
ISA Packager: a tool for SPL deployment

Jesus García-Galán
Dept. Computer Languages

and Systems
University of Seville (Spain)

jegalan at us dot es

Pablo Trinidad
Dept. Computer Languages

and Systems
University of Seville (Spain)
ptrinidad at us dot es

Antonio Ruiz-Cortés
Dept. Computer Languages

and Systems
University of Seville (Spain)

aruiz at us dot es

ABSTRACT
In software projects, and particularly in Software Product
Line (SPL) projects, product composition and deployment
are tasks that are not supported by open source tools. These
tasks are repetitive and error-prone. Automation helps on
reducing the errors while the productivity increases. In this
paper we present a real-world experience through ISA Pack-
ager, a generic tool to package and deploy SPLs. In this
experience we build a SPL of SCADAs (Supervisory Con-
trol And Data Acquisition). Each customized SCADA prod-
uct evolves in time and ISA Packager is in charge of easing
product maintenance and updating.

Keywords
software product line, feature models, deployment, product
evolution, error analysis

1. INTRODUCTION
Product composition and deployment are mandatory tasks

in any project. Their complexity relies on the project size
and its architecture. On Software Product Lines (SPLs) [6],
these tasks are even more important because an extra effort
is usually needed to derive products from assets. Since many
companies are adopting SPL, this problem is getting more
and more interesting for the community.

In the case study we present in this paper, a local software
company is specialized in building Supervisory Control And
Data Acquisition (SCADA) systems. A SCADA system is a
computer system that monitors and coordinates infrastruc-
tures or processes, generally industrial ones. For instance, a
computer system that controls hydroelectric or wind power
plants is a SCADA system. The company has already built
a SPL to enhance their building process. Installing a basic
SCADA software system with only three assets is not dif-
ficult. However, SCADAs have around 20 software assets,
each of them having several versions. Moreover, each ver-
sion is composed by many binaries, configuration files and
scripts among others. Those artifacts should be packaged,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS ’11, January 27-29, 2011 Namur, Belgium
Copyright 2011 ACM 978-1-4503-0570-9/01/11 ...$10.00.

and deployed in several machines with many different config-
urations. A deployment mainly consists of copying files, dae-
mon installations, ordered script executions and OS-specific
tasks. The problem of deployment is complex but it does not
end here, because products can evolve, adding, removing or
upgrading assets.

Although SPL approach has improved the software pro-
duction process, packaging and deployment were still hand-
made and repetitive activities. It is a time-wasting and
error-prone approach. We have built ISA Packager, a reusable
tool to package, deploy and maintain SPLs in general. Us-
ing this tool reduces error commitment while time-to-market
speeds up.

ISA Packager approaches the problem following four main
sub-processes:

1. Packaging : taking resources from a version-control sys-
tem and collecting them into a unique package.

2. Installation: the package is deployed and capabilities
such as services, daemons or environment variables are
set.

3. Product Evolution: once the product is operating, new
assets can be added or existing ones removed or up-
graded to a newer version.

4. Product validation: before installing or evolving a prod-
uct, we must guarantee that a product configuration
is valid.

Figure 1: Example of a SCADA feature model

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2: ISA Packager life cycle

As a result of the SPL approach, SCADAs are decom-
posed into software assets or features whose relationships
are described in a Feature Model (FM) (Fig. 1). The FM
links software artifacts such as files, scripts, daemons or en-
vironment variables to features. ISA Packager takes a FM
and a configuration for a specific product as inputs. Firstly,
ISA packager validates the product configuration by means
of FaMa Framework [15], a feature model analysis tool. In
case any error is detected, explanations are provided to aid
the user in correcting the FM or the configuration. If in-
puts are error-free, artifacts are packaged and deployed in a
system. The deployment information is kept to be used in
further maintenance operations such as software updates or
product reconfigurations.

Although the company has project-specific requirements
such as Windows XP and Ubuntu compliance or plain input
text file-formats for FMs, we have faced each sub-process in
general terms so our solution can be reused in other projects
of the same nature. Therefore, our solution is approached in
two levels: a generalization level, where we solve the problem
for SPLs in general, and a specialization level, where the
solution is adapted to our particular project. Both levels are
discussed in Section 2. A brief review for the related work
can be found in Section 3. Finally, Section 4 presents our
conclusions and how we envision ISA Packager will evolve
to widen its scope and to apply it in other contexts.

2. ISA PACKAGER

2.1 Architecture overview
ISA Packager is a Java tool to package and deploy SPL

assets in general, following the process depicted in Figure
2. Firstly, the tool receives a FM describing a SPL and a
configuration as inputs. ISA Packager obtains information
about assets to package the product into a unique file. This
file has the ability of self-installing a product or updating a
previous installation. Prior executing the installation pro-
cess, ISA Packager validates the resulting configuration for
containing no errors such as feature incompatibilities or de-
pendences.

It has a modularized architecture, composed by five pieces,
as depicted in Figure 3. Packager module packages a prod-

Figure 3: ISA Packager architecture

uct into a file. Installer is the module in charge of in-
stalling and updating products. Model module transforms
input files into extended feature models. To validate prod-
ucts, ISA Packager uses FaMa Framework [15], an external
tool for SPL analysis, through the adapter module ISAPack-
ager2FaMa. Finally, the tool provides for a command-line
user interface (UI). These components are compiled into a
single and distributable binary using Maven[1].

2.2 Packaging
Packaging is the first process in ISA Packager (figure 2,

point 1). The tool receives an extended feature model as
input. Currently, the FM is described in a single text file,
with a proprietary format known as ISA Installation For-
mat (iif). Features represent system assets, and each at-
tribute represents relevant information about an asset, like
versioning, or target or source folders. Moreover, we can
define constraints over features and/or attributes. In Fig-
ure 1 we can see a sample input model with four fictional
leaf features, a parent feature, and an exclusion constraints.
Together with a model, ISA Packager has to be provided
for a root location, and optionally the security credentials.
As a result, ISA Packager processes the model and builds a
custom installer.

2.3 Installation and Updating
Product installation is the second step on the life cycle

(figure 4, point 2.a). A user can choose for a set of fea-
tures to install using a command-line user interface. Installer
translates each selected feature into a set of executable com-
mands, through an analysis of features and their attributes.
We classify commands in four types:

• File: copying files into a specified location.

• Environment variable: setting or modifying environ-
ment variables in a system.

• Daemon: installing a process as a daemon. Several
processes in SCADAs have to run whenever the system
is active.

• Script : executing scripts after or before another com-
mand execution. They are generally used for feature
updating to remove files or to uninstall daemons.

The tool has a stack of command instances for each of
the above kinds. All the commands in a stack are executed
following the order depicted in Figure 4. For installation,
environment variables commands are firstly executed. Then,
for each asset, files are copied. If it is required daemons are
installed and auxiliary scripts executed.

Figure 5 depicts a selection of features from the model
in Figure 1. Three features (on the left) are selected for
installation -system feature is always selected-. On the right
side, we find the kind of commands to be executed for each
feature selection. Firstly, an environment variable is set to
save installation location. Core is deployed, copying files
and installing a daemon. Finally, OZClient installation just
implies a File command.

When a previous installation is detected in the system
where a product is to be deployed, product updating pro-
cess is launched instead of installation(figure 2, point 2.b).
The most basic updating consists of adding new features.
However, it usually implies removing features or updating
an existing one which implicitly consists of removing an old
version of a feature and adding a newer one. Therefore,
the main difference between updating and installation is the
ability of removing features, which implies undoing all the
commands that were executed during installation. For this
purpose, we have defined deletion commands for each of the
installation commands:

• File: deleting files.

• Environment variable: unsetting or restoring a vari-
able.

• Daemon: stopping and uninstalling a daemon.

• Script : executing an uninstall script

An opposite execution order is adopted for feature re-
moval, as indicated in Figure 4 by theuninstallation arrow.

The above considerations are the result of a generaliza-
tion of the problem for SPLs in general. For our particu-
lar case study, installers should support Windows XP and
Ubuntu operating systems, so commands have been adapted
to them. For instance, setting an environment variable in
Windows XP, can be done by a command line tool. How-
ever, in Ubuntu you have to write into a variables file.

2.4 Validation
When we configure a product, even more on complex

SPLs, we could choose an invalid set of features. A configu-
ration if invalid if it violates at least one of the constraints
represented within the FM of the SPL. In case a product is
invalid, it cannot be installed, so the configuration must be
validated before installation. At present, there are available
several tools to analyze feature models that can be used to
check if a configuration is valid for a given FM. We have cho-
sen FaMa Framework [15] because it is an open-source tool
and is able to analyze feature models containing attributes.

FaMa contributes to ISA Packager with two analysis oper-
ations: Product validation which analyses if a final product is
valid for a given FM; and Product explanation which returns
a set of explanations to assist on configuration restoration.

Figure 4: Commands execution for installation and
uninstallation

Figure 5: Selection of features to install, and trans-
lation to actions

For instance, if we try to install all features of the sam-
ple SPL in Figure 1, the resultant product is not valid since
AXYClient and OZClient are mutually exclusive. FAMA
informs that the configuration is invalid and provides for ex-
planations such as ’remove OZClient feature from the prod-
uct’ or ’remove AXYClient from the product’.

However, product explanation has not a straightforward
application for updating. When installing, we only have
two choices to repair an error: to select or unselect features.
But when updating, we can choose among several versions
to install. At date, FaMa Framework is not able to work
with versions of the same feature for explanations, but it
can for product validation. We are working to incorporate
recent work on this field, such as Vierhauser et al. [16]

3. RELATED WORK
Product deployment in general, is still an open issue on

many organizations. There exist general-scope deployment
tools that can be used for this purpose. This is the case
of Maven [1] or Cargo [2], both open- source tools to assist
product compilation and deployment. There are also tools
which are specialized in software installation, such as IzPack
[3] or Nullsoft Scriptable Install System (NSIS) [4], which are
able to create customized and cross-platform installers.

Regarding SPLs, we can find product derivation approaches.
Product derivation is the branch of Software Product Line
Engineering (SPLE) that affronts product composition, in-
tegration and deployment from a SPL. We refer to three
tools for product derivation:

• AHEAD tool suite, based on AHEAD methodology[5],

supports the customization of the building process for
feature-oriented SPLs.

• GEARS (Krueger et al.) [10] is a commercial tool to
configure and derive products from a SPL.

• COVAMOF [7] [14] is a tool to define variability mod-
els. It provides for a Visual Studio plugin which per-
mits deriving products, among other options.

Two product derivation approaches should be specially
remarked: Pro-PD (Process reference model for Product
Derivation) (O’Leary at al.) [11] [13], a process reference
model for product derivation, developed at Lero; and DO-
PLER Ucon (Dhungana et al.) [8] [13] is a tool-supported
product derivation approach, driven by industry needs de-
veloped at JKU, Linz. Related to DOPLER, Grunbacher et
al. [9] discussed about using Eclipse to take advantage from
its plugin architecture and deployment system.

For more information about existing approaches to prod-
uct derivation, Rabiser et al. [12] is an excellent survey on
this topic.

4. CONCLUSIONS AND FUTURE WORK
ISA Packager provides for a way to package SPL assets

into an installer, and deploy and update products. The ma-
jor contribution of ISA Packager is supporting product evo-
lution, by means of updating existing products, thanks to
the links established between features and de/installation
commands. However, some limitations still exist that we
plan to overcome in the next future:

• Supporting remote deployment.

• Using a graphical UI that substitutes the current command-
line user interface.

• Updating validation, providing explanations when sev-
eral versions can be installed and the configuration is
invalid.

• Widen the kinds of installation commands, going fur-
ther than daemon installation, environment variables
or script executions.

• Integrating multiple asset versions on the same pack-
ager.

• Splitting input files in two files, one describing features
tree -problem domain- and other describing feature at-
tributes and constraints -solution domain-.

At the end of our project, we plan to release ISA Packager
as an open-source tool under GPL v3 license.

5. ACKNOWLEDGMENTS
This work has been partially supported by the European

Commission (FEDER) and Spanish Government under CI-
CYT project SETI (TIN2009-07366), and by the Andalusian
Government under ISABEL project (TIC-2533).

6. REFERENCES
[1] Apache maven. http://maven.apache.org/.

[2] Cargo. http://cargo.codehaus.org/.

[3] Izpack. http://izpack.org/.

[4] Nullsoft scriptable install system.
http://nsis.sourceforge.net/.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages
187 – 197, May 2003.

[6] P. Clements and L. M. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2002.

[7] S. Deelstra, M. Sinnema, and J. Bosch. Variability
assessment in software product families. Information
and Software Technology, 51(1):195 – 218, 2009.
Special Section - Most Cited Articles in 2002 and
Regular Research Papers.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and
T. Neumayer. Integrated tool support for software
product line engineering. In Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, ASE ’07, pages
533–534, 2007.

[9] P. Grunbacher, R. Rabiser, D. Dhungana, and
M. Lehofer. Model-based customization and
deployment of eclipse-based tools: Industrial
experiences. In Automated Software Engineering,
2009. ASE ’09. 24th IEEE/ACM International
Conference on, pages 247 –256, 2009.

[10] C. Krueger, D. Churchett, and R. Buhrdorf.
Homeaway’s transition to software product line
practice: Engineering and business results in 60 days.
In Software Product Line Conference, 2008. SPLC
’08. 12th International, pages 297 –306, 2008.

[11] S. T. Padraig O’Leary, Fergal McCaffery and
I. Richardson. An agile process model for product
derivation in software product line engineering. In
Journal of Software Maintenance and Evolution:
Research and Practice, 2010.

[12] R. Rabiser, P. Grünbacher, and D. Dhungana.
Requirements for product derivation support: Results
from a systematic literature review and an expert
survey. Information and Software Technology,
52(3):324 – 346, 2010.

[13] R. Rabiser, P. O’Leary, and I. Richardson. Key
activities for product derivation in software product
lines. Journal of Systems and Software, In Press,
Corrected Proof:–, 2010.

[14] M. Sinnema and S. Deelstra. Industrial validation of
covamof. Journal of Systems and Software, 81(4):584 –
600, 2008. Selected papers from the 10th Conference
on Software Maintenance and Reengineering.

[15] P. Trinidad, D. Benavides, A. Ruiz-Cortes, S. Segura,
and A. Jimenez. Fama framework. In Software Product
Line Conference, 2008. SPLC ’08. 12th International,
pages 359 –359, 2008.

[16] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser,
and W. Heider. Flexible and scalable consistency
checking on product line variability models. In
Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE
’10, pages 63–72, 2010.

