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Abstract. Feature Model (FM) and Orthogonal Variability Model (OVM) are
both modelling approaches employed to represent variability in software prod-
uct line engineering. The former is the most popular and it is mainly applied to
domain engineering. The later is a more recent approach mainly used to docu-
ment variability in design and realisation artifacts. In the scenario of interest of
our research, which focuses on Application Lifecycle Management environment,
it would be useful rely on the FM to OVM transformation. To the best of our
knowledge, in the literature, there is no proposal for such transformation. In this
paper, we propose an algorithm to transform FM into OVM. This algorithm trans-
forms the variable features of a FM into an OVM, thus providing an explicit view
of variability of software product line. When working on these transformation,
some issues came to light, such as how to preserve semantics. We discuss some
of them and suggest a possible solution to transform FM into OVM by extending
OVM.

Key words: Sofwtare Product Lines, Transformations, Feature Models, Orthog-
onal Variability Model

1 Introduction and Motivation

Software Product Line (SPL) Engineering paradigm [14,10] is one of the most re-
cent ways of software reuse. According to Clements et al. an SPL“is a group of prod-
ucts that share a common, managed set of features”. Variability models (VMs) are used
to document and manage these features, in order to allow the organisation manage and
evolve its products. Such models document common and variable parts of the Product
Line (PL). The common parts are called commonality, since they are features that form
part of all products of the PL, and the variable parts are called variability, since they
are part of some of those products. SPL Engineering consists of two main processes:
Domain EngineeringandApplication Engineering[10]. According to Pohl et al.,“Do-
main Engineering is the process of SPL engineering in which the commonality and the
variability of the product line are defined and realised”, and“Application Engineering
is the process of SPL engineering in which the applications of the product line are built
by reusing domain artifacts and exploiting the product line variability”.
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Feature Model (FM) and Orthogonal Variability Model (OVM) are both modelling
approaches employedto represent variability in SPL Engineering. The former is a com-
mon approach employed to represent an SPL by means of a hierarchical decomposition
of features, which yields a feature tree, comprising commonalities and variabilities. The
later is a more recent approach mainly used to document variability in design and re-
alisation artifacts [12,11]. Its main goal is to document variable features of the SPL
without take into account the common features.

In 2006, a report by the Forrester consulting company [2] coined a term that has
become one of the most relevant topics in the software engineering community: Appli-
cation Lifecycle Management (ALM). ALM is defined as “the coordination of devel-
opment life–cycle activities, including requirements, modeling, development, build, and
testing, through: 1) enforcement of processes that span these activities; 2) management
of relationships between development artifacts used or produced by these activities;
and 3) reporting on progress of the development effort as a whole”. Our current re-
search aims at developing a reference architecture for ALM environments promoting
process–quality standards compliance and integrating software engineering tools keep-
ing traceability among artifacts. In this scenario, which focuses on ALM environment,
it is necessary to have in place a FM to OVM (FM2OVM) transformation. For instance,
it will be of practical importance being able to have interoperability between FM and
OVM, proving a tool that can work with a VM in different views. One view of all prod-
ucts in an SPL with their variabilities and commonalities represented with FMs and
another view of an SPL, where only the variation points are considered (cf. Fig. 1).

Fig. 1. Different views of variability in an SPL.

In addition, the translation FM2OVM will be helpful in our research work on auto-
mated analysis of OVM [8]. In order to achieve this, we intend to use FAMA Frame-
work [16] which is a tool for the automated analysis of VMs. Its main goal is to provide
an extensible framework where current research on VM automated analysis might be
developed and easily integrated into a final product. FAMA receives as input a model
conforms to a FM metamodel and performs several analysis operations on this FM by
using different solvers. We aim to use model-to-model transformation in order to gen-
erate a target model conforms to an OVM metamodel from a source model conforms
to a FM metamodel, and thus to be able to analyse this resulting FM by using FAMA.
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Such analysis could be thought as a subset of the automated analysis of FMs so that
theanalysis of a specific OVM model can yield the same results as the analysis of the
equivalent FM.

To the best of our knowledge, in the literature, there is no proposal for FM2OVM
transformation. In this paper, we propose an algorithm to carry out such transforma-
tion. This algorithm transforms the variable part of a FM into an OVM, thus providing
an explicit view of variability of SPL, since the OVM model will represent the variabil-
ity documented in the FM in a more explicit way. When working on this transformation,
some issues came to light, such as how to preserve semantics of decomposition of fea-
tures in the tree. We discuss some of these issues and suggest a possible solution to
FM2OVM transformation by extending OVM.

The remainder of this paper is structured as follows: Section 2, sets the basic termi-
nology around FM and OVM; Section 3, describes our transformation proposal; Sec-
tion 4, presents some discussions and open issues concerned with FM2OVM transfor-
mation. Finally, we draw conclusions and future work in Section 5.

2 Preliminaries

2.1 Feature Models

A FM represents graphically a PL by means of combinations of features. It has
been introduced by the software design community to represent in an abstract way the
commonalities and variabilities of an SPL. A FM is composed of two main elements:
features and relationships between them. Features are structured in a tree or DAG (Di-
rected acyclic graph) where one of these features is the root.

Fig. 2. An example of a mobile phone product line using FM.

Fig. 2 depicts an example of a FM inspired by the mobile phone industry and graph-
ical notation based in Czarnecki’s FM [9]. This example defines a PL where every
product contains eightsolitary featureswith card [1..1] (e.gCallsandMessaging). Fur-
thermore, the PL has five variable features, which can be selected or left out at will.
For example, thegrouped features SMSandMMSwith card [1..2] are possible choices
of their parentMessaging, and one or two of them must be chosen. Each product must
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have one, and only one, OS (Symbianor WinCE) due to itscard [1..1]. And thesolitary
featureswith card [0..1], such asCalculatorcan be selected or left out. The constraint
Requiresimposes limits on its possible combinations. It says that whenCurrency Ex-
changeis chosen,Calculatormust be chosen as well. The areas limited by dashed lines
illustrate which features are common and which are variable in this PL. The grey area
illustrates the common features of the PL, and the blank area illustrates the variable
features.

There are many analysis operations that can be used to check FMs, e.g. check if a
model is valid or check if a product is valid for a given model. These and other checks
on FMs were reviewed by Benavides et al. in [4]. In our paper we are interested in three
operations: calculate the number of products of a FM, retrieve all possible products of a
FM, and obtain the set of core features (CF), i.e, features which are part of all products.

By applying those analysis operations on our example in Fig. 2 we obtain 18 pos-
sible products. Each product in the Mobile Phone PL consists of core features (CF =
{Mobile Phone, Utility Functions, Calls, Messaging, Alarm clock, Ringing tones, Set-
tings, OS}) and variable features, as follows:

P1= CF∪ {SMS,Symbian} P10= CF∪ {MMS,WinCE,Calculator}
P2= CF∪ {SMS,WinCE} P11= CF∪ {SMS,MMS,Symbian,Calculator}
P3= CF∪ {MMS,Symbian} P12= CF∪ {SMS,MMS,WinCE,Calculator}
P4= CF∪ {MMS,WinCE} P13= CF∪ {SMS,Symbian,Calculator,Currency Exchange}
P5= CF∪ {SMS,MMS,Symbian} P14= CF∪ {SMS,WinCE,Calculator,Currency Exchange}
P6= CF∪ {SMS,MMS,WinCE} P15= CF∪ {MMS,Symbian,Calculator,Currency Exchange}
P7= CF∪ {SMS,Symbian,Calculator} P16= CF∪ {MMS,WinCE,Calculator,Currency Exchange}
P8= CF∪ {SMS,WinCE,Calculator} P17= CF∪ {SMS,MMS,Symbian,Calculator,Currency Exchange}
P9= CF∪ {MMS,Symbian,Calculator} P18= CF∪ {SMS,MMS,WinCE,Calculator,Currency Exchange}

2.2 Orthogonal Variability Model

The OVM approach was proposed to document the variability on SPL in an orthog-
onal way [10]. In this model the first-classes are:variation points (VP)andvariants (V).
A VP documents what vary in the SPL and avariant documents how aVP can vary.
All the variabilities in the PL artifacts are documented in the OVM model, but not the
commonalities. The common parts would be documented in others PL models, such
as requirements, design, etc. Therefore, only variabilities are represented by an OVM
model, whilst on FMs commonalities are documented as well.

At this section we use the OVM abstract syntax proposed by Metzger et al. [1]
which is similar to that defined in [10] by means of a metamodel. Each VP must be
related to at least one variant and each variant must be related to one and only one VP.
A mandatory VP must always be bound, i.e, all the products of the PL must have it
and its variants must always be chosen. An optional VP does not have to be bound,
it may or may not be chosen to a specific product. Always that a VP is bounded, its
mandatory variants must be chosen and its optional variants may be chosen, but do not
have. In OVM, optional variants may be grouped inalternative choices. This group is
associated to a cardinality[min...max]. Cardinality determines how many variants may
be chosen in an alternative choice, at leastmin and at mostmaxvariants of the group.
When the cardinality is[1...1], for default, it is not shown.
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In OVM, constraints between nodes are defined graphically. They can be between
variants and variants, variants and VPs, or VPs and VPs. These constraints are:excludes
or requires. Fig. 3 depicts an example of an OVM which represents the same PL as the
FM of the Fig. 2, and graphical notation based on [10]. In this case, the OVM model
documents the variability represented in the FM in Fig. 2.

Fig. 3. OVM example: mobile phone product line.

In the same waythat in Subsection 2.1 we calculate the number of products of an
OVM and its set of products. In our previous work in [8], we described informally some
analysis operations on OVM, such as how to obtain all the possible products. Using this
operation we obtain 18 products of the OVM in Fig. 3, and they are all the same as
in Subsection 2.1, excepting the CF that in this case is{Utility Functions, Messaging,
OS}. We can note that the number of products represented by each model is the same,
and although the CF is different, both models represent the same variability.

3 Transforming FM to OVM

Our main goal is to obtain the OVM equivalent from a given FM. In order to achieve
this, it is necessary that every variability represented in the FM is transformed into a
variation point in the OVM. This section describes a possible way to transform FM into
OVM. We propose a FM2OVM algorithm in such a way that the variable parts of FM
is transformed into OVM. Hence, the target model leaves aside the commonalities and
gives an explicit view of the variability represented in the source FM. To our transfor-
mation we use the metamodel presented in [6] as the abstract syntax of FM. To comply
with space restrictions we do not show the metamodel. As OVM metamodel we pro-
pose a metamodel based on the OVM abstract syntax defined by Metzger et al. in [1]
(cf. Fig. 4). It was adapted in order to use the same concepts used in the FM metamodel
aforementioned, e.g.Set,Binary, GroupedandSolitary. The element variation point
has two types of relations,SetandBinary. The former is equivalent to thealternative
choice, which has at least 2grouped variantsand a cardinality. The latter, is equiva-
lent to mandatoryor optional, which has onesolitary variant. The OVM model may
or may not have constraints. Some Object Constraint Language (OCL) statements were
included to ensure some properties, as for instance the OCL atcontext Set. It ensures
that the attributeCard.maxis less than or equal to the number of grouped variant in the
setrelation and thatCard.minis greater than or equals to 0, andCard.minis less than
or equals toCard.max.
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Our transformation algorithm has four preconditions: (1) the FM must be syntacti-
cally correct, it must satisfy the metamodel FM; (2) the FM must be valid, it represents
at least one product [5,4,3]; (3) the FM does not have dead features, i.e. features that
do not appear in any product [15,3]; and, (4) the FM has variability, at least one of its
features is a variant feature, i.e. features that do not appear in all the products [3].

In addition to the preconditions, there are some postconditions. We consider that the
translation is satisfactory if: (1) the target OVM model is syntactically correct according
to the metamodel in Fig. 4; and, (2) the products of the source model without core
features are the same as the ones of the target model without core features.

Fig. 4. OVM metamodel based on [1].

The activity diagram ofFig. 5 illustrates how we propose to transform a FM into
an OVM. We use the activity diagram as a tool to facilitate the understanding of the
transformation algorithm, in fact it represents the main steps of our algorithm. In the
following we describe the corresponding activities and the choices which determine
the succession of them. The algorithm traverses the tree in preorder and performs the
following operations recursively at each node, starting with the root node:

“Select Feature n in FM:” the algorithm visits the node;“n in core features or n
is the root?”concerns the distinction between features that are common to all products
(core features) and those that are not (variabilities). When n is a CF or root it does not
become an element in OVM;“Transform parent(n) in VP:”when n is not a CF, its
parent will be transformed in a VP;“parent(n) in core feature?”when transforming the
parent(n) in VP, the type of such VP depends of it is a variability or a commonality;“Set
VP type as OPTIONAL VP:”when parent(n) is a variability, then VP is Setted as OP-
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Fig. 5. FM2OVM algorithm.

TIONAL VP; “Set VP typeas MANDATORY VP:”when parent(n) is a commonality,
then VP is setted as MANDATORY VP;“n is solitary feature?” the type of n deter-
mines the type of variant when transforming n into variant;“Transform n in GROUPED
VARIANT:” the grouped feature n in FM will be transformed in grouped variant;“Set
relationship between VP and V as SET:”when a variant is a grouped variant, the rela-
tionship with its parent VP is SET;“Set cardinality:” when the relationship is SET, it
has a cardinality;“Transform n in SOLITARY VARIANT:”the solitary feature n in FM
will be transformed into solitary variant;“n with cardinality [1..1]?” the cardinality of
a solitary feature determines if the variant will be optional or mandatory;“Set relation-
ship between VP and V as OPTIONAL:”when solitary feature with cardinality [0..1] is
transformed into variant, the relationship with its parent VP is OPTIONAL;“Set rela-
tionship between VP and V as MANDATORY:”when solitary feature with cardinality
[1..1] is transformed into variant, the relationship with its parent VP is MANDATORY.

Now we can use the examples in Fig. 2 and 3 to illustrate the transformation. Taking
into account that the FM fulfils the preconditions, we are able to translate a FM into an
OVM. Then, by applying the algorithm transformation (cf. Fig. 5) from the FM in Fig. 2
we obtain the OVM in Fig. 3. The resulting OVM is syntactically correct and if we omit
all the CF of the FM set products and also of the OVM set products, we have two
equivalent set of products, namely:

P1= {SMS,Symbian} P10= {MMS,WinCE,Calculator}
P2= {SMS,WinCE} P11= {SMS,MMS,Symbian,Calculator}
P3= {MMS,Symbian} P12= {SMS,MMS,WinCE,Calculator}
P4= {MMS,WinCE} P13= {SMS,Symbian,Calculator,Currency Exchange}
P5= {SMS,MMS,Symbian} P14= {SMS,WinCE,Calculator,Currency Exchange}
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P6= {SMS,MMS,WinCE} P15= {MMS,Symbian,Calculator,Currency Exchange}
P7= {SMS,Symbian,Calculator} P16= {MMS,WinCE,Calculator,Currency Exchange}
P8= {SMS,WinCE,Calculator} P17= {SMS,MMS,Symbian,Calculator,Currency Exchange}
P9= {MMS,Symbian,Calculator} P18= {SMS,MMS,WinCE,Calculator,Currency Exchange}

It therefore follows that given a FM, which represent a PL (a set of products with
commonalities and variabilities), the translation FM2OVM results an OVM which rep-
resent the same PL as the source FM, but representing only the PL variability.

4 Discussions and Open Issues

To translate a FM into an OVM in such a way that the target OVM can express all
the variability documented in the source model without losing semantics demands to
deal with some issues. In this section we comment some of them which came to light
when working on a way to find out a satisfactory transformation.

Fig. 6. FM2OVM transformation.(a) semantic problem and (b) OVM extension.

Intermediate features. When workingon the transformation, we have found that some
features in a FM corresponding at the same time to a VP and to a variant related
to a VP (See featureMedia in Fig. 6 (a)). Media is a possible variation of Mo-
bile Phone and also is a variation point which has two optionsMP3 andCamera.
These features are called intermediate features, i.e they are neither leaves nor root,
and besides they are not core features. In this case one feature should become two
elements in the OVM (one variant and one VP) (See Fig. 6 (b)).

Semantics of decomposition. Another issue is how to preserve the semantics of de-
composition of features? Decomposition of features concerns the relationship be-
tween a feature parent and its child. In Fig. 6 (a) theMobile Phoneis decomposed
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in Media, andMedia is decomposed inMP3. Thedecomposition means that if a
featuren is in the product, its parent must be as well. For instance, ifMP3 is part of
the product, its parentMediaand all its ancestors also must be, thusMobile Phone
must be part of the product. OVM, in contrast to FM, does not have a hierarchi-
cal structure, then there is no way to preserve semantics without constraints. If we
observe the Fig. 6 (b), we haveMedia in P2OV M and do not haveMP3. When
the variant Media is chosen, the variation point Media should be chosen as well,
because it represents how the featureMediacan vary. Thus theMP3 variant shoul
be selected. Then, if in our transformation we simply transform each intermediate
feature in a variant and a VP, and each leaf feature in a variant, we do not preserve
semantics and the OVM in Fig. 6 (b) will have one product more then the original
FM. Therefore, the P2OV M should not be allowed.

How to preserve semantics. One alternative is by means of constraints. For example,
if we define a constraintIncludesfrom Media variant to Media VP, we ensure that
always Media variant is chosen, Media VP also is. But ifMobile PhoneVP were
optional, we will need a constraint from Media VP to Media variant, to ensure that
MP3 is not chosen without the variant Media. However, using constraint we solve
partially the problem because it can generate confusion and mixing of concepts.

Extending OVM. In order to provide a way to maintain semantic decomposition after
the transformation, we propose an extension for OVM, by adding a new operator
called “decomposition dependency”. This operator specifies a relationship between
a variant and a VP, and this variant can not be child of such VP. A decomposi-
tion dependency between a variant and a VP says that always the variant is chosen
the VP must be chosen as well. On the other hand, the VP only can be chosen if
the variant is also selected. With the decomposition operator the variant and the
variation point works as a unique node. In Fig. 6 (c) we illustrate the use ofde-
compositionoperator. We use the ellipse as graphical notation of it. See the ellipse
Media, which is connected with thevariant Mediaand thevariation point Media.
Now, the set of products is exactly the same as in FM. In addition, if we consider
the OVM abstract syntax defined in [1] the names of variants and VPs must be
qualified (e.g. V::Media and VP::Media) in order not to replicate names.

5 Conclusions and Future Work

In our scenario of research it is useful to have the transformation FM2OVM, and
up to now to the best of our knowledge, there is no work providing such solution. Such
transformation would allow us provide a tool support to work with the interoperability
between both languages. Moreover, it would be a step forward in our work on analysis
of OVM using FAMA framework. In this paper we proposed an algorithm to transform
a FM into an OVM. Particularly, we obtain a view of the variability of a FM by means
of an OVM. When defining our algorithm we have found that the main issue to fulfil the
postconditions concerns the structural difference between FM and OVM diagrams. To
translate a tree into OVM is not a straight task due to it usually has more than two levels.
Regardless the technique used to do this transformation, this problem comes forward.
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In order to achieve the defined postconditions we propose an extension for OVM, thus
enablingto obtain the OVM diagram equivalent to the FM diagram.

Our future work focuses on the implementation of the algorithm by using a model
transformation language, such as Query View Transformation (QVT) [13] or Atlas
Transformation Language (ATL) [7]. In addition, we intend to validate this algorithm
by using a wider set of examples.
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