
WS-Governance: a policy language for SOA
Governance?

José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

Universidad de Sevilla, Spain

Abstract. The widespread use of Service Oriented Architectures (SOA) is begin-
ning to create problems derived from the governance of said structures. To date
there is not a single effective solution to solve all existing challenges to govern
this type of infrastructure. This paper describes the problems encountered when
designing a SOA governance solution in a real e-Government scenario. More
specifically, we focus on problems related to specification and automated analysis
of government policies. We propose a novel SOA governance specification model
as a solution to these problems. We have named this model WS-Governance. In
order to ease its adoption by SOA practitioners it: i) shares WS-Policy guidelines
and is compatible with it, ii) has XML serialization as well as a plain-text one
and iii) has a CSP based semantics that provides a precise description as well as
facilitating the automation of some editing and WS-Governance related activities
such as consistency checking.

1 Introduction

SOA adoption brings an increase on the number of elements of the IT architecture,
where proper management and control become capital issues. In this context, SOA Gov-
ernance is defined as the management process aimed at delivering the SOA promise of
reuse, business goals support and responsiveness [1,2]. According to [3] SOA Gover-
nance Lifecycle can be divided into six stages, from more abstract business levels to
more concrete operational levels: Create a SOA strategy, Align Organization, Manage
Service Portfolio, Control Service Lifecycle, Policy Definition and Enforcement and
Service Level Management. In this paper we focus on the policy definition as the key
stage that requires a deeper analysis in order to support an agile governance.

Effective governance requires policy management, including : (i) the definition of
policies that encode governance rules and (ii) the establishment of appropriate confor-
mance testing and enforcement mechanisms. Moreover, we have identified the need to
incorporate the structure of the organization as essential information to take into ac-
count when the governance policies are designed. In our case study, the structure, size
and departmental autonomy of the organization implies that multiple administrators
could specify policies in a distributed and independent way, boosting the possibility of
specifying inconsistent policies. In this context, the capability of automatic consistency
checking of policies is highly valuable, and governance tools should support it. How-
ever, the current governance tools market is vendor-driven and turbulent, where tools
are based on proprietary technology and their features are guided by the specific aspects
where their vendors have expertise [4,5].

The contribution of this paper is twofold: (i) First, a language for governance poli-
cies definition is presented. This language defines governance documents; which make
policies unambiguous by providing a rich context for governance policies and their
meta-data. This is done whilst maintaining their definition independently of the SOA el-
ements to govern; their internal organization and the underlying infrastructure. (ii) Sec-
ondly, a formal definition of governance document is proposed, describing the elements
? This work has been partially supported by the European Commission (FEDER) project SETI

(TIN2009-07366), and project ISABEL P07-TIC-2533 funded by the Andalusian local Gov-
ernment.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

to govern, their properties and the policies that govern them. This formal definition
allows the automation of policies’ consistency checking.To the best of our knowledge,
this proposal provides a novel approach, paving the way for building more powerful and
automated governance tools. This proposal has been developed and tested by creating
two applications: a consistency analyzer and an on-line editor.

The rest of the paper is structured as follows: In sec. 2, the case study that moti-
vates the research presented on this paper is described. Sec. 3 depicts the limitations
of WS-Policy for governance policy specification and motivates the need of a gover-
nance document. Sec. 4 presents WS-Governance, our XML-based language proposal
for governance policies specification, and its plain text equivalent WS-Gov4People.
Sec. 5 presents a mapping of governance documents to Constraint Satisfaction Prob-
lems that allow the automated checking of consistency. Finally, in sections 6 and 7
related work is described and conclusions are drawn.

2 A motivating use case

The motivation of our approach is derived from a case-study based on a real scenario
we addressed on a research project, involving a regional-wide governmental organiza-
tion. This organization has a complex structure divided into 16 governmental depart-
ments and thousands of end users using a shared IT infrastructure. This infrastructure
is distributed in the different departments both logically and physically and is usually
managed autonomously in each location. In recent years there has been a shift toward
SOA in the organization, and currently there is an important number of core services
replicated in the infrastructure with different QoS capabilities.

From an architectural point of view, the infrastructure is designed as a federated bus
of services; in this context, each department represents a node with two main elements:
an Enterprise Service Bus and a Management System that provide different horizontal
functionalities (such as monitoring, transactions or security). All the different nodes are
integrated conforming the global infrastructure. The different services are deployed in
the bus and the consumer applications ask the bus for the appropriate provider.

Due to the structure of the organization, each department has developed a high auton-
omy in its IT infrastructure management. Consequently, the integration of applications
and services amongst different departments has raised an important issue: the need to
specify a consistent normative framework on the whole organization for meeting busi-
ness needs without breaching autonomy. Such a framework can be created by specifying
a set of Governance Policies. A Governance Policy represents a capability, requirement
or behavior that allows the SOA to achieve its goals, and whose meeting is quantifiable
and monitorable through time [6,1,7,8]. Governance policies are as heterogeneous as
the said governed elements, addressing the distributed, flexible, and heterogeneous na-
ture of current SOAs. Moreover, governance policies originate from disparate sources,
from legal regulations and their derived compliance issues to strictly technical details.

There is a real and urgent need of a language to define governance policies unam-
biguously with precise semantics; as a first step toward governance policy definition,
enforcement and automatic consistency checking.

Figure 1 shows three excerpts of different real governance documents found in our
case study -conveniently modified in order to preserve privacy and meet confidentiality
clauses-. Currently, these fragments correspond to human-oriented policies that should
be enforced by administrators by means of configurations of the IT-infrastructure. Each
document is enacted by a different organization: the first document by the main author-
ity so it should be enforced by all sub-organizations (departments); the second docu-
ment represents an integration agreement amongst two departments (1 and 2) and fi-
nally, the last document is an internal governance document of department 1.

WS-Governance: a policy language for SOA Governance 3

Fig. 1. Governance Documents
3 Using WS-Policy for SOA Governance

In working for a public administration, we were concerned with developing mainstream
policies that would avoid ad-hoc solutions. For this reason, we decided to use the W3C
recommendation WS-Policy for defining policies [9]. As can be seen in Fig. 3 where
the UML metamodel of WS-Policy is shown1, the building blocks of policies are asser-
tions (PolicyAssertion) that are composed using and, or and xor–like compositors (All,
ExactlyOne, and the top level compositor PoliciAlternative). Policy nesting is supported
by meaning a logical AND operation of the assertions of the global policy and those
of the nested one.

Assertions represent domain-specific capabilities, constraints or requirements, where
their grammar is left open by WS-Policy, thus allowing the use of XML-based Domain
Specific Languages (DSLs) for that purpose (see the “VariationPoint” stereotype of
PolicyExpression in Fig. 3). WS-Policy has been mainly focused on the definition of
policies related to specific service capabilities such as security, reliability, etc. In fact,
there are a number of DSLs for those purposes. Unfortunately, describing assertions for
SOA governance policies is more complex and as far as we know there is currently no
DSL to describe this kind of policies.

Two mechanisms are available in WS-Policy to associate policies with the subjects
to which they apply, i.e. for defining their scope. The first one associates one or more
policy definitions as a part of the subject definition. For example, if we want to apply
a policy to a web service described in WSDL, the policy specified in WS-Policy has
to be inserted into the WSDL code. We call this mechanism endogenous attachment,
since the definition of the policy is internal to the element one. Left column in table 1
shows an example of this kind of attachment. In this case, two polices on the web ser-

1 The UML class diagram in 3 represents our interpretation of the metamodel described by the
XML schema specified in [9] and [10].

4 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

Fig. 2. UML metamodel of WS-Policy
vice “StockQuote” are defined: one to ensure a reliable message and another to specify
security mechanisms on web service binding. Notice that with endogenous attachment:
i) attaching a set of policies to a set of subjects at the same time is not possible and ii)
changing a policy requires modifying the definition of the subject, i.e. it is an intrusive
mechanism.

The second mechanism associates one or more policy definitions to one or more
subjects. The WS-PolicyAttachment recommendation [10] proposes the use of Policy-
Attachemt and AppliesTo (shaded classes in Fig. 2). In this case, the WS-Policy is not
encoded in the same file that the specification of the element, thus we call this mecha-
nism exogenous attachment. Right column in table 1 shows an example of this kind of
attachment. In this case, secure binding mechanisms are asserted on the “StockQuote”
and “MortgageRisk” services using its endpoint reference address. As shown in Fig. 2,
WS-PolicyAttachment also leaves open the language to specify the scope, but provides
a basic language to specify it based on URIs.

Note that with exogenous attachment: i) it is possible to attach a policy to a set of
elements at the same time and ii) changing the policy attachment does not require mod-
ifying the definition of an element, i.e. it is non–intrusive mechanism.

WS-Policy 1 WS-Policy 2
<wsdl:definitions name=’StockQuote’ Element <wsp:PolicyAttachment>

xmlns:wsp=’...’ ...> attached <wsp:AppliesTo> \
<wsp:Policy wsu:Id=’RmPolicy’> \ <wsa:EndpointReference> | Policy
<rmp:RMAssertion> | <wsa:Address>.../MortageRisk.wsdl</...> | Scope
<wsp:Policy/> | <wsa:Address>.../StockQuote.wsld</...> | Scope

</rmp:RMAssertion> | </wsa:EndpointReference> | def.
</wsp:Policy> | </wsp:AppliesTo> /
<wsp:Policy wsu:Id=’X509Policy’ | Policy <wsp:Policy wsu:Id=’X509Policy’ \
<sp:AsymmetricBinding> | assertions <sp:AsymmetricBinding> |

... | ... | Policy
</sp:AsymmetricBinding> | </sp:AsymmetricBinding> |assertions

</wsp:Policy> / </wsp:Policy> /
... </wsp:PolicyAttachment>
</wsdl:definitions>

Table 1. Endogeous vs Exogeous Attachment

WS-Policy defines a mechanism to test the compatibility of two policies, called pol-
icy intersection. According to the WS-Policy specification [9] “policy intersection is
optional but a useful tool when two or more parties express policies and want to limit
the policy alternatives to those that are mutually compatible”. The intersection consists
of two parts: a domain-independent policy intersection and domain-specific process-
ing. The former takes into account the assertion type equality, i.e. the XML element
type equality and its nested elements, but not its parameters. The latter is not defined

WS-Governance: a policy language for SOA Governance 5

in WS-Policy, thus assertions authors have to define specific mechanisms for incorpo-
rating the intended semantics of the assertions, and the specification does not provide
any mechanism to integrate or define it. For instance, the first policy specified in the
left column and the policy in the right column of table 1 are incompatible, since their
element types <rmp:RMAssertion> and <sp:AsymmetricBinding> are different. The
notion of policy intersection is thus basically syntactical and structural, and it is not
valid for complex domain-specific processing or semantic reasoning about policies, as
shown in [11] and [12].

When using WS-Policy to specify the policies the previously described documents
we encountered the following limitations:

Lack of Context and meta-data (LCD): Governance policies need a rich context
to ensure their validity, specifying who enacts the policies and providing additional
meta-data, in order to ensure authorization for policy enactment and the integrity of the
policies as enacted, thus avoiding tampering. This is the role of seals and signatures of
the real documents shown in figure 1. In using WS-Policy, there is not a single point
where we can insert the required information that assures the validity of the policy, such
as official seals, a declaration of validity by the enacting authority or a preamble. We
call this problem Lack of Context Data (LCD).

Scope Definition Limitations (SDL): Defining a policy P1 as simple as ”All services
provide an Availability greater than 99%” may become a nightmare since WS-Policy
has not been designed keeping in mind that the scope of a policy could be defined by
intension; i.e. we need specify the properties of services belonging the scope, not enu-
merate them. If an exogenous attachment with the proposal described in the WS-Policy
specification is used, then all the services references will be inserted in the AppliesTo
section of the policy. Thus, if there was a change in the policy scope, like All services
except S23, S45, . . .) this would entail a re-working of all services as well as modifying
the content of the scope section. This is not an adequate solution when dealing with a
SOA comprising of hundreds of applications and services. Summarizing, governance
policies’ scope should be defined by intension through scope predicates in most cases.

The expression of these scope predicates require a rich predicate DSL and the speci-
fication of the elements and data sources needed to feed the predicate, in order to effec-
tively evaluate policy scope. This problem is particularly acute for governance policies,
since governance relevant information is stored in disparate sources, such as UDDI reg-
istries, LDAP directories, ad hoc databases, etc. For instance, in our sample GDs (fig.
1) there are properties such as “critical services” and “local/external apps & services”
whose values must be obtained from different information sources.

However, WS-Policy extension mechanisms allow the definition of DSL for specify-
ing policy scope (see fig. 3), thus we propose such a DSL as part of our proposal.

Inadequate consistency checking: In our use case, the most valuable property was
consistency checking. The only analysis operation WS-Policy envisioned for this was
the intersection of policies. The open and flexible nature of WS-Policy makes it difficult
to provide homogeneous semantics to policies, since each domain specific DSL would
have its own semantics. This problem motivates the merely structural-syntactical na-
ture policy intersection operation as defined in WS-Policy, avoiding its usage in diverse
scenarios [11,12]. For example, two identical-meaning policies may prove inconsis-
tent by using the intersection operation (see [11]). We name this drawback as Syn-
tax/Structure Driven Semantics (SDS). This limitation can be addressed by defining
a domain specific intersection processor, and consequently, our proposal for providing
semantic consistency checking can be integrated in such a way. However, authors con-
sider that defining an entirely new operation called consistency and provide an explicit
semantic for the DSLs defined is a better approach. Otherwise, the intersection opera-
tion, could process some assertions based on their structure, while others will be treated
semantically, leading to to incoherent results (as shown in [11]). Thus, we leave inter-
section as an essentially sintactically/structural operation and define a new operation
named consistency that supports semantic reasoning based on CSPs.

6 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

4 From WS-Policy to Ws-Governance

WS-Governance Documents (GDs) address limitations described previosly by incorpo-
rating an extensible context to the contained policies (addresing LCD), and defining a
global document structure that contains a set of policies under an umbrella governance
scope (where the data sources that feed predicates for defining policies scope can be in-
cluded, addressing SDL). They also describe relevant governance properties of services,
applications and organizational structures, and provide mechanisms for incorporating
disparate governance-relevant information sources. Moreover, LCD and SDS motivate
the creation of two general purpose XML-based DSLs for specifying governance pol-
icy assertions and SOA modelling, that are described in detail below. Based on those
DSLs and the authors‘ experience providing formal semantics for SLAs specified in
WS-Agreement by using CSPs [13,14,15], a CSP based semantics for WS-Governance
documents using those DSLs is proposed in Sec. 5 addressing SDS. Based on those se-
mantics a consistency property for policies and governance documents is defined. The
structure of a GD in WS-Governance comprises of:
• Governance Document Context: It currently defines the governing organization

but its grammar is left open in order to support the expressions of authorizations
to enact policies on this GD, and the data needed to ensure GD authenticity and
integrity.

• Governance Scope: It provides information about the SOA where policies are es-
tablished. Different information sources could be used in this section, from UDDI
registries to ad hoc databases, since any SOA element could be a governance pol-
icy subject; such as projects, developers, organizations, messages, XML-schemas
or applications servers.

• Governance Properties: It defines all properties that are relevant for governance
policies. Following the philosophy of WS-Policy, its grammar is left open, allow-
ing the use of XML-based DSLs for specifying those properties.

• Governance Policies: It defines the policies that conform the governance. Those
polices are fully WS-Policy compliant, where the exogenous policy attachment
mechanism is mandatory. Assertion and scope definition grammar is left open,
allowing the use of XML-based DSLs.

It is noticeable, that neither the definition of the new concept of Governance Docu-
ment, nor the use of the DSLs for Governance Policies, break WS-Policy compatibility.
Although authors consider that the document-oriented treatment of policies is more nat-
ural in governance contexts (as shown in the example of fig. 1) and better supports the
life-cycle of policy creation [16], from authoring by humans to deployment into servers;
any governance document can be transformed into a unique policy fully compliant with
WS-Policy2. Moreover, the DSLs described below ares used in WS-Policy extension
mechanisms and variation points as described in fig. 3 for providing suitable languages
for governance policy definition. The UML class diagram shown in Fig. 3 represents
our proposal of metamodel for WS-Governance documents.

Some elements of WS-Governance are intentionally left open for extension in order
to allow a high degree of flexibility. This flexibility is based on the use of XML-based
DSLs in some variability points, allowing the creation of a whole family of governance
languages. In Fig. 3 variability points are decorated with a VariabilityPoint UML stereo-
type. A brief description of these variability points is provided as follows:
• Context DSL: the GD metadata in the context element can be extended with any

information needed by means of the nesting of new XML elements and attributes.
• SOA Specification: The architecture and elements to govern must be described in

order to define unambiguous policies.
• Governance Property Specification: A description of the properties of the gov-

erned elements of the SOA is needed in order to define expressive policies. Those
properties must be expressed using a XML-Based DSL.

2 In http://labs.isa.us.es/gda/WS-Policy-transformation.xslt is avail-
able an XSLT tranformation that allows to perform this conversion automatically.

WS-Governance: a policy language for SOA Governance 7

Fig. 3. UML Metamodel of WS-Governance
• Policy Expression Specification: Policy scope and assertions can be expressed

using any predicate-oriented DSL.
In order to define effective governance documents, those DSLs must be set. In our

proposal we provide two DSLs that allow the creation of service-focused governance
policies, i.e. policies that specify assertions defined on service properties and their di-
rectly related elements such as consumers, providers, and governance relevant infor-
mation such as organizational structure. Those DSLs are Service oriented Architecture
Description Language (SADL), addressing the SOA Specificaton variation point, and
Governance Assertion Language (GAL), addressing the Governance Property Specifi-
cation and Policy Expression Specification variation points. The UML Class Diagrams
in Figs. 4 and 5 depicts the metamodel of SADL and GAL respectively.

4.1 SOA Modeling with SADL

SADL has been designed to model the SOA state and structure, making our proposal in-
dependent of the specific governance information sources available on each SOA, such
as UDDI Registries, LDAP directories, ad hoc databases, etc. SADL describes both the
SOA structure as elements, and its state as the corresponding governance properties val-
ues for those elements. In this paper we focus on service-related governance policies,
so SADL mainly contains elements related with services; however SADL is extensible,
supporting the use of any XML-based construct as sub-elements of its basic structural
elements. Specifically, structural elements in SADL are described as follows:
• Service Oriented Architectures are networks of participants providing and con-

suming services to fulfill a purpose. In SADL these participants are specified as
organizations and applications.

• Organizations are participants with governance relevant identity and properties,
tracing an organizational boundary on their owned applications and services. Or-
ganizations are arranged hierarchically, where an organization can contain various
sub-organizations (e.g. departments) and have a unique parent.

• Applications represent business processes, related capabilities and software pack-
ages. They allow the arrangement of software artifacts and capabilities indepen-
dently of the organizational hierarchy in a governance-meaningful way. Applica-
tions are owned by a unique organization. Applications have a set of provided and
consumed services.

• Services represent capabilities that participants provide and consume.
Regarding SOA state description, SADL allows the specification of property values

for all the aforementioned elements based on GAL.

8 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

Fig. 4. UML Metamodel of SADL
Finally, SADL provides a generic element for the specification of the concrete gov-

ernance data sources as references; such as UDDI registries, that should be queried to
obtain the governance-relevant SOA structure and state in order to check properties and
test policies adherence. By creating adapters that query those data sources and create
a SADL compliant SOA model, our proposal becomes independent of those specific
data-sources, thus semantics of GDs are based on explicit SADL models.

4.2 Specifying Governance properties, and policy assertions with GAL

Governance Assertion Language GAL is a generic and expressive language designed to
declare governance properties and assertions. Property definitions in GAL have a name
and an identifier as attributes, comprising of: (i) type definition, where basic XML-
Schema [17] types are supported, (ii) an optional domain definition that restricts the
space of valid values of the property; where it could be described as a GAL assertion
(by intension) or as a set of values (by extension); and (iii) an optional SADL gover-
nance subject declaration, that defines the type of SOA element that can present the
property (service, organization, policy, all, etc.). Through GAL constraints we provide
a suitable language to specify policy assertions on governance properties. Assertions
can be composed using WS-Policy composition operators: All, ExactlyOne and Poli-
cyAlternative.

In order to allow consistency checking, in this paper we use a subset of WS-Governance
a bit less expressive, called WS-Governance*. A WS-Governance* document must use
SADL to describe the SOA to govern and GAL to define governance properties, policy
scopes and policy assertions. A WS-Governance* document (ρ) comprises of:
• Governance Scope defines the set of organizations O, applications A and services
S to govern, and their relationships, namely: consumption of services by applica-
tions and organizations, provision of services by applications and organizations,
ownership of applications by organizations and hierarchy of organizations. Only
those elements and relationship functions are used to define policies.

• Governance Vocabulary must define the set of all properties V used in the guaran-
tee terms.

WS-Governance: a policy language for SOA Governance 9

Fig. 5. UML Metamodel of GAL
• For each governance policy both scope (s) and assertion (a) must be defined as

GAL assertions on the properties defined in the governance vocabulary section,
and only to those applied to the sets and relationship functions defined in Gover-
nance Scope.

• Policy assertions can be composed using the compositors defined in WS-Policy.
XML-Schemas that model WS-Governance* documents conforming the previously

described syntax are available at http://www.isa.us.es/gda/schemas. Al-
though readable for humans, XML is not as understandable as plain text. In Table 2
the structure of a WS-Governance* document is described in a plain text language,
named WS-Gov4People, that is equivalent to the WS-Governance*. The mapping of
XML elements onto its corresponding WS-Gov4People sentences is shown in Table 2.
A WS-Gov4People document describing the policies specified in figure 1 and a simple
SOA structure is shown in the first column of table 4.

5 Automatic consistency checking through CSPs

As shown in [18], the definition of the semantics of a language can be accomplished
through the definition of a mapping between the language itself and another language
with well-defined semantics such as Abstract State Machines, Petri Nets, rewriting logic
or CSPs. These semantic mappings between semantic domains are very useful not only
to provide precise semantics to DSLs, but also to be able to simulate, analyze or reason
about them. In this section we define the mappings that tranform GDs* onto Constraint
Satisfaction Problems (CSPs) that provide their precise semantics, allowing the usage
of CSP solvers to reason about policies and complete GDs*. A CSP ψ = (V,D,C) is
defined as a set of variables V , a set of domains D (one for each variable), and a set
of constraints C specifying which combinations of variables and values are acceptable.
A solution σ to a CSP ψ consists of an assignment in which each variable gets a value
from its corresponding domain, as long as it satisfies each constraint. The solution space
of a CSP ψ, denoted as sol(ψ), is composed of all its possible solutions, if the CSP has
at least one solution it is satisfiable; i.e. sat(ψ)⇔ sol(ψ) 6= �.

Mapping a GD* into CSPs. The mapping (µGD : ρ → ψ) of a WS-Governance*
GD (ρ) to a CSP (ψ) is performed in two steps as follows:

10 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

WS-Governance/SADL/GAL XML Element WS-Gov4People Document Structure
<wsg:GovernanceDocument Name=’name?’ Id=’Id?’> Governance Document - Name (Id)
<wsg:Governor id=’Org. Id?’ name=’Org. Name?’/> Governor: Org. Name?(Org. Id?)
<wsg:GovernanceScope> Scope:
{<saml:ServiceOrientedArchitectureReference>...</...>— {SOA Registry Reference—
<saml:ServiceOrientedArchitecture>...</...>}+ SOA Governance Model}+

</wsg:GovernanceScope>
<wsg:GovernanceVocabulary> Vocabulary:
<gal:Property> ...</gal:Property>+ { Property: ... }+

</wsg:Vocabulary>
<wsg:GovernancePolicies> Policies:
{<wsp:PolicyAttachment> {Policy name? (Id?)
<wsp:AppliesTo>
<gal:QuantifiedAssertion>
{<gal:Quantifier type=’Exists|ForAll’ varname=’VarName?’ {forall|Exists VarName?

in=’Service|Org|App’>}+ in (Servs|Orgs|Apps)}+
<gal:Assertion>Scope expr?</gal:Assertion> Scope: Scope expr?
</gal:QuantifiedAssertion>

</wsp:AppliesTo>
<wsp:Policy name=’name?’ id=’Id?’>Assertion expr?</...> Assertion: Assertion expr?

</wsp:PolicyAttachment>}+ }+
</wsg:GovernancePolicies>
<wsg:GovernanceDocument>
<saml:ServiceOrientedArchitecture> SOA Governance Model:

STRUCTURE:
{<saml:Organization name=’Org. Name?’> id=’Org. Id?’> {Organization: Org. Name? (Org. Id?)
<saml:SubOrganizations> SubOrganizations: Org. Id1?,. . . ,Org. IdN?
{<saml:Organization ...> ...</saml:Organization>}*

</saml:SubOrganizations>
<saml:Applications> Applications:
{<saml:Application name=’App. Name? id=’App. Id?’> {Application: App. Name? (App. Id?)
<saml:ProvidedServices> Provides:
{<saml:Serivce name=’Serv. Name? id=’Serv. Id?’/>}* {Service: Serv. Name? (Serv. Id?)}*
</saml:ProvidedServices>
<saml:ConsumedServices> Consumes:
{<saml:Serivce name=’Serv. Name? id=’Serv. Id?’/>}* {Service: Serv. Name? (Serv. Id?)}*
</saml:ConsumedServices>

</saml:Applications>}* }*
}+ STATE:
{<gal:PropertyValue property=’IdP’ subject=’IdS’ value=’Val. Expr?’/ > Val. Expr?*
</saml:ServiceOrientedArchitecture> }+
<gal:Property name=’Prop. Name?’ Property: Prop. Name? (Prop. Id?)

id=’Prop. Id?’ subjectType=’Serv|Org|App’>
<gal:Type>Type. Expr.?</gal:Type> for {Servs|Orgs|Apps}
<gal:Domain><gcl:Constraint>Domain Expr.? Type: Type. Expr.?
</gal:Constraint></gal:Domain>

</gal:Property> Domain: Domain Expr.?

Table 2. Mapping from WS-Governance, GAL and SADL to WS-Gov4People

First, for each policy pi = (s, a) in the GD*, pi is mapped for the concrete gov-
ernance scope (SOA model in terms of services, applications, organizations and its
relationships) into a constraint pCi that contains only variables and literals composed
using logical and algebraic operators. This constraint is constructed so that it tells ex-
actly when the policy holds in the given governance scope. This transformation is per-
formed by the explicit enumeration of the sets and relationships (ownership, provision,
consumption, and organizational hierarchy) on the governance scope for each quanti-
fier, combining the resulting constraints using logical AND (∧) operators for universal
quantifiers and logical OR (∨) operators for existential quantifiers.

Next, the set of constraints pC = {pCi }ni=1 and original GD* ρ are mapped into a
CSP ψ = {V,D,C} by creating:
• a variable vxsi|oi|ai in V for each property x and corresponding element in the SOA

(service, organization and application).

WS-Governance: a policy language for SOA Governance 11

• variables vsupOrgoi ,vprovsi ,vconssi and vownai in V for the relation functions supOrg
(hierarchical relationship among organizations), provider and consumer (rela-
tionship among services and applications) and owner. Additionally, their domain
of organizations, applications, and services are created.

• constraints {vsupOrgoi = oj}, {vprovsi = ak}, {vconssi = ak}, and {vownai = ol}
in C for each variable created in the previous step specifying the values of the
relationshipssupOrg, provider,consumer and owner. Those constraints and vari-
ables express the SADL SOA structural model of the governance scope.

• a constraint {vxsi|oi|ai = {Value Expr?}} in C for each property valuation speci-
fied in the state section of the governance scope in ρ.

Finally, for each constraint in pC property invocation functions X(si|oj |aj) are ex-
changed by their corresponding variables vxsi|oi|ai , and the resulting constraint is added
to C. The mapping of different elements of a GD* is shown in Table 3.

WS-Governance* Element CSP Mapping
Governance Document - Name (Id) GD Name, Id and Governor Org.
Governor: Org. Name?(Org. Id?) are not mapped to CSP
SOA Governance Model: For each organization oi a variable vsuporgoi

is created
STRUCTURE: denoting the parent org. of oi and a domain
{Organization: Org. Name? (Org. Id?) dsuporgi = {o1, . . . øn} is added toD

SubOrganizations: Org. Id1?,. . . ,Org. IdN? a constraint {Cprovoi
= oj} is created encoding the orgs. hierarchy

Applications: For each application aj a variable vownaj
is created

Provides: denoting the owner org. of aj , a domain
{Service: Serv. Name? (Serv. Id?)}* downj = {o1, . . . øn} is added toD

Consumes: and a constraint {Cownai
= oj} is created encoding the app. ownership

{Service: Serv. Name? (Serv. Id?)}* For each service sk a variable vprovsk
is created

}* , a domain dprovk = {a1, . . . , am} is added toD
}+ and a constraint {vprovsk

= al} is created encoding the provisioning
STATE:
{Property val. Expr?}* Add Constraint: vxsi|oi|ai [Proverty val. Expr.?]

Vocabulary: Add variables & domains:
Property: X for Services for each property x we create a variable
for {Servs|Orgs|Apps} vxsi|oi|ai

for each element in
Type: boolean its corresponding set S|O|A

Domain: Domain Expr.? Add Constraint: vxsi|oi|ai [Domain Expr.?]

Policies: Add contraint:
Policy P1
{forall y

∧S|O|A
vsi|oi|ai

(Scope expr)[y/vy
si|oi|ai

]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

{exists y
∨S|O|A
vsi|oi|ai

((Scope expr)[y/vy
si|oi|ai

]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

Scope: Scope expr? , For each constraint c ∈ C do:
Assertion: Assertion expr — (c)[vy

si|oi|ai
/vxsi|oi|ai

]

where E[x/y] means: ’ the expression E, but with occurrences of x replaced by y’

Table 3. Mapping of WS-Governance* elements onto CSPs

In order to exemplify the use of GD*, in the left column of table 4 we can see the
expression of the policies contained in the governance documents found in the case
study (Figure 1). In the table we can see the four different parts of a GD* document:
Context, SOA Model, Vocabulary and Policies. In this context, the SOA Model part has
been enriched with the structure of the organization: on the one hand, Department 1 has
one A1 application that provides s1 service and on the other hand, Department 2 has
two applications (Zeus and A3). The former consumes s1 and s2 and provides service
s3; the latter only provides s2. It is important to highlight that the policy found in the
second document fragment of the example is not translated into a policy in the GD*
document but it represents structural information expressed in the SOA Model section.
Following the mapping described in this section, in the right side of Table 3 the CSP
transformation of the GD* is presented in table 4.

12 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

Sam
ple

SG
D

L
4People

D
ocum

ent
C

orresponding
C

SP
G

overnance
D

ocum
ent

-C
ritialServices

M
anagem

ent(G
D

1)
φ

=
{
V
,
D
,
C
}

w
here

C
=
{
C
D
∪
C
S
O
A
∪
C
ρ}

G
overnor:(o

x
)

V
=
{
V
P
r
o
p
∪
V
W
∪
V
ρ}
,
D

=
{
D
P
r
o
p
∪
D
S
O
A
}

Scope:
V
S
O
A

={
V
p
r
o
v
∪
V
c
o
n
s
∪
V
o
w
n
∪
V
s
u
p
O
r
g}

ST
R

U
C

T
U

R
E

:
V
p
r
o
v

=
{
v
p
r
o
v

s
1

,
v
p
r
o
v

s
2

,
v
p
r
o
v

s
3

,
v
p
r
v
O

s
1

,
v
p
r
v
O

s
2

,
v
p
r
v
O

s
3
}

O
rganization:E

-gov.O
rg.X

(o
x

)Suborganizations:
o
1 ,o

2
V
c
o
n
s

=
{
v
c
o
n
s

s
1

,
v
c
o
n
s

s
2

,
v
c
o
n
s

s
3

,
v
c
n
s
O

s
1

,
v
c
n
s
O

s
2

,
v
c
n
s
O

s
3
}

O
rganization:D

epartm
ent1

(o
1)

V
o
w
n

=
{
v
o
w
n

a
1
,
v
o
w
n

a
2
,
v
o
w
n

a
3
}

A
pplications:

V
s
u
p
o
r
g

=
{
v
s
u
p
o
r
g

o
1

,
v
s
u
p
o
r
g

o
2

}
A

pplication:A
1

A
pp

(a
1)

D
S
O
A

=
{
D
p
r
o
v
∪
D
c
o
n
s
∪
D
o
w
n
∪
D
s
u
p
o
r
g}

Provides:s1
(s

1)
,A

=
{
a
1
,
a
2
,
a
3 },

O
=
{
o
1
,
o
2 }

O
rganization:D

epartm
ent2

(o
2)

C
s
o
a

=
{
C
S
t
r
u
c
t
∪
C
S
t
a
t}

A
pplications:

C
S
t
r
u
c
t

=
{{
v
p
r
o
v

s
1

=
a
1 }
,{
v
p
r
o
v

s
2

=
a
3 }
,{
v
p
r
v
O

s
1

=
o
1 }
,{
v
p
r
o
v

s
3

=
a
2 }
,{
v
p
r
v
O

s
2

=
o
3 }}

A
pplication:Zeus

(a
2)

{
v
p
r
o
v

s
3

=
a
2 }
,{
v
p
r
v
O

s
3

=
o
2 }
,{
v
c
o
n
s

s
1

=
a
2 }
,{
v
c
o
n
s

s
2

=
a
2 }
,{
v
c
n
s
O

s
1

=
o
2 }
,

C
onsum

es:s1
(s

1)s2
(s

2)Provides:s3
(s

3)
{{
v
c
n
s
O

s
2

=
o
2 }
,
v
c
o
n
s

s
3

=
�
}
,{
v
o
w
n

a
1

=
o
1 }
,{
v
o
w
n

a
2

=
o
2 }
,

A
pplication:A

3
A

pp
(a

3)
{
v
o
w
n

a
3

=
o
2 }
,{
v
s
u
p
O
r
g

o
1

=
o
x }
,{
v
s
u
p
O
r
g

o
2

=
o
x }}

Provides:s2
(s

2)
C
S
t
a
t

=
{{
v
C
r
i
t

s
1

=
tr
u
e}}

STA
T

E
:

D
o
w
n

=
{
O
,
O
,
O
}
,
D
s
u
p
O
r
g

=
{
O
,
O
}

C
ritical(s

1)=true
D
p
r
o
v

=
D
c
o
n
s

=
{
A
,
A
,
A
,
O
,
O
,
O
}

Vocabulary:
V
P
r
o
p

=
{
v
C
r
i
t

s
1

,
v
C
r
i
t

s
2

,
v
C
r
i
t

s
3

v
A
v
a
i
l

s
1

,
v
A
v
a
i
l

s
2

,
v
A
v
a
i
l

s
3
}

Property:C
riticalfor

Services
Type:boolean

D
P
r
o
p

=
{{
tr
u
e
,
f
a
ls
e}
,{
tr
u
e
,
f
a
ls
e}
,{
tr
u
e
,
f
a
ls
e}
,

Property:Availability
for

Services
Type:enum

{
′2

4
x

7
′, ′
o
f
f
ic
e
′}
,{

′2
4
x

7
′, ′
o
f
f
ic
e
′}
,{

′2
4
x

7
′, ′
o
f
f
ic
e
′}}

D
om

ain:’24x7’,’office’
C
D

=
∅

since
there

is
no

dom
ain

constraints
Policies:

C
ρ

=
{
C
ρ
1
,
C
ρ
2
,
C
ρ
3}

Policy
P

1
(ρ

1)foralls
in

Services
C
ρ
1

=
{∧

3i
=

1
((v

c
r
i
t

s
i

=
tr
u
e
)
⇒

(v
p
r
v
O

s
i

=
v
c
o
n
s
O

s
i

))}
=
{
((v

c
r
i
t

s
1

=
tr
u
e
)
⇒

(v
p
r
v
O

s
1

=
v
c
n
s
O

s
1

))∧
Scope:C

ritical(s)=
true

A
ssertion:P

roviderO
(s)=

C
onsum

erO
(s)

((v
c
r
i
t

s
2

=
tr
u
e
)
⇒

(v
p
r
v
O

s
2

=
v
c
n
s
O

s
2

))
∧

((v
c
r
i
t

s
3

=
tr
u
e
)
⇒

(v
p
r
v
O

s
3

=
v
c
n
s
O

s
3

))}
Policy

P
2

(ρ
2)foralls

in
Services

C
ρ
2

=
{∧

3i
=

1
((v

c
r
i
t

s
i

=
tr
u
e
)
⇒

(v
A
v
a
i
l

s
i

=
′

2
4
x

7
′))}

=
{
((v

c
r
i
t

s
1

=
tr
u
e
)
⇒

(v
A
v
a
i
l

s
1

=
′

2
4
x

7
′))∧

Scope:C
ritical(s)=

true
A

ssertion:Availability(s)=
′

2
4
x

7
′

((v
c
r
i
t

s
2

=
tr
u
e
)
⇒

(v
A
v
a
i
l

s
2

=
′

2
4
x

7
′))
∧

((v
c
r
i
t

s
2

=
tr
u
e
)
⇒

(v
A
v
a
i
l

s
2

=
′

2
4
x

7
′))}

Policy
P

3
(ρ

3)foralla
in

A
pplications

C
ρ
3

=
{∧

3i
=

1
((s

c
o
n
s

s
1

=
a
i
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
i

)
⇒

(v
A
v
a
i
l

s
1

=
′
o
f
f
ic
e
′))}

=

Scope:
a
∈
C
o
n
s
u
m
e
r
(s

1
)
∧
O
w
n
e
r
(a

)
6=
O
w
n
e
r
(P
r
o
v
id
e
r
(s

1
))

=
{
((s

c
o
n
s

s
1

=
a
i
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
1

)
⇒

(v
A
v
a
i
l

s
1

=
′
o
f
f
ic
e
′))
∧

((s
c
o
n
s

s
1

=
a
2
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
2

)
⇒

A
ssertion:Availability(s

1)=
’office’

⇒
(v
A
v
a
i
l

s
1

=
′
o
f
f
ic
e
′))
∧

((s
c
o
n
s

s
1

=
a
3
∧
v
p
r
o
v

s
1
6=
v
o
w
n

a
3

)
⇒

(v
A
v
a
i
l

s
1

=
′
o
f
f
ic
e
′))}

Table
4.Sam

ple
W

S-G
overnance4People

onto
C

SP
m

apping

WS-Governance: a policy language for SOA Governance 13

5.1 Checking for Consistency

Checking a GD ρ written in WS-Governance* for consistency lets us know whether it
has internal contradictions or not. The root of the inconsistencies can be: (i) that a policy
in ρ is intrinsically inconsistent; (ii) that the set of policies in ρ are inconsistent; or (iii)
even when the set of policies in ρ, P ρ = {ρ1, . . . , ρn}, are initially consistent, then ρ
can be inconsistent due to the additional information added by the SADL SOA state and
structure specified. For instance, the GD* shown in the first column of table 4 is incon-
sistent. The cause of the inconsistency is that policies ρ2=’Critical services availability
should be “’24x7’ ’ and ρ3=’Service s1 availability is “window” if it is consumed by
external applications’ are inconsistent, since s1 is both consumed by application a2
’Zeus’ of department 2 and critical. This information, service consumption and critical-
ity of services is specified by the SOA Structure and State section of the GDs*, thus the
corresponding constraint Availability(s1) =

′ 24x7′ ∧ Availability(s1) =
′ window′

is obviously unsatisfiable due to the SOA state and structure, not because of an incosis-
tency of policies per se, and consequently ρ2 and ρ3 are inconsistent in ρ.

Internal Consistency: A GD* ρ is said to be consistent iff its corresponding equiva-
lent CSP is satisfiable; i.e. consistent(ρ)⇔ sat(ψρ)

Consistency: A non empty set of GDs in WS-Governance* P = {ρ1, . . . , ρn} is said
to be consistent iff its corresponding equivalent CSPs are simultaneously satisfiable;
i.e. consistent(P)⇔ sat(

∧n
i=1 ψ

ρ
i)

As an example, our approach found an additional inconsistence: in the mapping of the
GD* shown in Table 4, the corresponding CSP ψ contains among others the following
constraints: {vcrits1 = true ⇒ vprovOs1 = vconsOs1 }, {vcrits2 = true}, {vconsOs1 = o2},
and {vprovOs1 = o1}. This set of constraints in unsatisfiable, since vprovs1 = o2 and
vprovs2 = o1 are unsatisfiable, and consequently the GD* is inconsistent.

5.2 WS-Governance tooling: GDA and GDE

Governance Document Analyzer (GDA) is an automatic analyzer for GDs. It performs
consistency analysis in three levels: i) individual policy consistency, ii) consistency of
the set of policies in the document, and iii) consistency of the whole GD. This analysis
starts with the transformation of GD statements to a CSP, that is solved with a CSP
solver [19]. The tool is available as a web service so it can be easily integrated into other
tools and interoperate. Furthermore, a command line client is provided for direct use. A
set of sample GDs has been created, in order to ensure that the analyzer works properly.
Both the analyzer and the samples are available at http://www.isa.us.es/gda.

Governance Document Editor (GDE) is a web application to edit government doc-
uments in an assisted way. The editor window is divided in three areas as in Figure 1
(a). On the top section, there are different options to open, save and analyze GDs. On
the left side of the main area, every section in the GD is organized in a tree view. Every
node on the tree is attributed on the right-hand side. The main tree has separate sections
for each subsection in the GD. WS-Governance elements are automatically generated
from the tree, so edition focuses on the relevant government contents avoiding errors.
It has been integrated with GDA, showing the consistency analysis reports graphically.
The editor is available on-line at http://labs.isa.us.es/apps/gde/.

6 Related Work

Concerning policy definition, Ponder is the pioneer and probably most widely used
language. Ponder [20] is a declarative, object oriented language for the specification
of management polices in distributed object systems. Additionally, Ponder provides
structuring techniques for policy administration in large scenarios and systems. WS-
Governance incorporates similar concepts by the explicit declaration of governor and

14 José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

(a) GDE User Interface (b) GDA Depl. Opt.

Fig. 6. GDE User Interface and GDA Deployment Options
document context, and uses SADL and GAL assertions to model scope. The usage of
WS-Policy as the base policy expression construct, and explicit declaration of gover-
nance relevant information sources, makes WS-Governance better suited for SOA gov-
ernance policies declaration. However, an interesting capability supported by Ponder
that we plan to add to WS-Governance in the future is the declaration of policy types
as templates. Rei and KAoS [21], both based on semantic web concepts are proposals
oriented to the definition of policies for expressing web services capabilities policies.
However, is WS-Policy the proposal that has more successful in industrial scenarios,
thus we have chosen it for extension in order to define SOA governance policies.

Our proposal provides a richer consistency notion allowing the detection of semanti-
cal inconsistences in policies with complex interaction as shown in this paper. General
policy conflict analysis is not a novel problem, but its application in the context of SOA
governance policies in this paper is original. Several approaches have been proposed
for policy expression and conflict analysis in the context of network management [22],
and security [23], but they are based on Binary Decision Diagrams (BDD), forcing the
reasoning with less expressive policies than our CSP based proposal.

7 Conclusions and Future Work

The results obtained during the development of this work provide three important con-
clusions: i) there exists the need of a language for governance policies specification
that integrates governance data sources; enables effective governance through a formal
semantics, and supports automated consistency checking; ii) this need is not fulfilled
by WS-Policy, that has limitations in this context; and iii) WS-Governance allows the
specification of expressive Governance Documents independently of the underlying in-
frastructure. It is based on the WS-Policy framework, and overcomes its previously
identified limitations to achieve an effective governance. The GD semantics and consis-
tency operation paves the way for the creation of a new generation of governance tools.
In this scenario governance policies are created in a distributed, independent yet col-
laborative way, maintaining global consistency. This collaborative process helps gov-
ernance boards on the creation of the essential normative framework needed for the
achievement of the SOA promise.

WS-Governance: a policy language for SOA Governance 15

In this context we identify the following ideas as promising future work to be ad-
dressed: i) enacting organizations need extensions of the GD Context to effectively
ensure authentication and authorization, in order to avoid tampering when defining pol-
icy (currently this extension is supported by the language through the variability point
but those mechanisms are not specified); (ii) extend WS-Governance to support the def-
inition of policy templates improving reuse and usability; iii) carry out a performance
analysis of our implementation in order to study the influences of the SOA model, gov-
ernance properties and number and complexity of governance policies.

References
1. Marks, E.A.: Service-Oriented Architecture Governance for the Services Driven Enterprise.

John Wiley & Sons (2008)
2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State

of the art and research challenges. IEEE Computer 40(11) (2007) 38–45
3. Schepers, T.G.J., Iacob, M.E., Van Eck, P.A.T.: A lifecycle approach to soa governance. In:

SAC ’08: ACM Symposium on Applied computingk. (2008) 1055–1061
4. Kenney, L.F., Plummer, D.C.: Magic quadrant for integrated

soa governance technology sets. Technical report, Gartner (2009)
http://mediaproducts.gartner.com/reprints/oracle/article65/article65.html.

5. Kontogiannis, K., Lewis, G.A., Smith, D.B.: A research agenda for service-oriented archi-
tecture. In: SDSOA ’08: 2nd Int. workshop on Sys. devel. in SOA env. (2008) 1–6

6. Bernhardt, J., Seese, D.: A conceptual framework for the governance of service-oriented
architectures. In: ICSOC 2008 Workshops. Springer (2009) 327–338

7. Derler, P., Weinreich, R.: Models and tools for soa governance. In: Trends in Enterprise
Application Architecture. Springer (2007) 112–126

8. Parejo, J.A., Fernández, P., Ruiz-Cortés, A.: Towards automated sla-based governance policy
enforcement. In: Int. Joint Conference on Service Oriented Computing (ICSOC). (2009)

9. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Ümit
Yalçinalp: Web services policy 1.5 framework. W3C Recommendation (2007)

10. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Ümit
Yalçinalp: Web services policy 1.5 - attachment. W3C Recommendation (2007)

11. Hollunder, B.: Domain-specific processing of policies or: Ws-policy intersection revisited.
In: ICWS. (2009) 246–253

12. Anderson, A.H.: Domain-independent, composable web services policy assertions. In: POL-
ICY. (2006) 149–152

13. Ruiz-Cortés, A., Martı́n-Dı́az, O., Durán, A., Toro, M.: Improving the automatic procure-
ment of web services using constraint programming. International Journal of Cooperative
Information Systems 14(4) (2005) 439–467

14. Müller, C., Ruiz-Cortés, A., Resinas, M.: An initial approach to explaining sla inconsis-
tencies. In: 6th. Int. Conf. on Service-Oriented Computing (ICSOC). Volume 5364. (2008)
394–406

15. Müller, C., Resinas, M., Ruiz-Cortés, A.: Explaining the non-compliance between templates
and agreement offers in ws-agreement. In: 7th Int. Conf. on Serv. Oriented Comp. (ICSOC).
Volume 5900. (2009) 237–252

16. Zhang, Y., Liu, X., Wang, W.: Policy lifecycle model for systems management. IT Profes-
sional 7 (2005) 50–54

17. Peterson, D., Gao, S.S., Malhotra, A., Sperberg-McQuee, C.M., Thompson, H.S.: W3c xml
schema definition language (xsd) 1.1 part 2: Datatypes. W3C Working Draft (2009)

18. Vallecillo, A.: A journey through the secret life of models, Schloss Dagstuhl - Leibniz-
Zentrum fÃ 1

4
r Informatik (2008)

19. Laburthe, F., Jussien, N., Rochart, G., Cambazard, H., Prud’homme, C., Malapert, A.,
Menana, J.: Choco, java library for constraint satisfaction problems (csp). (Open Source,
http://www.emn.fr/z-info/choco-solver/)

20. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification language.
In: POLICY ’01: Int. Workshop on Policies for Dist. Systems and Networks. (2001) 18–38

21. Uszok, A., Bradshaw, J., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, S.: Kaos policy
management for semantic web services. Intelligent Systems, IEEE 19(4) (2004) 32–41

22. Samak, T., Al-Shaer, E., Li, H.: Qos policy modeling and conflict analysis. In: POLICY.
(2008) 19–26

23. Hamed, H.H., Al-Shaer, E.S., Marrero, W.: Modeling and verification of ipsec and vpn
security policies. In: ICNP. (2005) 259–278

