
The Drupal Framework:
A Case Study to Evaluate Variability Testing Techniques

Ana B. Sánchez, Sergio Segura, and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

University of Seville, Spain
{anabsanchez,sergiosegura,aruiz}@us.es

ABSTRACT
Variability testing techniques search for effective but man-
ageable test suites that lead to the rapid detection of faults
in systems with high variability. Evaluating the effectiveness
of these techniques in real settings is a must but challenging
due to the lack of variability-intensive systems with avail-
able code, automated tests and fault reports. In this pa-
per, we propose using the Drupal framework as a case study
to evaluate variability testing techniques. First, we repre-
sent the framework variability as a feature model. Then,
we report on extensive data extracted from the Drupal git
repository and the Drupal issue tracking system. Among
other results, we identified 378 faults in single features and
11 faults triggered by the interaction between two of the
features of Drupal v7.23, reported during a one-year period.
These data may give a new insight into the distribution of
faults in variability-intensive systems and the fault propen-
sity of features. To show the feasibility of our work, we
used the case study to evaluate the effectiveness of a history-
based test case prioritization criterion. Results suggest that
this technique could contribute to accelerate the detection
of faults of test suites based on combinatorial testing.

Keywords
Variability, testing, feature model, automated testing, test
case selection, test case prioritization.

1. INTRODUCTION
Variability determines the ability of software applications

to be configured and customized. One of the most prominent
examples of variability-intensive systems are Software Prod-
uct Lines (SPLs). An SPL is a family of related software
products. Each product represents a specific combination
of features of the SPL. Institutions such as General Motors,
NASA and Boeing are using SPL technology to decrease
time to market and improve software quality [1]. Typically,
SPLs are modelled by using variability models such as fea-
ture models [3]. A feature model represents the set of prod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VaMoS ’14 Nice, France.
Copyright 2014 ACM 978-1-4503-2556-1/14/01 ...$15.00.
http://dx.doi.org/10.1145/2556624.2556638.

ucts of an SPL in terms of features and relationships among
them (see Fig. 3).

The number of configurations and dependencies in vari-
ability models is potentially huge. For instance, the Billing
feature model available in the SPLOT repository has 88 fea-
tures and 66% of them are connected by constraints, repre-
senting more than 1 billion of potential products [15]. This
explosion of combinations makes testing variability-intensive
systems a major challenge. To address this problem, re-
searchers have proposed various techniques to reduce the
cost of testing in the presence of variability, including test
case selection and test case prioritization techniques. Test
case selection approaches [8, 17, 24] select an appropriate
subset of the existing test suite according to some coverage
criteria. Test case prioritization approaches [9, 19, 22, 24]
schedule test cases for execution in an order that attempts
to increase their effectiveness at meeting some performance
goal, e.g. accelerate the detection of faults [19].

The number of works on variability testing is growing
rapidly and thus the number of experimental evaluations [6,
9, 16]. However, it is hard to find real variability-intensive
systems with available code, test cases, detailed fault re-
ports and good documentation that enable reproducible ex-
periments [20, 21]. As a result, authors often evaluate their
testing approaches using artificial variability models [8, 9]
and simulated faults [6] which introduce threats to validity
and weaken their conclusions. A related problem is the lack
of information about the distribution of faults in variability-
intensive systems, e.g. number and types of faults, fault
severity, etc. This may be an obstacle for the design of new
testing techniques since researchers are not fully aware of
the type of faults they are looking for.

In the search for real variability systems some authors
have explored the domain of open source operating systems
[7, 13, 21]. However, these works mainly focus on the vari-
ability modelling perspective and thus ignore relevant data
for testers such as the number of test cases or the distribu-
tion of faults, i.e. how faults are distributed over the differ-
ent features. Also, SPL2GO1 is a catalog of SPLs for which
source code and variability model (e.g. feature model) are
publicly available. However, these also lack of detail data
about the faults found in the programs and it is up to the
user to inspect the code searching for test cases.

In order to look for a real variability-intensive system with
available code, we followed the steps of previous authors
and looked into the open source community. In particu-
lar, we found the open source Drupal framework [4] to be a

1http://spl2go.cs.ovgu.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

motivating variability-intensive system. Drupal is a modu-
lar web content management framework written in PHP [4,
23]. Drupal provides detailed fault reports including fault
description, fault severity, type, status and so on. Also,
most of the modules of the framework include a number of
automated test cases. The high number of the Drupal com-
munity members together with its extensive documentation
have also been strengths to choose this framework. Drupal
is maintained and developed by a community of more than
630,000 users and developers.

In this paper, we propose using the Drupal framework as
a motivating case study to evaluate variability testing tech-
niques. We propose mapping some of the main Drupal mod-
ules to features and represent the framework variability us-
ing a feature model. The resulting model has 28 features, 27
cross-tree constraints and represents 96,768 different Drupal
configurations. Also, we report on extensive data extracted
from the Drupal git repository and the Drupal issue track-
ing system referred to a period of one year. For each feature
under study, we report its size, number of changes, number
of test cases and a full fault report. Faults are classified
according to their severity and the feature(s) that trigger
it. The study of faults was replicated in two consecutive
Drupal versions, v7.22 and v7.23, to study the evolution in
the distribution of faults. Among other results, we identi-
fied 390 faults in total, 11 faults triggered by the interaction
between two features and a single fault caused by the inter-
action among three features in Drupal v7.23. For the eval-
uation of our work, we used the case study to evaluate the
effectiveness of test case prioritization based on historical of
faults. More specifically, we used the information about the
faults collected in Drupal v7.22 to effectively accelerate the
detection of faults of a pairwise suite in Drupal v7.23. In
summary, this work contributes to give a new insight into
the distribution of faults in a real variability-intensive sys-
tem and the fault propensity of its features. Also, this may
be a valuable input to drive the design and evaluation of
variability testing approaches.

The rest of the paper is structured as follows: Section 2
introduces the Drupal framework. Section 3 presents the
Drupal feature model. The information about Drupal fea-
tures (size, changes and tests) is presented in Section 4. The
description about faults detected in Drupal v7.22 and v7.23
is presented in Section 5. Section 6 summarizes the main
conclusions of our study. Section 7 shows a preliminary
evaluation of our case study. Finally, we summarize our
conclusions in Section 8.

2. THE DRUPAL FRAMEWORK
Drupal is a highly modular open source web content man-

agement framework implemented in PHP [4, 23]. This tool
can be used to build a variety of web sites including inter-
net portals, e-commerce applications and online newspapers
[23]. Drupal is composed of a set of modules. A module is
a collection of functions that provide certain functionality
to the system. Installed modules in Drupal can be enabled
or disabled. An enabled module is activated to be used by
the Drupal system. A disabled module is deactivated and
adds no functionality to the framework. The modules can be
classified into core modules and additional modules [4, 23].
The core modules are approved by the core developers of the
Drupal community and they are included by default in the
basic installation of Drupal framework. However, some of

Loca%za%on(Templa%ng(Syndica%on(Logging(

Basic(Content(
Management(

User(
Management(

Session(
Management(URL(Aliasing(

Forums(WYSIWYG(Event(
Calendars(Workgroups(

Image(
Galleries(EEcommerce(AdSense(Custom(

Module(

Library(of(Common(Func%ons(

Co
re
%

Ad
di
)o

na
l%

Figure 1: Drupal core and additional modules

them can be enabled or disabled, while others must always
be enabled. The core modules are responsible for providing
the basic functionality that is used to support other parts of
the system. The Drupal core includes code that allows the
system to bootstrap when it receives a request, a library of
common functions frequently used with Drupal, and mod-
ules that provide basic functionality like user management
and templating. Additional modules can be divided into con-
tributed modules and custom modules. Contributed modules
are written by the Drupal community and shared under the
same GNU Public License (GPL) as Drupal. Custom mod-
ules are those created by the developer of websites (third
parties). Fig. 1 depicts some popular core and additional
Drupal modules.

2.1 Module structure
At the code level, every Drupal module is mapped to a di-

rectory including the source files of the module. These files
may include PHP files, CSS stylesheets, JavaScript code,
test cases and help documents. Also, every Drupal mod-
ule must include a .module file and a .info file with meta
information about the module. Besides this, a module can
optionally include the directories and files of other modules,
i.e. submodules. A submodule increases the functionality of
the module containing it.

A Drupal .info file is a plain text file that describes the
basic information required for Drupal to recognize the mod-
ule. The name of this file must match the name of the
module. This file contains a set of so-called directives. A di-
rective is a property name = value. Some directives can use
an array-like syntax to declare multiple values properties,
name[] = value. Any line that begins with a semicolon (“;”)
is treated as a comment. For instance, Listing 1 describes a
fragment of the views.info file included in the Views module
of Drupal v7.23:

Listing 1: Fragment of the file views.info

name = Views
description = Create customized lists and queries from your db.
package = Views
core = 7.x
php = 5.2

stylesheets[all][] = css/views.css

dependencies[] = ctools
; Handlers
files[] = handlers/views_handler_area.inc
files[] = handlers/views_handler_area_result.inc
files[] = handlers/views_handler_area_text.inc

... more
; Information added by drupal.org on 2013-04-09
version = "7.x-3.7"
core = "7.x"
project = "views"

The structure of .info files is standard across all Drupal 7
modules. The name and description directives specify the
name and description of the module that will be displayed
in the Drupal configuration page. The package directive
defines which package or group of packages the module is
associated with. On the modules configuration page, mod-
ules are grouped and displayed by package. The core di-
rective defines the version of Drupal for which the module
was written. The php property defines the version of PHP
required by the module. The files directive is an array with
the names of the files to be loaded by Drupal. Furthermore,
the .info file can optionally include the dependencies that
the module has with other modules, i.e. modules that must
be installed and enabled for this module to work properly.
In the example, the module Views depends on the module
Ctools. There exist some core modules that always have to
be installed and enabled, i.e. those including the directive
required = TRUE.

2.2 Module tests
Drupal modules can optionally include a test directory

with the test cases associated to the module. Drupal de-
fines a test case as a class composed of functions (i.e. tests).
These tests are performed through assertions, a group of
methods that check for a condition and return a Boolean. If
it is TRUE, the test passes, if FALSE, the test fails. There
exist three types of tests in Drupal, unit, integration and
upgrade test cases. Unit tests are methods that test an iso-
lated piece of functionality of a module, such as functions
or methods. Integration tests test how different components
(i.e. functionality) work together. These tests may involve
any module of the Drupal framework. Integration tests usu-
ally simulate user interactions with the graphical user in-
terface through HTTP messages. According to the Drupal
documentation2, these tests are the most common tests in
Drupal. Upgrade tests are used to detect faults caused by
the upgrade to a newer version of the framework, e.g. from
Drupal v6.1 to v7.1. In order to work with tests in Drupal it
is necessary to enable the SimpleTest module. This module
is a testing framework moved into core in Drupal v7. Sim-
pleTest automatically runs the test cases of all the installed
modules. Fig. 2 shows a snapshot of SimpleTest while run-
ning the tests (i.e. 328 test cases and 20,230 assertions) of
Drupal modules.

3. THE DRUPAL FEATURE MODEL
In this section, we describe the process followed to model

Drupal variability using a feature model, depicted in Fig. 3.

3.1 Feature tree
According to the Drupal documentation, each module that

is installed and enabled adds a new feature to the framework
[23]. Thus, we propose modelling Drupal modules as fea-
tures of the feature model. Also, when a module is installed,
new subfeatures can be enabled adding extra functionality
to the module. These features are considered as children

2https://drupal.org/simpletest

Figure 2: Running Drupal tests

features of the module that contains them. Fig. 3 shows the
Drupal features that were considered in our study, 28 in to-
tal including the feature root. In particular, we first selected
those Drupal core modules that must be always enabled, 7
in total, e.g. Node. In Fig. 3, these features appear with a
mandatory relation with the features root and Field. These
features are included in all Drupal configurations. A Drupal
configuration is a valid combination of features installed and
enabled. Then, we randomly selected 20 modules within the
rest of the Drupal core modules (e.g. Image) and additional
modules (e.g. Views). All these modules can be optionally
installed and enabled and thus were modelled as optional
features in the feature model.

Subfeatures were modelled considering as children of other
module those submodules that appear inside of its module
directory. These submodules provide extra functionality to
its parent module and they have no meaning without it.
As an example, the feature Ctools presents several subfea-
tures such as Ctools access ruleset, Ctools custom content
and Views content. Exceptionally, the submodules of Node,
Blog, Book and Forum, appear in separate module folders,
however, the description of the modules in the Drupal doc-
umentation indicates that these modules are specialization-
s/types of Node. With respect to the relationships or and
alternative none of them were identified among the features
considered in Fig. 3.

3.2 Cross-tree constraints
We define the dependencies among modules as cross-tree

constraints in the feature model. Constraints in feature
models are typically of the form requires or excludes. If
a feature A requires a feature B, the inclusion of A in a con-
figuration implies the inclusion of B in such configuration.
On the other hand, if a feature A excludes a feature B, both
features cannot be part of the same configuration.

Cross-tree constraints were identified by manually inspect-
ing the dependencies directive in the .info file of each mod-
ule. For each dependency, we created a requires constraint
in the feature model, 27 in total. For instance, consider
the views.info file depicted in Listing 1. The file indicates
that Views depends on the Ctools module, i.e. dependen-
cies[]=ctools. Thus, we established a requires constraint be-
tween modules Views and Ctools. No exclude constraints
were identified among the modules. Interestingly, we found

D
rupal 7.23

N
ode

Filter
C

tools
File

O
ptions

A
ggregator

B
ook

B
log

Forum

C
tools access

ruleset
C

tools custom

content

V
iew

s
content

Field
Field U

I

Field S
Q

L
storage

Im
age

List

N
um

ber

S
ystem

U
ser

V
iew

s

V
iew

s U
I

Taxonom
y

C
om

m
ent

Text

B
lock

Testing

Forum
 R

equires Taxonom
y

O
ptions R

equires Field SQ
L storage

View
s UI R

equires Ctools

Forum
 R

equires O
ptions

Field UI R
equires Field

Taxonom
y R

equires O
ptions

Forum
 R

equires Field
Field UI R

equires Field SQ
L storage

Taxonom
y R

equires Field
Forum

 R
equires Field SQ

L storage
Im

age R
equires File

Taxonom
y R

equires Field SQ
L storage

Forum

 R
equires Com

m
ent

Im

age R
equires Field

Com
m

ent R
equires Text

Forum
 R

equires Text

Im
age R

equires Field SQ
L storage

Com
m

ent R
equires Field

Text R

equires Field SQ
L storage

File R
equires Field

Com
m

ent R
equires Field SQ

L storage
List R

equires Field SQ
L storage

File R
equires Field SQ

L storage
List R

equires O
ptions

View
s content R

equires View
s

Num
ber R

equires Field SQ
L storage

View
s R

equires Ctools

Figure 3: Drupal feature model

that all modules in the same version of Drupal are expected
to work fine together. If a Drupal module presents incom-
patibilities with others, this is reported as a bug that must
be fixed. As a sanity check, we confirmed the constraints
identified using the JIT Drupal module (Javascript InfoVis
Toolkit) which shows a graphical representation of the mod-
ules and their relationships.

The ratio of features involved in cross-tree constraints to
the total number of features (CTCR) is 57.1%. The model
represents 96,768 valid Drupal configurations.

4. DRUPAL FEATURES DATA
In this section, we report on the size, recent changes and

test cases of the Drupal features shown in Fig. 3. These data
are often used as good indicators of the error-proneness of
a software application. Additionally, this may provide re-
searchers and practitioners with helpful information about
the characteristics of features in a real variability-intensive
application. In particular, for each Drupal feature, we col-
lected the following data:

Feature size. This provides a rough idea of the complex-
ity of each feature and its error proneness. The size of a
feature was calculated in terms of its number of Lines of
Code (LoC). LoC were counted using the wc Linux com-
mand on each one of the source files included in the module
directory associated to each feature. The command used is
shown below. Blank lines and comments were included in
the counting for simplicity. Test files were excluded from
the counting. Table 1 depicts the number of LoC of each
feature. The sizes ranged between 326 LoC (feature Ctools
custom content) and 70,372 LoC (feature Views). It is note-
worthy that subfeatures are significantly smaller than their
respective parent features.

wc -l ‘find . -iname "module*" -o -iname "otherfile*"‘

Number of changes. Changes in the code are likely to
introduce faults [24]. Thus, the number of changes in a
feature may be a good indicator of its error proneness and
could help us to predict faults in the future. To obtain the
number of changes made in each feature, we collected the
commits from the git repository of Drupal3. The search was
narrowed by focusing on the changes performed during a
period of one year, from September 30th 2012 to September
29th 2013. First, we cloned the entire Drupal v7.x repository.
Then, we applied the console command showed below to get
the number of commits by module, version and date. As
illustrated in Table 1, the number of changes ranged between
0 (feature Blog) and 43 (feature Views). The modules with
the highest number of commits are Views (43) and Ctools
(24). It is noteworthy that these are the only additional
modules considered in Fig. 3, i.e. not included in Drupal
core.

git log --pretty=oneline --after={2012-09-30}
--before={2013-09-29} 7.22..7.23 name_module | wc -l

Number of tests. Table 1 shows the total number of test
cases and assertions of each feature, obtained from the out-
put of the SimpleTest module. In total, Drupal features
include 328 test cases and 20,230 assertions. In some cases

3http://drupalcode.org/project/drupal.git

such as Ctools, the number of tests (7 test cases and 121 as-
sertions) seems low considering that the size of the feature
is over 9,000 LoC. It is also noteworthy that some of the
subfeatures include no test cases.

Feature LoC Changes
Tests

TCs Asserts.

Aggregator 4,384 1 12 985

Block 3,806 3 9 675

Blog 647 - 1 244

Book 2,734 1 1 531

Comment 6,547 1 14 3,287

Ctools 9,267 24 7 121

Ctools access ruleset 385 1 - -

Ctools custom content 326 - - -

Field 9,561 9 9 870

Field SQL storage 1,428 2 1 94

Field UI 3,895 3 3 287

File 2,428 1 39 2,293

Filter 5,206 3 9 958

Forum 3,262 2 2 677

Image 6,570 3 13 811

List 638 1 3 232

Node 11,397 4 32 1,391

Number 632 1 1 87

Options 1,057 1 2 227

System 23,478 16 58 2,138

Taxonomy 6,625 4 14 677

Testing 3,002 - 12 219

Text 1,286 1 3 444

User 10,117 12 23 1,355

Views 70,372 43 51 1,089

Views content 3,468 1 - -

Views UI 2,462 2 9 538

Total 194,980 140 328 20,230

Table 1: Feature data

5. FAULTS IN DRUPAL
In this section, we report the faults detected in the Dru-

pal modules shown in Fig. 3. The collection of faults was
carried out on the Drupal issue tracking system4. To get the
information about faults, Drupal offers a web-based search
tool to filter the faults by severity, status, module and Dru-
pal version. The searches on Drupal issue tracking were
performed in the date range from September 30th 2012 to
September 29th 2013. We collected the faults of two consec-
utive Drupal versions, v7.22 and v7.23. We considered both
versions to achieve a better understanding of the evolution
of a real system and due to the existing interest in obtaining
historical of faults for testing [5, 10].

The process of collecting faults was manual. First, we fil-
tered the faults by the name of the module (i.e. label
name module.module in the issue tracking system). Second,
we refined the search by the Drupal versions v7.23 and v7.22
and the dates previously mentioned. A total of 453 faults
matched the initial search for Drupal v7.23 and a total of
481 faults for Drupal v7.22. In order to identify the faults

4https://drupal.org/project/issues

Module
Drupal v7.22 Drupal v7.23

Severity
Total

Severity
Total

Minor Normal Major Critical Minor Normal Major Critical

Aggregator - 6 1 - 7 - 7 - - 7

Block 2 12 2 1 17 2 9 2 1 14

Blog - 2 1 - 3 - 1 1 - 2

Book 1 5 - - 6 1 4 - - 5

Comment 2 16 2 1 21 2 13 2 2 19

Ctools 7 130 20 8 165 7 130 20 8 165

Field UI 3 7 - - 10 3 4 - - 7

File 1 14 3 - 18 1 15 3 - 19

Filter - 10 1 - 11 - 9 1 - 10

Forum - 3 1 - 4 - 3 - - 3

Image - 9 1 1 11 - 9 1 1 11

Node 2 17 - 2 21 2 16 - 2 20

Number - 1 - - 1 - - - - -

System 4 23 4 2 33 4 20 4 2 30

Taxonomy - 20 4 1 25 - 23 4 1 28

Testing - 4 2 1 7 - 4 2 1 7

Text - 5 - - 5 - 4 - - 4

User 4 15 - - 19 4 13 - - 17

Views - 2 - - 2 - 1 - - 1

Views Content 1 18 2 - 21 1 18 2 - 21

Total 27 319 44 17 407 27 303 42 18 390

Table 2: Faults in Drupal v7.22 and v7.23

caused by the interaction of several modules among all the
faults found, we first tried a similar approach to the one
presented by Artho et al. [2] in the context of operating
systems. This is, for each module, we searched for faults
descriptions containing the keywords “break”, “conflict” or
“overwrite”. However, the search did not return any result
related with interaction among modules. Thus, we decided
to follow a different approach. For each module, we searched
for faults descriptions and tags including the name (without
distinguishing between lower and upper case) of any of the
other modules in Fig. 3. For instance, if a reported fault
in the module Ctools included the name of the module Tax-
onomy in its description or tags, we selected the fault as a
candidate integration fault between Ctools and Taxonomy.
Then, we manually checked which of the faults found were
actually integration faults. Several of the candidate integra-
tion faults were discarded after checking them. A total of
18 faults matched in the search of both versions: 17 out of
18 were caused by the interaction of two modules and one of
them by the interaction of three modules. It is possible that
some reporters could have not included the involved module
names in some interaction faults. As a result, some of these
faults could have not been identified.

Then, the search was refined to eliminate those faults that
were not accepted by the Drupal community, namely: du-
plicated bugs, non reproducible bugs and bugs working as
designed. The latter are issues that have been considered
not to be a bug because the reported behaviour was either
an intentional part of the project, or the issue was caused
by customizations manually applied by the user. This left
390 valid faults in Drupal v7.23 and 407 in Drupal v7.22.

Table 2 summarizes the faults found in both version of
Drupal modules. For each module, the total number of
faults (single and interaction faults) is presented classify-

ing them according to their severity level. Interaction faults
are counted in the modules in which they were detected.
Only the modules in which we found faults are shown. We
may remark that there exist modules such as Ctools that do
not discriminate among versions of Drupal 7, i.e. they only
specify v7.x. This explains the same number and severity
of faults that appear in Table 2 for Ctools. On the other
hand, there exist some faults that appear in Drupal v7.22
and continue in v7.23. For example, the same minor fault of
the module Book appears in both versions. This is not the
case of the module Aggregator that presents the same num-
ber of faults in v7.23 and v7.22 but the faults are different.

Among the valid faults found, we identified 12 integration
faults. The type of interaction and the name of the mod-
ules causing the fault are presented in Table 3. Among the
integration faults detected, 11 were caused by the interac-
tion between two modules and just one was caused by the
interaction among three modules. All of these faults were
identified in both Drupal versions. It is noteworthy that 8
out of 12 faults were caused by the interaction of Ctools with
other module. Ctools provides a set of APIs and tools for
modules to improve the developer experience. Also, 6 out
of 12 faults were triggered by the interaction of the module
User with other module. The module User allows users to
register, log in, and log out and supports user roles and per-
missions. Finally, since the process of fault collection was
manual, there exists the possibility that some faults could
have not been correctly identified.

6. DISCUSSION
Next, we present some of the conclusions of our study:

Relation between faults and feature size. We found

that 7 out of the 10 largest features were also among the
10 features with a higher number of faults. Similarly, 8
out of 10 smallest features were among the 10 features with
less faults. This suggests that there exists a certain corre-
lation between the size of a feature and the probability of
faults on it. However, we found some exceptions. For in-
stance, the largest feature in Drupal, Views, has a single
reported fault. Conversely, the feature with a highest num-
ber of faults, Ctools, is the sixth largest feature in Drupal.
Thus, we conclude that the size of a feature could be inter-
preted as a rough estimation of its error-proneness.

Relation between faults and changes. We found that 6
out of the 10 features with a higher number of changes were
also among the 10 features with a higher number of faults.
In fact, the two features with the highest number of faults,
Ctools and System, were the second and third features with
more changes during the last 12 months respectively. We
also observed that the features with few or no changes at all
were among those with a lower number of faults. This also
suggests a correlation between the number of changes in a
feature and the probability of faults on it.

Relation between faults and type of features. We
identified 81 faults in the core features of the Drupal feature
model (81/7 = 11.5 faults per feature) and 309 faults in the
optional features (309/20 = 15.4 faults per feature). Core
features have a lower ratio of faults per feature. We presume
that this is due to the fact that core features are included
in all Drupal configurations and thus they are better sup-
ported and more stable. Regarding fault severity, around
78% of the faults were classified as normal, 11% as major,
7% as minor and 4% as critical. We found no correlation
between fault severity and the types of features.

Relation between faults and CTC (Cross-Tree Con-
straints). In [6], Bagheri et al. studied several feature
model metrics and suggested that those features involved in
a higher number of CTCs are more error-prone. To explore
this fact, we analyzed the features involved in constraints
in order to study the relation between them and their fault
propensity. In particular, we found that only 4 out of the 10
features involved in a higher number of CTCs were among
the 10 features with a higher number of faults. In fact, the
three features involved in a higher number of constraints in
Drupal, Field SQL storage (10), Field (6) and Forum (6)
had just three faults in total. Therefore, we conclude that
the correlation between feature involvement in CTCs and
fault propensity is not confirmed in our study.

Test cases. We found a clear relation between the size of
the features and the number of test cases and assertions in-
cluded as a part of their source code. Hence, for instance,
the two largest Drupal features, Systems and View, were
those including a larger number of test cases, 58 and 51
respectively. This seems reasonable since larger program re-
quire a higher number of tests. Regarding the distribution of
assertions in the test cases results were disparate. As an ex-
ample, feature System includes 2,138 assertions distributed
along 58 test cases while feature Comment includes 3,287
assertions distributed along 14 test cases. We presume this
is simply due to different developer’s practices.

n-wise Modules involved

2 Blog + User

2 Comment + User

2 Ctools + User

2 Ctools + Text

2 Ctools + User

3 Ctools + Views content + Filter

2 Ctools + Text

2 Ctools + Views

2 Ctools + Taxonomy

2 Ctools + Taxonomy

2 System + User

2 User + Image

Table 3: Interation faults in Drupal

7. EVALUATION
Previous studies show that the detection of faults in an

application can be accelerated by testing first those compo-
nents that showed to be more error-prone in previous ver-
sions of the software. This is referred to as history-based test
case prioritization [5, 10]. In this section, we use the Drupal
case study to evaluate whether this prioritization technique
could contribute to accelerate the detection of faults of a
pairwise test suite. Pairwise is a well-known test case se-
lection approach that generates all possible combinations of
pairs of features based on the observation that most faults
originate from a single feature or by the interaction of two
features [16]. In this scenario, we define a test case as a
configuration of the Drupal framework to be tested, i.e. a
set of features.

The evaluation was performed in several steps. First,
we translated the Drupal feature model to SPLX format
to make it machine-processable [14]. Then, we seeded the
model with the faults detected in Drupal v7.23, 390 in total.
To this purpose, we created a list of faulty feature sets. Each
set simulated faults triggered by n features (n ∈ [1, 3]). For
instance, the list {{Node}{Ctools,User}} simulates a fault
in the feature Node and another fault caused by the inter-
action between the Ctools and User features. Second, we
used the SPLCAT tool [11] to generate a pairwise suite for
the Drupal feature model. As a result, we obtained a set
of 10 test cases (out of 96,768) that covered all the possible
pairs of feature combinations. Then, we checked whether
the pairwise suite detected the seeded faults. We consid-
ered that a test case detects a fault if the test case includes
the feature(s) that trigger the fault. The pairwise test suite
detected all the seeded faults.

Next, we measured how fast the faults were detected by
the pairwise suite calculating the APFD (Average Percent-
age of Faults Detected) metric [18]. The APFD metric mea-
sures the weighted average of the percentage of faults de-
tected during the execution of the test suite [18]. To formally
illustrate APFD, let T be a test suite which contains n test
cases, and let F be a set of m faults revealed by T. Let TFi
be the position of the first test case in ordering T’ of T which
reveals the fault i. The APFD metric for the test suite T’ is
given by the equation: APFD = 1− TF1+TF2+...+TFn

n×m
+ 1

2n
.

APFD value ranges from 0 to 1.
The resulting APFD value for the pairwise suite was 86.2%.

Then, we prioritized the test suite placing first those test
cases that included the features with more faults in the pre-

vious version of Drupal. More specifically, each test case
was given a priority value equal to the sum of the faults
detected in its features in Drupal v7.22. Then, the list was
ordered scheduling first for testing those test cases with a
higher priority value. The APFD metric for the prioritized
suite was 94.2%, improving up to 8 points the APFD of the
pairwise suite (86.2%). This suggests that using fault his-
tory information contributes to accelerate the detection of
faults of test suites based on combinatorial testing.

8. CONCLUSIONS
In this paper, we presented the Drupal framework as a

motivating real variability-intensive system. In contrast to
the related work on variability modelling in open-source sys-
tems, we focused on the testing perspective providing de-
tailed data about the fault distribution and faults propen-
sity of its features. Also, we reported on how test cases are
distributed and arranged in the framework providing help-
ful feedback to researchers and practitioners in the field of
variability. All these data may be a valuable asset to evalu-
ate variability testing techniques in a real setup rather than
using random variability models and simulated faults. To
show the feasibility of our work, we used the case study to
evaluate the effectiveness of a history-based test case pri-
oritization criterion. Results suggest that this approach in
combination with pairwise could contribute to accelerate the
detection of faults in variability-intensive systems.

9. ACKNOWLEDGMENTS
This work was partially supported by the European Com-

mission (FEDER), the Spanish and the Andalusian R&D&I
programmes (grants TIN2009-07366 (SETI), TIN2012-32273
(TAPAS), TIC-5906 (THEOS), TIC-1867 (COPAS)).

10. REFERENCES
[1] S. Apel, A. von Rhein, P. Wendler, A. GröBlinger,

and D. Beyer. Strategies for product-line verification:
case studies and experiments. In International
Conference on Software Engineering, 2013.

[2] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and
S. Zacchiroli. Why do software packages conflict? In
Conference on Mining Software Repositories, 2012.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analyses of feature models 20 years later:
A literature review. Information Systems, 2010.

[4] D. Buytaert. Drupal Framework.
http://www.drupal.org, accessed in October 2013.

[5] E. C. P. Cristian Simons. Regression test cases
prioritization using failure pursuit sampling. In ISDA,
2010.

[6] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary
search-based test generation for software product line
feature models. In Conference on Advanced
Information Systems Engineering (CAiSE’12), 2012.

[7] J. A. Galindo, D. Benavides, and S. Segura. Debian
packages repositories as software product line models.
towards automated analysis. In ACOTA, 2010.

[8] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. Journal
of Systems and Software, 2011.

[9] C. Henard, M. Papadakis, G. Perrouin, J. Klein,
P. Heymans, and Y. L. Traon. Bypassing the
combinatorial explosion: Using similarity to generate
and prioritize t-wise test suites for large software
product lines. Technical report, 2012.

[10] Y.-C. Huang, C.-Y. Huang, J.-R. Chang, and T.-Y.
Chen. Design and analysis of cost-cognizant test case
prioritization using genetic algorithm with test
history. In Computer Software and Applications
Conference, 2010.

[11] M. F. Johansen, O. Haugen, and F. Fleurey.
Properties of realistic feature models make
combinatorial testing of product lines feasible. In
MODELS, 2011.

[12] M. F. Johansen, O. Haugen, F. Fleurey, A. G.
Eldegard, and T. Syversen. Generating better partial
covering arrays by modeling weights on sub-product
lines. In International Conference MODELS, 2012.

[13] R. Lotufo, S. She, T. Berger, K. Czarnecki, and
A. Wasowski. Evolution of the linux kernel variability
model. In SPLC, 2010.

[14] M. Mendonca. Efficient Reasoning Techniques for
Large Scale Feature Models. PhD thesis, University of
Waterloo, 2009.

[15] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t. -
software product lines online tools. In OOPSLA, 2009.

[16] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Budry, and
Y. le Traon. Pairwise testing for software product
lines: comparison of two approaches. Software Quality
Journal, 2011.

[17] G. Perrouin, S. Sen, J. Klein, B. Baudry, and
Y. le Traon. Automated and scalable t-wise test case
generation strategies for software product lines. In
Conference Software Testing, Verification and
Validation, 2010.

[18] G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing test cases for regression testing. IEEE
Trans. Software Eng, 27:929–948, 2001.

[19] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. A
comparison of test case prioritization criteria for
software product lines. Technical report, University of
Seville, Spain., 2013.

[20] S. Segura and A. Ruiz-Cortés. Benchmarking on the
automated analyses of feature models: A preliminary
roadmap. In VaMoS, 2009.

[21] S. She, R. Lotufo, T. Berger, A. Wasowski, and
krzysztof Czarnecki. The variability model of the linux
kernel. In International Workshop on Variability
Modelling of Software-intensive Systems, 2010.

[22] H. Srikanth, M. B. Cohen, and X. Qu. Reducing field
failures in system configurable software: Cost-based
prioritization. 2009.

[23] T. Tomlinson and J. K. VanDyk. Pro Drupal 7
development: third edition. 2010.

[24] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey. In
Software Testing, Verification and Reliability, 2012.

