
Automated Analysis of Orthogonal Variability Models

using Constraint Programming

Fabricia Roos-Frantz David Benavides, Antonio Ruiz-Cortés

Depto. de Tecnología Depto. de Lenguajes y Sistemas Informáticos

UNIJUÍ University, Ijuí, Brazil University of Seville, Seville, Spain

frfrantz@unijui.edu.br {benavides, aruiz}@us.es

Abstract

Software Product Line (SPL) Engineering is
about producing a family of products that
share commonalities and variabilities. The
variability models are used for variability
management in SPLs. Currently, the auto-
mated analysis of variability models has be-
come an active research area. In this paper we
focus on the automated analysis of Orthog-
onal Variability Model (OVM), which is a
modelling language for representing variabil-
ity. The automated analysis of OVMs deals
with the computer-aided extraction of infor-
mation from OVMs. The automated analy-
sis of OVMs has been hardly explored and
currently has no tooling support. Consider-
ing our know-how to analyse feature models,
which are the most popular variability models
in SPLs, we propose to automate the anal-
ysis of OVMs by means of constraint pro-
gramming. In addition, we propose to ex-
tend OVMs with attributes, allowing to add
extra-functional information to OVMs. With
this proposal we contribute with a step for-
ward toward a tooling support for analysing
OVMs.

1 Introduction and motivation

According to Clements and Northrop [8],
a Software Product Line (SPL) is “a set
of software-intensive systems sharing a com-
mon, managed set of features that satisfy the
specific needs of a particular market segment
or mission and that are developed from a com-

mon set of core assets in a prescribed way”.
The main idea behind SPL is the develop-
ment of a software family instead of a single
software product. An SPL is composed of a
set of products which are constructed from
a common core asset designed for a specific
domain.

In the SPL context, the variability models
document the variability of a product line,
i.e the possible combinations of features in a
system. In this context, a feature might be
defined as an increment in the functionality
of a system [4]. Variability models are im-
portant in SPL Engineering due to their role
in documenting and managing of variability,
making easier the task of management and
development of an SPL [16, 10]. Nowadays,
there are different kinds of variability models
used in SPL, such as feature models, decision
models and orthogonal variability models.

The Orthogonal Variability Model (OVM)
is a modelling language for representing vari-
ability in SPL [13]. Every variability in the
SPL is documented in the OVM model by
means of variation points with their respec-
tive variations, but not the commonalities.
Those features that are common to all soft-
ware products would be documented in other
artefact models, such as requirement models,
design models, etc. Therefore, the SPL vari-
ability is explicitly represented by the OVM
models.

The automated analysis of variability mod-
els deals with the computer-aided extraction
of information from such models [6]. It is an
important task in the context of SPL, since

Actas de las JISBD 2010, pp. 269-280, ISBN: 978-84-92812-51-6 © 2010 Los Autores

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


it is practically impossible to do it manually,
and besides it is error prone [6, 4]. In ad-
dition, the variability models are one of the
main artefacts of the domain engineering [13]
and therefore their analysis in an early stage
of development is essential to the success of
the SPL. Although the automated analysis of
variability models is an active research area,
the majority of the researches has focused on
feature models. In [6], the authors review
a number of proposals providing automated
support for the analysis of feature models, by
using different logical paradigm or formalism
,e.g. Description logic, Propositional logic,
Constraint programming. Most of them use
BDD1, SAT2 or CSP3 off-the-shelf solvers to
automate the analysis.

To the best of our knowledge, only Met-
zger et al. explored the automated analysis of
OVM [11]. They propose an indirect way to
automatically analyse OVMs, i.e. by means
of the transformation of OVM into VFD+4

and in doing so, they reuse the semantics of
analysis operations on VFD+. To carry out
this transformation they provide an ad hoc
algorithm. In order to automate the analysis
they map the analysis operations to a propo-
sitional formula and use the solver SAT4j.

The contribution of this paper is twofold.
First, we extend OVMs with attributes to
support the modelling of extra-functional as-
pects. Second, we propose the use of con-
straint programming to provide automated
analysis of Extended OVMs.

The remainder is organized as follows: Sec-
tion 2 describe the OVM language and the
proposed Extended OVM; Section 3 discusses
about the analysis operations on OVMs; Sec-
tion 4 describes our proposal where we pro-
vide a mapping from an Extended OVM
to a Constraint Satisfaction Problem (CSP).
In addition, we define some of the auto-
mated analysis operations on Extended OVM

1JavaBDD solver, http://javabdd.sourceforge.net
2SAT4j solver http://www.sat4j.org
3Constraint Satisfaction Problem www.4c.ucc.ie/
4Varied Feature Diagram (VFD+) is a formal

“back-end” language used to define semantics and
automating analysis

through CSP; and Section 5 presents our con-
clusions.

2 The OVM language

Orthogonal Variability Model is a modelling
language for defining the variability of SPL
[13, 11]. OVM provides a separate view of the
variability documenting explicitly the varia-
tion points in a separate model. In the OVM
models the first-classes are: variation points
(VP) and variants. A variation point docu-
ments the functional aspects that vary in the
SPL, i.e those aspects that represent a vari-
ability, which must be chosen by the customer
or engineer of the SPL. A variant is related
to a variation point and documents how this
variation point can vary. An OVM represents
all possible configurations of an SPL, where
configurations mean all possible combinations
of variation points and variants.

2.1 OVM Notation

In Figure 1 we show a possible OVM of an
SPL in the E-shop domain, it is partially in-
spired by [12]. A VP, graphically represented
by a triangle, can be either mandatory or op-
tional. A mandatory VP (solid line) must
always be bound, i.e. its variants must be
chosen. An optional VP (dashed line) may
or may not be bound. For instance, any con-
figuration represented by the model in Fig-
ure 1 must have customertype and current
resources and may or may not have customer-
profile resource.

In addition to the VPs and variants, OVM
defines two kinds of relationship between el-
ements, variability and constraint dependen-
cies. A variability dependency is a relation-
ship between a variant and its parent VP,
which can be Mandatory, Optional or Alter-
native, as follows:

• Mandatory variability dependency. The
variant must be chosen whenever its par-
ent VP is bound. For instance, between
the cardtype VP and the creditcard vari-
ant there is a mandatory dependency, it
means that always that cardtype is part

270            XV Jornadas de Ingeniería del Software y Bases de Datos



debit card
V

card type

credit card
V

VP
payment

V

V
V

SMS
V

PayPal

V

V
card

[1..3]

secure
V

connection

unsecure
V

requires

requires

current
V

customer 
type

regular
V purchase history

V

customer 
profile

client
V

requires

requires

VP
VP

VP

VP

Optional VP

[min..max]

AlternativeMandatory ExcludesMandatory VP

VP

Optional Requires

V

Variant

VP

Figure 1: A sample of orthogonal variability model of an SPL in the E-shop domain

of a configuration, creditcard must be as
well.

• Optional variability dependency. The
variant can, but not have to be chosen
whenever its parent VP is bound. If we
take the example, we can observe the
relationship between cardtype and deb-
itcard, it means that even if the soft-
ware product offers payment by card, the
debit card type may or may not be of-
fered.

• Alternative variability dependency. Con-
sists of a group of optional dependencies
and a given cardinality [min..max]. The
cardinality determines how many vari-
ants may be chosen in an alternative
choice, at least min and at most max
variants of the group. When the car-
dinality is [1...1], for default, it is not
shown. For instance, the product line
offers three different payment methods,
Paypal, SMS and card. The cardinality
[1..3] says that at least one and at most
3 methods can be part of the configura-
tion.

A constraint dependency is a relationship
between variants, between variants and VPs,

and between VPs. These relationships are
defined graphically and can be of two types,
namely Requires and Excludes, as follows:

• Requires constraint dependency. A re-
quires specifies an implication, i.e. if a
variant or a VP called A requires an-
other variant or VP called B, then if A is
chosen, B has to be chosen as well. For
instance, if a configuration has a regu-
lar customer, it must include the secure
connection.

• Excludes constraint dependency. An ex-
cludes specifies a mutual exclusion, i.e. if
a variant or a VP called A excludes an-
other variant or VP called B, B can not
be bound whenever A is chosen, and vice
versa.

2.2 Extended OVM

Extra-functional aspects are crucial when
modelling an SPL [6, 7], thus it is impor-
tant that modelling techniques deal with
them [16]. However, the OVM deals only
with variability related to the functional as-
pects offered by the SPL and therefore does
not address extra-functional variability. In

XV Jornadas de Ingeniería del Software y Bases de Datos            271



order to deal with extra-functional aspects,
we propose to extend OVM with attributes.

In Figure 1, the variation points and vari-
ants represent functional variability. Every
configuration represented by this model dif-
fers because of its functional variability. For
instance, consider the following configura-
tions C1 and C2, they differ because C1 offers
payment through SMS and C2 offers payment
through PayPal method.

C1 = {customertype,connection,payment,SMS,

current,unsecure}

C2 = {customertype,connection,payment,

PayPal,current,unsecure}

However, adding attributes to OVM, we as-
sociate extra-functional aspects with the vari-
ation points and variants. For instance, the
payment variation point could have extra-
functional variability related to it, such as
availability, efficiency, development time, and
so on. In doing so, it is possible differ one
configuration from another also by the extra-
functional aspects. For instance, if the vari-
ant secure connection offered different key
lengths for encrypted remote communication,
with Extended OVM we could define an at-
tribute for it called keylength, which can vary
from 128 to 1024 bits. Thus, those config-
urations that offers the same secure connec-
tion resource can differ according to their at-
tribute keylengths.

In addition to adding attributes, we pro-
pose the possibility of relationships amongst
attributes, e.g. a value of an attribute can
be a relationship between values of other at-
tributes, e.g price/time; and also relation-
ships amongst attributes and variable ele-
ments (i.e. a variation point or a variant).
Before introducing how we extend OVM, we
would like to make clear the following con-
cepts:

• Attribute: the attribute of a variable el-
ement is any property of a variable ele-
ment that can be measured.

• Attribute value: any value belonging to
the domain value, or a complex con-
straint.

• Domain Value: the range of possible val-
ues of an attribute. Every attribute has
a domain. The domain can be discrete
(e.g. integers, boolean), continuous (e.g.
real) or a complex type.

• Complex constraint: consists of a rela-
tionship among attributes or among at-
tributes and variable elements. For in-
stance: “If attribute A of a variation
point VP is greater than a value X, then
variant V can not be part of the product”.

Figure 2 shows an example of how to as-
sociate extra-functional aspects to OVMs. In
this example, we show an excerpt from the
OVM of Figure 1 with extra-functional fea-
tures. An attribute has a name, a domain and
a value 5. In this example each variant has
two attributes: “cost” and “confidentiality”.
Confidentiality (expressed in levels) refers to
the privacy level of payment details, and cost
concerns the development cost of each variant
or variation point. The cost attribute has a
real domain and the confidentiality attribute
has an integer domain. The value of attribute
cost of each variant takes a range of values in
the real domain, and the value of confiden-
tiality is an integer from 1 to 5. And finally,
the payment variation point has an attribute
called cost, which is a real number and its
value is the sum of costs of payment variants.

3 Analysis of Extended OVMs

In the SPL community is well known that
variability in product lines is increasing, the
variability models may have thousands of
variants [7]. Furthermore, these variants
usually have complex dependencies between
them [3]. Therefore, it is necessary to rely
on automatic support to analyse and manage
variability models. In [6], Benavides et al.
say the automated analysis of feature mod-
els deals with the computer-aided extraction
of information from feature models. We use
the same definition to the automated analy-
sis of OVMs, considering that it deals with

5The values in the example are just illustrative

272            XV Jornadas de Ingeniería del Software y Bases de Datos



Name: cost

Domain: Real

Value: {150..200}  

Name: cost

Domain: Real

Value: PayPal.price + SMS.price

        + card.price  

Name: confidentiality

Domain: Integer

Value: 5  

VP
payment

V

V
V

SMS
V

PayPal

V

V
card

[1..3]

Name: confidentiality

Domain: Integer

Value: 2  

Name: cost

Domain: Real

Value: {100..150}  

Name: confidentiality

Domain: Integer

Value: 3  

Name: cost

Domain: Real

Value: {100..130}  

Figure 2: Extended Orthogonal Variability Model

the computer-aided extraction of information
from OVMs.

What kind of information would be inter-
esting to extract from OVMs? For instance,
we may want to know how many configu-
rations are represented in a model, or even
to know whether a specific configuration be-
longs to the model. In [6] the authors sur-
veyed a number of approaches addressing au-
tomated analysis of feature models. Such
analysis is done by means of analysis opera-
tions, which are specifically defined to analyse
feature models and comment on the proper-
ties of such models. Taking into account the
research results obtained on analysis of fea-
ture models, we reuse the know-how of this
area in order to introduce analysis operations
on OVMs.

In our previous work [14] we took the
first step towards the automated analysis of
OVMs. In that work, we suggested some
analysis operations on OVMs. In this paper,
we propose some more analysis operations on
Extended OVM, which can be applied also to
existing OVM. These operations observe the
properties of a model without modifying it,
by taking an Extended OVM model as input
and providing a response as result. The infor-
mation obtained during the analysis process
can be useful to guide marketing strategies
and technical decisions. In the following we
describe some operations:

Number of configurations. This operation
returns the total number of configurations
represented by the Extended OVM. For in-
stance, the model depicted in Figure 1 repre-
sents 36 configurations. One of them is {cus-
tomertype, connection, payment, SMS, cur-
rent, unsecure}. This operation provides in-
formation about flexibility and complexity of
the SPL. In the E-Shop example of Figure 1,
if we simply remove the requires from card to
cardtype the number of products raises to 52.

All configurations. This operation takes as
input an Extended OVM and returns all con-
figurations represented by such model, i.e all
the possible combinations of variation points.
It is worth highlighting that in an OVM
model a configuration could be empty, since
there is no root as in feature models. In
other words, if there is no mandatory vari-
ation point in an OVM, there would be no
mandatory elements, what would lead to an
empty configuration. By applying this oper-
ation to the OVM of Figure 1, we obtained
36 configurations, three of them are detailed
bellow:

C1 = {customertype,connection,payment,SMS,current,

unsecure}

C2 = {customertype,connection,payment,PayPal,

current,unsecure}

C3 = {customertype,connection,payment,PayPal,SMS,

current,unsecure}

Void model. Checks whether an Extended
OVM is void or not, i.e. if it represents at
least one valid configuration. An Extended
OVM may becomes void due to the wrong
usage of excludes constraint dependencies. In
Figure 3, we can see an example of a void
OVM, where there is no valid configuration
due to the excludes between A and D.

Valid configuration. Takes an Extended
OVM model and a configuration (set of varia-
tion points and variants) as input and returns
a value that determines whether the configu-
ration belongs to the set of configurations rep-
resented by the model or not. As an example
of this operation, we can take as input the fol-
lowing products C1, C2 and C3 and the OVM

XV Jornadas de Ingeniería del Software y Bases de Datos            273



B
V

A

C
V E

V

D

F
V

excludes

VP
VP

Figure 3: A void OVM

model in Figure 1. Then, we receive as result
that C1 and C2 are valid configurations, how-
ever C3 is not valid, because it does not have
the mandatory variant current.

C1 = {customertype,connection,payment,SMS,current,

unsecure}

C2 = {customertype,connection,payment,card,current,

unsecure}

C3 = {customertype,connection,payment,SMS,unsecure}

Valid partial configuration. It takes an Ex-
tended OVM model and a partial configu-
ration as input and returns a value inform-
ing whether the configuration is valid or not,
i.e. a partial configuration is valid if it does
not include any contradiction. Given an Ex-
tened OVM with a set of variants and vari-
ation points V , a partial configuration is a
2-tuple of the form (S,R) such that S,R ⊆ V

being S the set of variation points and vari-
ants to be selected and R the set of variation
points and variants to be removed such that
(S ∩ R = 0) ∧ (S ∪ R ⊂ V ). As an example,
considering de model in Figure 1, the follow-
ing partial configurations PC1 and PC2 are
respectively not valid and valid:

PC1 = ({customertype,connection,current,regular},

{secure,SMS})

PC2 = {customertype,connection,current,payment},

{secure,card})

PC1 is not a valid partial configuration be-
cause it selects regular customer type and re-
moves secure connection, which is explicitly
required by the SPL. PC2 is a valid partial
configuration since it does not include any
contradiction. This operation if helpful spe-
cially during the product derivation stage.

Filter. It takes as input an Extended OVM
model and a configuration (potentially par-

B E

DA D A

B CC E

Figure 4: Common cases of dead nodes in OVM
models. Grey nodes are dead

tial) and returns the set of configurations in-
cluding the input configuration that can be
derived from the model. For instance, the
set of products of the OVM model in Figure
1 applying the partial configuration (S,R) =
({regular, Paypal}, {SMS, debitcard}) is:

P1 = {customertype,customerprofile,connection,payment,

client,PayPal,current,secure,unsecure,regular}

P2 = {customertype,customerprofile,connection,payment,

purchasehistory,client,PayPal,current,secure,

unsecure,regular}

P3 = {customertype,customerprofile,connection,payment,

cardtype,client,PayPal,card,current,secure,

unsecure,creditcard,regular}

P4 = {customertype,customerprofile,connection,payment,

cardtype,purchasehistory,client,PayPal,card,

current,secure,unsecure,creditcard,regular}

Dead node. It returns a set of dead nodes (if
any), i.e. those variants or variations points
that cannot appear in any of the configura-
tions represented by the model. Dead nodes
are caused by a wrong usage of constraint de-
pendencies. It is important to detect dead
nodes since they give a wrong idea of the vari-
ability. In Figure 4 we show some common
cases that generate dead nodes in OVM.

Optimization. Finding the optimal so-
lution, and not only any possible solution,
would be helpful for solving a constraint prob-
lem. Hence, in order to turn up the optimal
solution we can associate an objective func-
tion with the CSP. Such kind of problem is re-
ferred as Constrained Solution Optimization
Problem (CSOP) and its main task is to find
solutions that maximize or minimize an spec-
ified objective function satisfying all the con-
straints. For instance, if we want to find out
the set of solutions that minimize the cost of
payment resource in the Extended E-shop ex-
ample in Figure 2 we can ask for an optimiza-
tion. First we need to apply a filter to the

274            XV Jornadas de Ingeniería del Software y Bases de Datos



model in order to obtain a filtered model with
payment = true. Second, we define the ob-
jective function as O = payment.cost. Third,
we can ask for the solutions that optimize O.

M = filter(E − shop, payment = true)

O = payment.cost

Sopt = min(M,O)

4 Automating the Analysis of Ex-

tended OVM

In [6], Benavides et al. define a concep-
tual framework where they propose a process
for the automated analysis of feature models.
Based on it, we define the process presented
in Figure 5 as the whole process for the au-
tomated analysis of OVMs. First, an OVM
model is mapping into a logical representa-
tion, in this case into CSP. Afterwards, the
analysis operations to be applied to the CSP
model are defined as CSP primitives. Finally,
an off-the-shelf CSP solver is used to auto-
matically analyse the input data and provide
the analysis results.

V

V

V

Orthogonal 
Variability 

Model

Mapping Solver/
Tool

Analysis 
Results

Analysis
Operation

Logical
 Representation

CSP

Figure 5: Automated analysis process of OVM
using CSP.

4.1 Background: Orthogonal Variability

Models and Configurations as CSP

Constraint Programming is a discipline which
relies on a set of techniques and algorithms
to deal with reasoning and computing [2]. It
is devoted to modelling with constraints and
to solving the resulting constraint satisfaction
problems (CSPs). A Constraint Satisfaction
Problem [19] is defined as a set of variables
and a set of constraints restricting the values

of these variables. For example, A + B >

1 is a CSP involving the integer variables A
and B. A constraint solver finds a valid set of
variable values that simultaneously satisfies
all constraints in the CSP. (A = 2, B = 2) is
thus a valid solution of the CSP A+B > 1.

To build the CSP for the automated anal-
ysis of OVMs, we construct a set of variables
V , representing the variable elements (vari-
ation points and the variants) in the OVM.
Each configuration of the OVM is a set of
values (0 or 1) for these variables. The value
of 1 indicates the variable element is present
in the configuration and a value of 0 indicates
it is not present. More formally, a configura-
tion is a set of variable values of V, such that
∀vi · vi ∈ V ⇒ vi = 0 ∨ vi = 1. If vi = 1
indicates that vi is selected in the configura-
tion. Similarly, if vi = 0 means that vi is not
selected.

In the CSP equivalent to the OVM, each
variable vi can have one or more constraints
associated with it corresponding to the con-
figuration rules in the OVM. For example,
if vi excludes vj , then the CSP would con-
tain the constraint: if(vi = 1)then(vj = 0).
Therefore, the CSP has a set of constraints C
which captures the configuration rules from
the OVM. For any given OVM configuration
described by the set of variable values of V
the correctness of the configuration can be
determined by seeing if the values satisfy all
constraints in C.

4.2 Related Work

Benavides et al. were the first authors who
proposed using constraint programming for
analyses on feature models [7, 5]. They pro-
vide a set of mapping rules to translate a
feature model into a CSP, and a support to
feature models with attributes. The authors
also provide tool support [18]. Trinidad et
al. [17] propose constraint programming and
Reiter’s theory of diagnosis to detect and offer
explanation of errors in feature models. In [9]
the authors describe a tool under develop-
ment addressing the analysis of feature mod-
els using constraint programming. White et

XV Jornadas de Ingeniería del Software y Bases de Datos            275



E-shop Example

[i..j]

 

     

     

     

M
A
N
D
A
T
O
R
Y

O
P
T
IO
N
A
L

A
L
T
E
R
N
A
T
IV
E

Variability Dependecy CSP Mapping

vp = v

if (vp = 0)

     v = 0

customertype = current

customerprofile = client

cardtype = creditcard

connection = unsecure

 

R
E
Q
U
IR
E
S

E
X
C
L
U
D
E
S

if (v1 > 0) 

   v2 = 0

if (v > 0)

   vp = 0

if (vp > 0)

   v = 0

if (vp1 > 0)

    vp2 = 0

if (v1 > 0) 

   v2 > 0

if (v > 0)

   vp > 0

if (vp > 0)

   v > 0

if (vp1 > 0)

    vp2 > 0

E-shop ExampleConstraint Dependecy CSP Mapping

E-shop ExampleVariation Point CSP Mapping

M
A
N
D
A
T
O
R
Y

VP
vp = 1

if (vp > 0)

     Sum (v1, v2, ..., vn) in {i..j}

else

   v1 = 0, v2 = 0, ..., vn = 0

customertype = 1

payment = 1

connection = 1

if (customertype = 0)

     regular = 0

if (customerprofile = 0)

     purchasehistory = 0

if (cardtype = 0)

     debit card = 0

if (connection = 0)

     secure = 0

if (payment > 0)

     Sum (PayPal, SMS, card) in {1..3}

else

   PayPal = 0, SMS = 0, card = 0

if (regular > 0 ) 

   customerprofile > 0

if (customerprofile > 0) 

   regular > 0

if (regular > 0) 

   secure > 0

if (cardtype > 0) 

   secure > 0
if (cardtype > 0) 

   card > 0

if (card > 0) 

   cardtype > 0

VP

VP

V1 V2 Vn

VP

Table 1: Mapping from OVM to Constraint Satisfaction Problem (CSP).

276            XV Jornadas de Ingeniería del Software y Bases de Datos



al. [20] propose a method to detect conflicts in
a given configuration and propose changes in
the configuration to solve the problem. Their
technique is based on CSP and adding some
extra variables in order to detect and correct
the possible errors after applying optimiza-
tion operations.

4.3 Mapping Extended OVM onto CSP

An OVM can be described in terms of restric-
tions imposed on the set of variables, i.e it can
be defined as a CSP in a straightforward way.
The modelling of an Extended OVM as a CSP
can vary due to the solver to be used later to
analyse the model. The mapping has the gen-
eral form: i) each variation point and variant
maps to a variable of the CSP with a domain
of 0..1, ii) for each mandatory variation point
a constraint assigning 1 to the correspondent
variable is added, iii) each relationship of the
model is mapped into a constraint depend-
ing on the type of the relationship, iv) at-
tributes are expressed as constraints, and v)
the resulting CSP is the one defined by the
variables of steps i, ii and iii with the cor-
responding domains and a constraint that is
the conjunction of all precedent constraints.
The mapping from step iii is done as bellow:

Mandatory variability dependency. Let
vp be the variation point and v the variant
in a mandatory variability dependency, then
the equivalent constraint is: vp = v.

Optional variability dependency. Let vp
be the variation point and v the variant in
a optional variability dependency, then the
equivalent constraint is: if(vp = 0) v = 0.

Alternative variability dependency. Let
vp be the variation point and vi | i ∈ [1 . . . n]
the set of optional variants in an alternative
variability dependency, and [m. . .m′] | 0 ≤
m ≤ m′ ≤ n the cardinality of the alternative
dependency, then the equivalent constraint is:
if(vp > 0) Sum (v1, v2, . . . , vn) in {m..m′}
else v1 = 0, v2 = 0, vn = 0.

Variant Requires Variant constraint de-

pendency. Let v1 and v2 be the variants in
a Requires constraint dependency, then the
equivalent constraint is: if(v1 > 0) v2 > 0.

Variant Requires VP constraint depen-

dency. Let v be the variant and vp the
variation point in a Requires constraint de-
pendency, then the equivalent constraint is:
if(v > 0) vp > 0.

VP Requires Variant constraint depen-

dency. Let vp be the variation point and
v the variant in a Requires constraint de-
pendency, then the equivalent constraint is:
if(vp > 0) v > 0.

VP Requires VP constraint depen-

dency. Let vp1 and vp2 be the variation
points in a Requires constraint dependency,
then the equivalent constraint is: if(vp1 > 0)
vp2 > 0.

Variant Excludes Variant constraint de-

pendency. Let v1 and v2 be the variants in
an Excludes constraint dependency, then the
equivalent constraint is: if(v1 > 0) v2 = 0.

Variant Excludes VP constraint depen-

dency. Let v be the variant and vp the
variation point in an Excludes constraint de-
pendency, then the equivalent constraint is:
if(v > 0) vp = 0.

VP Excludes Variant constraint depen-

dency. Let vp be the variation point and
v the variant in an Excludes constraint de-
pendency, then the equivalent constraint is:
if(vp > 0) v = 0.

VP Excludes VP constraint depen-

dency. Let vp1 and vp2 be the variation
points in an Excludes constraint dependency,
then the equivalent constraint is: if(vp1 > 0)
vp2 = 0.

In Table 1 we show the concrete rules for
the mapping of an OVM into a CSP and also
the mapping of the E-shop example in Fig-
ure 1 into the equivalent CSP. In this paper
we provide a general mapping of an Extend
OVM into a CSP. The detailed mapping of
attributes into CSP is out of the scope of
this paper. Next we show an example of how
would be the equivalent CSP to the Extended
OVM in Figure 2.

XV Jornadas de Ingeniería del Software y Bases de Datos            277



(payment = 1)∧

(if(payment > 0)Sum(PayPal, SMS, card)in{1..3}

else(PayPal = 0, SMS = 0, card = 0))∧

(payment.cost = PayPal.cost + SMS.cost

+ card.cost)∧

((PayPal.cost ∈ [150, 200]) ⇔ PayPal)∧

((PayPal.cost = 0) ⇔ ¬PayPal)∧

((PayPal.confidentiality = 5) ⇔ PayPal)∧

((PayPal.confidentiality = 0) ⇔ ¬PayPal)∧

((SMS.cost ∈ [100, 150]) ⇔ SMS)∧

((SMS.cost = 0) ⇔ ¬SMS)∧

((SMS.confidentiality = 2) ⇔ SMS)∧

((SMS.confidentiality = 0) ⇔ ¬SMS)∧

((card.cost ∈ [100, 130]) ⇔ card)∧

((card.cost = 0) ⇔ ¬card)∧

((card.confidentiality = 3) ⇔ card)∧

((card.confidentiality = 0) ⇔ ¬card)

4.4 Analysis operations formalization

In the following, we define the analysis oper-
ations on OVM as CSP primitives:

Operation 1. (#Configurations). Let M
be an Extended OVM and #Configurations
the number of possible configurations of M ,
then #Configurations(M) is equal to the so-
lution number of CSP ψM .

#Configurations(M) = |sol(ψM )|

In the E-shop example of Figure 1 #Con-
figurations (E-shop) = 36.

Operation 2. (Configurations). Let M
be an Extended OVM and configurations the
set of configurations of M . Thus, Configu-
rations(M) is the set of solutions of the CSP
ψM .

Configurations(M) = {s ∈ sol(ψM )}

Operation 3. (Void Model). Let M be an
Extended OVM, M is void if there is at least
one solution to the CSP ψM .

void(M) ⇔ #Configurations(M) = 0

Operation 4. (Valid Conf). Let M be an
Extended OVM, a configuration C is valid if
C belongs to the set of solution of CSP ψM .

V alidConf(M,C) ⇔ P ∈

Configurations(M)

Considering the E-shop example of Fig-
ure 1 and the configuration C, such that:

C = {customertype,customerprofile,connection,
payment,client,PayPal,current,secure,
unsecure,regular}

Then, V alidConfiguration(M,C) = true.

Operation 5. (Valid Partial Configu-
ration (ValidPC). Let M be an Extended
OVM and PC a partial configuration, PC is
valid if the set of solutions of the conjunction
of CSP ψM and PC is not empty.

V aliPC(M,PC) ⇔ |sol(ψM ∧ PC)| > 0

Considering the E-shop example of Fig-
ure 1 and the partial configuration PC, such
that:

PC = ({customertype,connection,current,regular},
{secure,SMS})

Then, V aliPC(M,PC) = false

Operation 6. (Filter). Let M be an Ex-
tended OVM and F a partial configuration
representing a filter, the filtered model of ψM ,
is the conjunction of ψM and F.

filter(M,F ) = (ψM ∧ F )

In the E-shop example we could get
all possible configurations of the model
after applying a filter. For instance,
if we want to get all those configura-
tions that offers the three types of pay-
ments (PayPal, SMS, card), thus M =

filter(E − shop, {{PayPal, SMS, card}, {}}),
and Configurations(M) = {s ∈ sol(ψE−shop ∧

(Paypal = true ∧ SMS = true ∧ card = true))}.

Operation 7. (Dead Nodes). Let M be
an Extended OVM, ψM the equivalent CSP
of the form (V,D,C), and n a variant or a
variation point ∈ V. The possible dead nodes,
hereinafter DeadNodes, is the set of ni nodes
such that isDeadNode(ni) = true. The node n
is dead if there is no solution S for the equiv-
alent CSP ψM , such that n belongs to S.

278            XV Jornadas de Ingeniería del Software y Bases de Datos



isDead(M,n) ⇔ ∄ S ∈ sol(ψM )|n ∈ S.

DeadNodes(M) = {N |∀ni · ni ∈ V ⇒

isDeadNode(M,ni) = true}.

Operation 8. (Optimization). Let M be
an Extended OVM, and O an objective func-
tion. Optimization is the set of solutions that
minimize or maximize O. Thus, min(M,O) =
min(ψM ,O) is the set of solutions that mini-
mize O and max(M,O) = max(ψM ,O) is the
set of solutions that maximize O.

5 Conclusion and future work

The extra-functional aspects of a software
product line are important information which
should be dealt by the variability modelling
techniques. In this paper we have presented
how Orthogonal Variability Models (OVMs)
can also represent extra-functional informa-
tion, by adding attributes to these models.
Our main goal is to provide automated sup-
port to the analysis of OVMs. The auto-
mated analysis of OVMs has been hardly ex-
plored and there is no tooling support for
this purpose. To achieve our goal, we have
applied the concepts of analysis operations,
techniques and tools used in the context of
automated analysis of feature models. We
proposed the use of constraint programming
for the automated analyses of OVMs, its
declarativity eases the formalization of every
analysis operation. The availability of off-the-
shelf solvers allows to build tools which offer
support for every operation described in this
paper.

Currently we are working on a proof
of concept to demonstrate the feasibility
of our proposal. We are extending FaMa
framework [18], which is a framework to
analyse feature models, to support the
analysis of OVMs. We are implement-
ing all the analysis operations presented
in this paper with a Java CSP solver
called Choco [1]. A prototype is available at
http://www.lsi.us.es/∼dbc/material/jisbd10/,
there you also can find the results of the op-
eration all possible configurations performed
on the OVM model in Figure 1. The results

presented in this paper were generated with
this prototype.

In our future work, we intend to provide
a tooling support for the analysis of OVMs.
In addition, based on [15] we plan to apply
metamorphic testing for the automated gen-
eration of test data for the analyses of OVMs.

6 Acknowledgements.

This work was partially supported by Span-
ish Government under CICYT project SETI
(TIN2009-07366) and by the Andalusian
Government under project ISABEL (TIC-
2533) and Evangelischer Entwicklungsdienst
e.V.

References

[1] Choco solver. http://choco.emn.fr/, ac-
cessed April 2010.

[2] K. R. Apt. Principles of Constraint Pro-
gramming. Cambridge University Press,
2003.

[3] D. Batory. Feature models, grammars,
and propositional formulas. In Software
Product Lines Conference, volume 3714
of LNCS, pages 7–20. Springer–Verlag,
2005.

[4] D. Batory, D. Benavides, and A. Ruiz-
Cortés. Automated analysis of feature
models: Challenges ahead. Communi-
cations of the ACM, December:45–47,
2006.

[5] D. Benavides, A. Ruiz-Cortés, and
P. Trinidad. Using constraint program-
ming to reason on feature models. In The
Seventeenth Int. Conf. on Software En-
gineering and Knowledge Engineering,
SEKE 2005, pages 677–682, 2005.

[6] D. Benavides, S. Segura, and A. Ruiz-
Cortés. Automated analysis of feature
models 20 years later: a literature re-
view. Information Systems, in press.

XV Jornadas de Ingeniería del Software y Bases de Datos            279



[7] D. Benavides, P. Trinidad, and A. Ruiz-
Cortés. Automated reasoning on feature
models. In 17th Int. Conf. Advanced In-
formation Systems Engineering, CAiSE
2005, volume 3520 of LNCS, pages 491–
503. Springer–Verlag, 2005.

[8] P. Clements and L. Northrop. Soft-
ware Product Lines: Practices and Pat-
terns. SEI Series en Software Engineer-
ing. Addison–Wesley, August 2001.

[9] O. Djebbi, C. Salinesi, and D. Diaz. De-
riving product line requirements: the
red-pl guidance approach. Asia-Pacific
Software Engineering Conference, 0:494–
501, 2007.

[10] C. Lianpingn, A. B. Muhammad, and
A. Nour. Variability management in
software product lines: A systematic re-
view. In 13th Int.Software Product Line
Conf., SPLC’09, San Francisco, USA,
2009.

[11] A. Metzger, K. Pohl, P. Heymans,
P. Schobbens, and G. Saval. Disam-
biguating the documentation of variabil-
ity in software product lines: A separa-
tion of concerns, formalization and au-
tomated analysis. In Requirements En-
gineering Conference, 2007. 15th IEEE
Int., pages 243–253, 2007.

[12] K. Petersen, J. M. Zaha, and A. Met-
zger. Variability-driven selection of ser-
vices for service compositions. In ICSOC
Workshops, pages 388–400, 2007.

[13] K. Pohl, G. Böckle, and F. J. van der
Linden. Software Product Line En-
gineering: Fundations, Principles and
Techniques. Springer–Verlag, 2005.

[14] F. Roos-Frantz and S. Segura. Auto-
mated analysis of orthogonal variabil-
ity models. a first step. In Workshop
on Analyses of Software Product Lines,
pages 243–248, 2008.

[15] S. Segura, R. M. Hierons, D. Bena-
vides, and A. Ruiz-Cortés. Automated
test data generation on the analyses of
feature models: A metamorphic test-
ing approach. In Third International
Conference on Software Testing, Veri-
fication and Validation., Paris, France,
2010. IEEE press.

[16] M. Sinnema and S. Deelstra. Clas-
sifying variability modeling techniques.
Information & Software Technology,
49(7):717–739, 2007.

[17] P. Trinidad, D. Benavides, A. Durán,
A. Ruiz-Cortés, and M. Toro. Auto-
mated error analysis for the agilization
of feature modeling. Journal of Systems
and Software, 81(6):883–896, Jun 2008.

[18] P. Trinidad, D. Benavides, A. Ruiz-
Cortés, S. Segura, and A. Jimenez. Fama
framework. In Software Product Line
Conf. Tool Demonstrations, 2008.

[19] E. Tsang. Foundations of Constraint
Satisfaction. Academic Press, 1995.

[20] J. White, D. Schmidt, D. Benavides,
P. Trinidad, and A. Ruiz-Cortés. Au-
tomated diagnosis of product-line con-
figuration errors in feature models. In
12th. Sofware Product Line Conference
(SPLC), pages 225–234, Limerick, Ire-
land, Sep 2008. IEEE.

280            XV Jornadas de Ingeniería del Software y Bases de Datos


