Conference (ESWC) 2007. IEEE
Computer Society, 2007.

11. N. Steinmetz and I. Toma (Ed.). The Web Service Modeling Language
WSML. Technical report, WSML, 2008. WSML Working Draft D16.1v0.3.
http://www.wsmo.org/TR/d16/d16.1/v0.3/.

12. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery, interaction
and composition of semantic web services. J. Web Sem., 1(1):27–46, 2003.

13. I. Toma and D. Foxvog. Non-functional properties in web services. Working Draft
D28.4v0.1, Digital Enterprise Research Institute (DERI), August 2006. Available from
http://www.wsmo.org/TR/d28/d28.4/v0.1/.

14. I. Toma, D. Roman, D. Fensel, B. Sapkota, and J. M. Gomez. A multi-criteria service ranking
approach based on non-functional properties rules evaluation. In B. Krämer, K.-J. Lin, and
P. Narasimhan, editors, ICSOC 2007, volume 4749 of LNCS, pages 435–441. Springer, 2007.

15. X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A QoS-aware selection model for semantic
web services. In A. Dan and W. Lamersdorf, editors, ICSOC 2006, volume 4294 of LNCS,
pages 390–401. Springer, 2006.

16. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for web services composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

17. C. Zhou, L. Chia, and B. Lee. DAML-QoS ontology for web services. In IEEE International
Conference on Web Services, pages 472–479, 2004.

