
Mass Customisation along Lifecycle of Autonomic Homes∗

Carlos Cetina1 Pablo Trinidad2 Vicente Pelechano1

Antonio Ruiz Cortés2

(1) Dpto. de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022, Spain
{ccetina, pele} at dsic dot upv.es

(2) Dpto. Lenguajes y Sistemas Informticos
Universidad de Sevilla, Spain
{ptrinidad, aruiz} at us dot es

Abstract

Autonomic homes adapt themselves to give the user the
best possible experience of the services they provide. They
dynamically adapt its behavior at run-time in response to
changing conditions in end-user needs and the surrounding
environment devices. From the development point of view,
producing and maintaining a large amount of autonomic
homes need an affordable solution such as dynamic soft-
ware product lines (DSPL). DSPL produce a set of products
that share features and have the ability of reconfiguring at
runtime. Since users maintain and modify their preferences
in opportunistic and improvisational ways, an autonomic
home must evolve in time according to user expectations.
Current DSPL architectures implement the ability of recon-
figuring a product but ignore user preferences. We present
an extension to our DSPL architecture to incorporate user
preferences so user customisation of autonomic homes is
not limited to installation time but all along the lifetime.

1 Introduction

In the past few decades, many research efforts have been
invested in developing the idea behind pervasive computing
[10]. These efforts intend to incorporate interactive technol-
ogy into our everyday environment, transforming the homes
we live in into pervasive computing environments, which
have been named as Smart Homes.

Some studies have highlighted that people continually

∗This work was partially supported by the European Commission
(FEDER) and Spanish Government under Web-Factories (TIN2006-
00472) and SESAMO (TIN2007-62894) projects and by the Andalusian
Government under project ISABEL (TIC-2533).

reconfigure Smart Home spaces in order to meet their
particular demands [8]. Additionally, smart home de-
vices continually evolve as users upgrade them and install
new devices to enrich the services a smart home offers.
Users transform smart homes from conventional to per-
sonal. Therefore smart homes cannot be static any longer,
they need to evolve as user preferences do.

Autonomic Computing [7] (AC) presents an alternative
to support the evolution of systems without the need for hu-
man intervention. A system with autonomic capabilities is
in charge of installing, configuring, tuning, and maintain-
ing its own components at runtime. While the number of
devices in our surroundings increases in smart homes, AC
may help on reducing the configuration effort, simplifying
user interaction with the system.

Autonomic homes are not only customised when they
are produced to be delivered to final users, but also along
their lifecycle due to extensions, failures or changes in user
preferences. Producing and maintaining a huge amount of
autonomic homes in their different states needs an afford-
able solution. A set of autonomic homes may share a high
amount of devices and services, basically differing in some
of them and how they are configured [4]. In the world of
software engineering, Software Product Lines (SPL) pro-
pose a set of methods for the mass customisation of soft-
ware products. SPLs are able to produce different products
reusing common assets and allowing the customer to decide
among a bunch of optional features. A Dynamic SPL [5]
(DSPL) is a particular kind of SPL that produces products
which can reconfigure themselves at runtime. In our pre-
vious work [3] we successfully built a DSPL that produced
customised Autonomic Homes. Two main advantages arise
from using DSPLs to build a family of autonomic homes:

1. DSPLs are suitable for economies of scope as they

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


maximise software reuse analysing the commonality
among products from scratch rather than when each
product is built.

2. DSPLs produce systems capable of adapting them-
selves to fluctuations in user preferences and environ-
ment and evolving devices constraints.

Although technology weaves our everyday life, people is
reluctant to technology to make autonomic decisions with-
out supervision. People need to feel that they control tech-
nology instead of technology controls them. Emergent be-
haviours in autonomic homes impede users from under-
standing system reactions, and also reduce the predictabil-
ity of the system. Users need to feel that although an au-
tonomic home makes its own decisions, their preferences
are still taken into account. We show how DSPLs are suit-
able for the mass customisation of autonomic homes that
automatically change their configuration according to the
current situation with minimal user intervention while user
preferences are still taken into account. To perform this re-
configuration, our approach focuses on covering the average
demand of the home inhabitants rather than the preferences
of specific individuals.

2 Autonomic Computing and DSPL for Au-
tonomic Homes

Users may find smart homes function overly complex,
if not unnecessary, and prefer a simplified control of their
systems [6]. Autonomic Homes intend to reduce human in-
tervention to minimal. The following autonomic computing
characteristics play a key role in achieving an unobtrusive
evolution of Smart Home environments:

Self-configuring. New kinds of devices may be incor-
porated to the system. For example, when a new presence
sensor is added at a home location, the different smart home
services such as security or lighting control should automat-
ically make use of it needing no configuration action from
the user.

Self-healing. Whenever a device is removed or fails, the
system should adapt itself to offer its services in an alter-
native way in order to reduce the impact of the device loss.
For example, if an alarm fails, the Smart Home may blink
the lights as a replacement for the failed alarm.

Self-adapting. The system should adjust its services in
order to fulfill user needs and environmental changes ac-
cordingly. For example, when a user leaves home, services
in the home should be reorganized to give priority to secu-
rity.

Many approaches incorporate AC into Smart Homes re-
lying on different techniques such as stochastic models, re-
inforcement learning and control theory. However, as emer-
gent behaviours rise, they impede users from understanding

system reactions, and also reduce the predictability of the
system. Therefore, any simplification in user interaction
implies a reduction in system predictability. Our purpose
is breaking with this implication, proposing a solution that
simplifies user interaction while prediction is still met tak-
ing into account user preferences.

In our previous work, AC characteristics are provided by
DSPL architectures. The benefits of using DSPL for our
purpose is twofold: 1) We get a reference architecture to
perform reconfiguration at runtime and 2) We are able to
produce a set of products instead of only one, setting up a
SPL of AC systems. The core elements in a DSPL archi-
tecture are components (services and devices) and commu-
nication channels among them. The reconfiguration is dy-
namically produced changing communication channels and
adding or removing components. Figure 1 uses PervML1,
a domain-specific language for pervasive systems, to show
a scenario where a smart home is reconfigured as a user
leaves. Such home has several devices (TV, Lights, pres-
ence sensors and an alarm) and services that use them (mul-
timedia, lighting and security services and a presence simu-
lator). In an initial state, lights turn on and off depending on
user presence and multimedia service only works on user
demand. When user leaves and there is nobody at home,
presence simulator service activates and some of the com-
munication channels change to turn on and off lights and
TV to simulate presence. Security service uses presence
sensors to raise the alarm if any presence is detected.

Self-adapting a system is not simple since the autonomic
home must compose a suitable reconfiguration plan to per-
form the changes in the architecture. Not every config-
uration is allowed and not only user preferences must be
taken into account but also component constraints. To rep-
resent what may change and what may not in an autonomic
home we use feature models, a model that is commonly
used to describe the variability in SPLs. A feature model
describes the products a SPL is able to build in terms of
its available features, i.e. an increment in product func-
tionality. Features are hierarchically linked in a tree-like
structure through variability relationships such as optional,
mandatory, single and multiple choice. A product built by a
DSPL contains a set of active and deactivated features that
must satisfy the constraints imposed by the relationships in
the feature model. Therefore constraints limit the potential
combinations of features and must be taken into account
prior any change in a product configuration.

Since features represent coarse-grained functionality, we
remark that the mapping between features and architectural
components is not straightforward. A feature can be sup-
ported by many architectural components, and each com-
ponent may support more than one feature. For example, a
single presence sensor can be used to support different fea-

1http://www.pros.upv.es/labs/projects/pervml

2



Lights

Lighting

Service

Alarm

Security

Service

TV

Multimedia

Service

Presence 

Sensors

First Scenario: The user is at home. Second Scenario: Nobody is at home.

Presence

Sensors

Security

Service

Presence

Simulator

Alarm

TV Lights

Multimedia

Service
Lighting

Service

Reconfiguration

Device

Service

Channel

Legend

Figure 1. Impact of active features on system components for two scenarios.

tures such as security (detect intruders) and lighting control
(turn lights on when someone approaches).

The feature model in Figure 2 describes an autonomic
home with automated lighting, multimedia and security. At
any time, some features are active (grey-coloured) while
others are deactive (white-coloured). As external conditions
change system reacts activating or deactivating features tak-
ing into account the constraints in the feature model. We
refer to resolutions as a list of features to be activated or
deactivated to deal with a change in the context.

A resolution must take into account three factors: avail-
able components, component constraints and user prefer-
ences. Our previous work only dealt with first two of them,
leaving user preferences at a secondary level. In this arti-
cle we show how we have extended our previous solution
to support multiple user preferences in system reconfigura-
tions.

3 Multiple Users in Autonomic Homes

Our first approach to build autonomic homes using
DSPLs fully supported self-configuring and self-healing
properties as any autonomic home was able to reconfigure
itself on devices failure, removal or addition. However, self-
adapting was limited as user preferences were considered in
the order they were produced, giving priority to those pref-
erences that came last. It produces situations where users
contradict themselves continuously, ignoring any kind of
prioritisation. For example, kids should not contradict their
parents decisions and there is no way parental control for
TV contents could be removed; if there are 4 adults watch-
ing TV in a sitting room and lights are turned off, no other
user may turn on lights since the preferences of 4 people is
more relevant than one person decision. However, if there
are 4 kids watching TV and an adult turns on the lights,

maybe the decision must be respected. Of course if a flood-
ing occurs while anyone is watching TV, lights turn on and
alarm sounds independently from any user preference. No-
tice that external providers have the consideration of user
at all effects, expressing their preferences regarding other
features of the system.

As it may be observed, three issues must be considered
to deal with multiple users:

1. There exist different kinds of user categories that vary
on the home.

2. There may be multiple users each one belonging to a
user category at home at the same time, each one with
his/her preferences.

3. Users may change their preferences at any given mo-
ment.

Whenever new users appear at home, leave or their pref-
erences change, an autonomic home must analyse its state
and determine if there exist another configuration that sat-
isfies most of the user preferences. The objective of self-
adapting an autonomic home is reconfiguring its architec-
ture to maximise the fulfilment of user preferences. Users
express their preferences selecting the features they want
to be activate, deactivated or they have no preference for.
Sometimes, every user preferences may be fulfilled at the
same time; other times some user preferences could not be
partially or completely satisfied as they collide with other
user preferences. To break a deadlock, user categories are
assigned a weight that is used together with the number of
users preferring a feature activation or deactivation, stating
some kind of democratic system.

But not only preferences are relevant for self-adapting,
but also the constraints imposed by the feature model which
represents the dependencies and incompatibilities among

3



Smart Home

Presence Simulation Security

Siren

Volumetric 360 
degree Detector

Silent
Alarm

Infrared 160
degree Detector

Visual
Alarm

Variation Point

Current Configuration

In Home 
Detection

Multimedia

Lighting
by Presence

Alarm

Sensing
Outside 
Detector

Blinking 
Lights

Automated
Illumination

Multiple 
Choice

Single 
Choice

Dynamic Software Product Line

Optional Mandatory

Gateway

Monitor

Analyze Plan

Execute

Managed System

Autonomic Manager

Knowledge
Perimeter
Detection

In Home 
Security

<<
 r

eq
u

ir
es

 >
>

Figure 2. a Feature Model and a feature selection defines a specific home within a family of Auto-
nomic Homes.

✓ - - -

- ✖ - -

1 2

F1

F

+1 - - -F1

F

+1F1

F

Smart Home

…

ωω Goal: max ω✓ : SH.ω= Σi childi.ω ✖

✖

F1

F

In
p

u
ts

O
u

tp
u

ts

1 2

- ✖ - -

…

✖ ✓ - ✓

F2

Fm

- -4 - -

…

-1 +4 - +6

F2

Fm

-4

…

+9

F2

Fm

FAMA

CSP

BDD

SAT

…

Getting Generate Generate feature- Generate Reconfigure with

Presence 

Simulation

Security

In Home

Detection Sensing
Outside

Detector

Perimeter

Detection

In Home

Security

<
<

 r
e

q
u

ir
e

s 

>
>

…

…

✓ : Sec.ω= Σi childi.ω + ωSec

✖ : Sec.ω= Σi childi.ω + (-ωSec)

✓ : IHD.ω= ωIHD

✖ : IHD.ω= (-ωIHD)

✓/✖ : IHS.ω= Σi childi.ω

ωω ωωωω

ωω ωω

ωω ωω

✓/✖ : OD.ω= 0

✖

…

✓

F2

Fm

In
p

u
ts

O
u

tp
u

ts

54321

O
u

r
p

ro
p

o
rs

a
l

Smart Home

Presence Simulation Security

Siren
Silent

Alarm

Visual

Alarm

In Home 

Detection

Multimedia

Lighting

by Presence
Alarm

Sensing
Outside 

Detector

Blinking 

Lights

Automated

Illumination

Perimeter

Detection

In Home 

Security

<
<

 r
e

q
u

ir
e

s 
>

>

Getting

user prefs
Generate

user-weight table

Generate feature-

weight vector

Generate

Attributed FM
Reconfigure with

best configuration

D
S

P
L

K
n

o
w

le
d

g
e

4

5

2
Volumetric 360 

degree Detector

Infrared 160

degree Detector K
n

o
w

le
d

g
e

2

1

Configurator

Reconfigure from

last configuration
User/system request

21

O
th

e
r

O
th

e
r

p
ro

p
o

rs
a

ls

Figure 3. Reconfiguration process from user preferences and feature model constraints

4



features and even resource limits. Next, we describe the
process to obtain a reconfiguration taking into account user
preferences and feature constraints. We divide the process
in 5 steps which are depicted in Figure 3 and detailed below.

Step 1: getting user preferences

Users and external services express their preferences as
the subset features they want to be de/activated while re-
maining features are unrelevant for them. These preferences
are represented in a table of preferences per feature. If a user
leaves home or a service becomes unavailable, it is removed
from the table so the table only contains preferences of the
users that are at home and available services.

Step 2: generating user weights table

Every user belongs to a category which is assigned a nat-
ural number that represents the importance or weight of the
preferences of its users. These weights are used to trans-
form a preferences table into a table of weights where each
feature selection is assigned the weight from the category a
user belongs to. A feature activation in preferences table is
substituted by the weight of its corresponding user; a feature
deactivation is represented by the negation of the weight. If
a user expresses no preference about a feature, no weight
is assigned and its value will be ignored in following steps.
Notice that +4 weight represents a higher trend to feature
activation than +1 and −4 indicates a higher trend to feature
deactivation than −1.

To mark a feature that must be de/activated due to an
emergency independently from user preferences, we set its
weight to +∞ for activation or −∞ for deactivation.

Step 3: generating weights-per-feature vec-
tor

The objective of this step is obtaining an average weight
for each feature that gives an idea of the importance the
users give to its de/activation. Weights table is projected
into a weights vector where each feature is assigned an av-
erage weight obtained from a projection function. In our
case, projection function just sums up all the weights for a
feature although other criteria may be considered. A posi-
tive average weight for a feature tends the system towards
such a feature activation; a negative weight suggests a fea-
ture deactivation; no weight or a null weight points out an
indifference of a feature de/activation.

Step 4: generating an attributed feature
model

The weights in the vector define the configuration that
maximises user preferences. However, the configuration

must be validated if it satisfies all the constraints in the fea-
ture model. To achieve it, existing feature model analysis
tools such as FAMA Framework [9] are used. In case the
configuration does not satisfy every user needs, we are in-
terested in just a good configuration that satisfies most of
them. Expressing this problem in terms of feature weights,
we search for a configuration that weights the most.

Besides expressing contraints, feature models may be
attributed[1] with additional information and perform anal-
ysis operations over them. Every feature within the feature
model is enriched with weights allowing to perform anal-
ysis operations on them, such as finding the configuration
that maximises the weight of the overall product.

An attribution of feature model with weights is partially
shown in Figure 4 where a weight attribute (ω) is added
for each attribute. Satisfying user preferences for a feature
sums up its weight to its parent feature. Ignoring them sub-
stracts its weight to its parent feature. Following this hi-
erarchical relation, the overall weight of a configuration is
finally obtained for the root feature.

As infinite values would affect the overall result, the af-
fected features are directly de/selected and their weight just
sums up child features weights, as shown for In Home Se-
curity feature. Null weights are interpreted as zero to avoid
interferring in weights calculation.

Step 5: Reconfiguring home with the best
configuration

Once the feature model is attributed, obtaining a con-
figuration that satisfies users consists of searching for the
one whose weight is the highest possible considering fea-
ture model constraints. Such optimization operation is per-
formed by FAMA Framework [9]. The tool returns a valid
and best configuration for the attributed feature model that
is used to reconfigure the home.

3.1 Special cases

The reconfiguration process offers a framework that may
support some exceptional cases such as follows:

1. Exceptions: weights assigned to categories and there-
fore to users set a hierarchical structure that is not as
flexible as needed for some situations. For example,
if an alarm raises no user is allowed to turn it off and
reconfigure the home but the security company. The
security company has a higher weight than any other
user for security features, but it makes no sense that
they have any weight to change multimedia configu-
ration. In case category weights are not sufficient to
describe an scenario, step 1 may be ignored and user
weights table is directly filled considering any excep-
tion.

5



Smart Home

Presence 

Simulation

Security

PerimeterIn Home

<
<

 r
e

q
u

ir
e

s 
>

>

…

✓ : Sec.ω= Σi childi.ω + ωSec

✖ : Sec.ω= Σi childi.ω + (-ωSec)

✓ : IHS.ω= Σ childi.ω
ωω ωω

ωω ωω

ωω Goal: max ω✓ : SH.ω= Σi childi.ω

In Home

Detection Sensing

Outside

Detector

Perimeter

Detection

In Home

Security

<
<

 r
e

q
u

ir
e

s 
>

>

…

✓ : IHD.ω= ωIHD

✖ : IHD.ω= (-ωIHD)

✓ : IHS.ω= Σi childi.ω

ωω ωωωω

ωω ωω

✓/✖ : OD.ω= 0

Figure 4. A Feature Model attributed with weights

2. Democracy: an autonomic home where every category
is assigned the same weight implements a democratic
scenario where decisions are taken relying on the num-
ber of users rather than their weights. Meetings or par-
ties are situations where democracy implements a nice
solution.

4 Let’s make it real

Above steps present quite simple algorithms to perform
the autonomic capabilities in autonomic homes. Step 5 is
the most complex one and is delegated to FAMA Frame-
work (FW) 2. FAMA FW is an open-source analysis tool
that uses constraint solvers, boolean satisfiability prob-
lems, binary decision diagrams and many other solvers to
solve analysis operations on feature models. FAMA FW
chooses the most suitable solver for each requested oper-
ation searching for the fastest response time. It supports
many different operations on attributed feature model being
attribute optimization one of them.

Finding an optimal configuration is a hard problem and
may take time to be solved in some situations. It is im-
portant to give the fastest response as possible. But fast is
frequently incompatible with best solution. It is possible to
limit search in time so not the best but a good configuration
is obtained. It is still possible to keep the tool searching for
a better or the best solution in background so later reconfig-
urations may arise whenever they are found.

2http://www.isa.us.es/fama

Feature Model

Attribution

FAMA

+

Knowledge

Base

C

S

P

S

A

T

B

D

D

…

Operations

Valid Config.

Optimal Config.

Propagate Resol.

…

++
Configuration

Configuration

Configuration

Figure 5. FAMA working

4.1 Evaluation of the Proposal

We have implemented a prototype to evaluate the feasi-
bility of this approach in real life deployment sessions. In
the experimental set-up, a scale environment with real de-
vices is used to represent an Autonomic Home. In this way,
a researcher may interact with the same devices that can be
found in a real deployment as a user would do (see top-left
side of Fig. 6). A visualization tool is used during the exper-
iments in order to keep track of the system evolution. This
tool graphically depicts the resources, services and connec-
tions that are available in the system at any given moment
(see bottom-left side of Fig. 6). Since an autonomic be-
haviour is usually a response to context and environmental
conditions, some mechanisms are provided for triggering
them. We have adopted RFID cards to set the smart home
context (see right side of Fig. 6). Each of the cards sym-
bolizes users or events in the Smart Home. These cards are
combined to generate events and to trigger reconfigurations
in the Smart Home following the procedure presented in
previous section.

As an example of scenario simulated with the experi-

6



Current context

New Context Event

KNX Devices

Services

Smart Home Smart Home Context

Figure 6. experimentation set-up.

ment, activating a presence detector produces different re-
sults according to the current context expressed by the RFID
cards. For example, an initial scenario could consist in a
Smart Home where one inhabitant is at home as illustrated
in Fig. 6. The system architecture is organized in such a way
that the piped music is available and presence sensors are
used by the lighting service. The researcher may listen to
the music and the lights are turned on/off as the researcher
interacts with the sensors. The prototype is configured to
give priority to comfort.

If the researcher removes the card that represents the
home inhabitant, a reconfiguration is triggered and the sen-
sors are automatically no longer used for the purpose of
light control but for security instead. As a consequence,
when the researcher interacts with the sensors again, the
alarm raises. The prototype is configured to give priority
to security.

The above scenario is part of our catalog to test the auto-
nomic capabilities of our architecture in different adaptation
scenarios. More details about these scenarios can be found
in [2] and at http://www.autonomic-homes.com where sev-
eral videos and screen casts show our prototype in action.

Creating an Autonomic Home is not an interesting prob-
lem if the result does not suit user expectations. The de-
velopment of sophisticated but users-accepted Autonomic
Homes is the exciting and challenging problem. By com-
bining DSPLs and autonomic computing, our intent is to fo-
cus on commonalities and abstractions that are valid across
a set of users, looking for a trade-off between Personaliza-
tion and Reusability. That is, our approach focuses on cov-

ering the average demand of the home inhabitants rather
than the preferences of specific individuals only.

References

[1] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005.

[2] C. Cetina, J. Fons, and V. Pelechano. Applying Software
Product Lines to Build Autonomic Pervasive Systems. Soft-
ware Product Line Conference, 2008. SPLC 2008. 12th In-
ternational, 8-12 Sept. 2008.

[3] C. Cetina, P. Trinidad, V. . Pelechano, and A. Ruiz-Cortés.
An architectural discussion on dspl. 2nd International Work-
shop on Dynamic Software Product Line (DSPL08), 2008.

[4] J. Coplien, D. Hoffman, and D. Weiss. Commonality
and variability in software engineering. Software, IEEE,
15(6):37–45, Nov/Dec 1998.

[5] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dy-
namic software product lines. IEEE Computer, 41(4):93–95,
2008.

[6] R. Harper. Inside the smart home. pages xi, 264 p. ;, 2003.
[7] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. Computer, 36(1):41–50, 2003.
[8] J. O’Brien, T. Rodden, M. Rouncefield, and J. Hughes.

At home with the technology: an ethnographic study of
a set-top-box trial. ACM Trans. Comput.-Hum. Interact.,
6(3):282–308, 1999.

[9] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A.Jimenez. Fama framework. In 12th Software Product
Lines Conference (SPLC), 2008.

7



[10] M. Weiser. The computer for the 21st century. Scientific
American, 265(3):66–75, September 1991.

8


	Introduction
	Autonomic Computing and DSPL for Autonomic Homes
	Multiple Users in Autonomic Homes
	Special cases

	Let's make it real
	Evaluation of the Proposal


