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Abstract An algorithm to compute a minimal length basis of representative cocycles of
cohomology generators for 2D images is proposed. We based the computations on combina-
torial pyramids foreseeing its future extension to 3D objects. In our research we are looking
for a more refined topological description of deformable 2D and 3D shapes, than they are
the often used Betti numbers. We define contractions on the object edges toward the inner
of the object until the boundaries touch each other, building an irregular pyramid with
this purpose. We show the possible use of the algorithm seeking the minimal cocycles that
connect the convex deficiencies on a human silhouette. We used minimality in the number
of cocycle edges in the basis, which is a robust description to rotations and noise.

Keyworks cohomology; combinatorial pyramids; representative cocycles of cohomology
generators.

1 Introduction

The use of topological invariants is a promising alternative in order to describe deformable shapes
in 2D and 3D [16]. This has motivated a lot of research to obtain efficient algorithms on different
topological object decompositions (simplicial complexes [3, 4], cubical complexes [12], irregular
pyramids [15, 10], and others [8, 1]). However, most of the algorithms are looking for generators
of homological groups in order to characterize the object by the number of connected components
and holes (1-dimensional holes).

Pursuing a more refined description it is possible to use shape features on the holes. But,
usually the boundaries of the holes are seriously affected by noise in real world applications of
image processing and object modeling [17]. The final goal of our research, is to find a new
descriptor that improves the lower robustness of the present object topological descriptions.

Taking into account the dual relationship between the homology and cohomology [6], we intend
to show that a refined description based on the minimal length basis of cocycle is more robust to
noise and can be used to evaluate the similarity between objects in 2D and 3D.

The representative cocycles that were computed in an irregular graph pyramid before [5],
associated to a path in the Region Adjacency Graph (RAG) going from one hole boundary to
the outside boundary, can now be computed with minimal length. In this way, it can be used
as an stable feature to noise in the hole boundary and to rotations. Also, the associated path in
the RAG will now be following straight lines as long as possible, and will be described with the
minimum number of edges needed.

The minimum basis of representative cocycles of cohomology generators are the minimum
number of edges associated with paths in the RAG, connecting all the holes boundaries and the
outside boundary. If we consider the hole boundaries and the outside boundary as nodes, and the
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paths in the RAG as edges connecting those nodes, then the minimal length basis of representative
cocycles can be seen as a minimal spanning tree.

We selected as the underline representation combinatorial pyramids due to 2D combinatorial
maps are easily extendable to 3D, where the proposed algorithm could be adapted. The minimal
length cocycle basis can be used as a descriptor of how strong is a shape, with applications to
medicine in measuring strength of bone structures.

In Section 2 a recall about combinatorial pyramids is given. In Section 3 the new algorithm
for computing the minimal length basis of representative cocycles is presented. Then, in Section
4 we show experimental results followed by conclusions and future work in Section 5.

2 Recall: Combinatorial Pyramids

A Combinatorial Pyramid is an Irregular Graph Pyramid where each level in represented by a
Combinatorial Map. The Combinatorial Maps are encoding the topology of the original data.
Every level represents a reduced representation of the level below, and in general of the base level
representing the data in detail. On top level is the minimal topologically equivalent representation
of the initial data.

A 2D combinatorial map is defined by a triplet M = (D,β1,β2) where D is a set of darts and β1

and β2 are two permutations. The intuitive way of understanding this representation is starting
with a graph, we split each edge in two darts and the set of all the darts is named D. Then, β1

works as a connection between the two darts that belongs to the same initial edge. If we have and
edge d that was split in darts d1 and d2, then β1(d1) = d2 and β1(d2) = d1. (See Fig. 1)

Figure 1: Example of a fragment of a combinatorial map. The darts obtained from the edges
around the center vertex are labeled for demonstration.

The second permutation β2 encodes the order of darts around a vertex clockwise. In the
example of the figure for the center vertex the result of applying the second permutation is shown
in the table 2.

Figure 2: Table shows the result of applying the β2 permutation over the darts around the central
vertex in Fig. 1

We can obtain all the darts around a face in counter-clockwise order applying alternatively the
two operations as shown in the Fig. 3. A vertex in a level l of a pyramid represents a set of vertices
in the base level (receptive field). This set of vertices have been contracted or joint to a single one
by successively applying contractions of neighboring similar vertices on every intermediate level
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up to l. After joining or contracting a pair of vertices, the edge in between disappears. In general
after applying the set of contractions in one level a number of edges disappear. The rest of the
edges encodes the topology of the represented data but with possible redundancies. The operation
of eliminating the redundant edges is called simplification. At this point, the remaining edges
survives to the next level and are called bridges. Bridges produces a new edge in the next level,
connecting surviving nodes product of the contraction of its end points. The interested reader can
find more detailed properties and definitions in [11, 13, 2].

Figure 3: Alternative applying the two permutations leads to a traversal of all the darts around a
face.

We call the infinite face to the one that gives all the darts in the outside of the image,
which are bounding the infinite or unknown face. Finally, there is some previous work showing
the pyramid can be constructed with log(m) height in the number of vertices in the base level.
(See [14, 7]).

3 Algorithm to Compute a Minimal Basis for Cohomology

Starting from a white and black image, we first build a combinatorial map which is initialized in
the faces with the color of the respective pixel plus a label identifying the boundary it is adjacent
to. In the case of inside faces, the label is initialized in zero (See Fig. 4). In the figure (b), black
pixels represent inside faces, and the rest of the foreground pixels (no white pixels), are identified
with different colors depending of its adjacent boundaries.

a) b)

Figure 4: Labeling of faces next to boundaries in the initialization step: a) original image b) image
with boundary labels.

In principle, the edges that are allowed to be contracted are edges from the foreground region
only, reducing the number of computations. The aim of the method is to expand boundary labels
until they meet its closest boundary (a cocycle is found) taking into account the moment where a
cocycle basis is obtained (all boundaries are connected with a spanning tree of paths in the RAG).
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Here, similar adjacent vertices1 are the ones that apply to two properties depending on its
labels:

1. Only edges between faces with different labels can be removed, i.e. neighboring vertices with
different labels can be contracted.

2. Different labels that are already connected by a cocycle are not considered different anymore,
i.e. neighboring vertices with different labels that are already connected by a cocycle can
not be contracted anymore2.

In this way, the notion of similar vertices is determined by the values of its labels. We only
consider the gray value of the input image (binary) to identify the foreground region. After the
initial labeling of the foreground region, the decision of what are considered neighboring similar
vertices to be contracted is determined by the conditions described above. Following those rules,
the contractions will be describing expansions of the boundary labels, until they meet in the closest
ones. As a result, the cocycle basis will be made of cocycles with minimum length.

When two faces are contracted, the surviving face will keep the label of the expanded boundary
label or an arbitrary one from the child faces in case of a boundary meeting (cocycle found).
Removals of degree two vertexes are not allowed here, as they are representing different possible
ways of extending the actual paths for the cocycles.

In order to keep track of the future cocycle, every face will save the index of the exit edge for
the path that arrives to it. In the case of a face representing a pixel next to a boundary, its exit
edge will be the one that separates the face with the background. After a contraction, the new
face labeled (boundary label expansion) will be saving the exit edge as the contracted one. Then,
when a cocycle is found we save as a cocycle the meeting edge and the traced exit edges starting
from both meeting faces.

4 Experiments

In this section we show some examples of minimal cocycle basis obtained from test images and
a human silhouette. In figure 5 we show the base level combinatorial map from a sample image.
Edges in red show the ones belonging to the cocycle basis with minimal length computed.

Figure 5: In red the edges belonging to the minimal length cocycle basis of cohomology is shown.

In figure 6 we show the result for an image and its rotated version. Notice that even though
the edges that belong to the cocycle basis changes, the length in the number of edges of the result
remains the same.

1vertices representing a pixel or face, in order to keep the same notation of the figures.
2They are considered the same label from this moment on.
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a) b)

c) d)

Figure 6: Minimal cocycle basis for image in a) and its rotated version c) are shown in b) and d)
respectively. Different colors (red and blue) identifies different cocycles.

Finally, in figure 7 we show an example of a minimal basis of cocycles computed on a human
silhouette. In this case, as the human silhouette does not contain many holes, we consider a
preprocessing step where its convex deficiencies will be the new holes [9]. For doing that, all
points outside the convex hull of the human silhouette, and inbetween the top and the bottom of
the silhouette height, will become foreground (see Fig. 7 b)). In this way, the computed cocycles
with go inside of the original human shape connecting the convex deficiencies through its closest
points (see Fig. 7 c)).

5 Conclusions

In this paper we presented an algorithm to obtain the minimal length basis of representative
cocycles on a combinatorial pyramid from 2D images. We show the use of the algorithm seeking
the minimal cocycles that connects the convex deficiencies of the human silhouette. The new
feature is robust to noise and rotations of the object, and could have applications in areas like
medicine to measure strength of shapes like bones. In future works we will try its extensions to
3D objects taking advantage of the underline object representation based on combinatorial maps.
Finally, we plan to include demonstrations that proves the edges associated to paths in the RAG
connecting all the boundaries are in fact a basis for Cohomology.
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Figure 7: Minimal length cocycle basis computed for a human silhouette with its convex deficiencies
as holes.
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