
Improved Locally Adaptive Sampling Criterion for
Topology Preserving Reconstruction of Multiple Regions

Leonid Tcherniavski, Christian Bähnisch and Hans Meine
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Abstract Volume based digitization processes often deal with non-manifold shapes. Even
though many reconstruction algorithms have been proposed for non-manifold surfaces,
they usually don’t preserve topological properties. Only recently, methods were presented
which—given a finite set of surface sample points—result in a mesh representation of the
original boundary preserving all or certain neighbourhood relations, even if the sampling is
sparse and highly noise corrupted.

We show that the required sampling conditions of the algorithm called “refinement reduc-
tion” limit the guaranteed correctness of the outcome to a small class of shapes. We define
new locally adaptive sampling conditions that depend on our new pruned medial axis and
finally prove without any restriction on shapes that under these new conditions, the result
of “refinement reduction” corresponds to a superset of a topologically equivalent mesh.

1 Introduction

Surface reconstruction from boundary points is a well known problem for which many algorithms
have been proposed. We are interested in algorithms for which topological correctness of the
result can be guaranteed. Recent development has been headed toward guarantees under less
strict assumptions on the sampling points.

In [1] the concept of ε-samples is introduced in order to give a provably correct algorithm for
reconstructing smooth surfaces. A finite set S of sampling points on the boundary is an ε-sampling
if every boundary point b has a sampling point in a distance of at most ε lfs(b), where the local
feature size (lfs) denotes the distance from b to the medial axis (MA). Similar restrictions by the
maximal value of the ratio of the sampling density and local curvature have been made in [3, 2] in
order to prove the topological correctness of the resulting reconstructions. The results proposed
in [7] and independently in [12] allow reconstructions of non-smooth surfaces from noise-corrupted
samples assuming a known global bound on the sampling density. This is based on the weak feature
size (wfs), which denotes the distance between the boundary of the shape and the set of criticals on
the distance transform. In [12], this was explicitly extended to handle the reconstruction of non-
manifold surfaces. Later [11], the assumptions on sampling density were based on a local region
size (lrs), which has the advantage to be a locally adaptive measure based on the boundary points
and the local maxima on the distance transform. The associated algorithm termed “refinement
reduction” deals with highly noise corrupted samplings of non-manifold boundaries and results in
a refinement of the original boundary leading to the well known concept called oversegmentation
in the 2D case.

In this work, we show that the sampling density based on lrs limits the guaranteed correctness
of the reconstruction to shapes having only one maximum on the distance transform in each
connected region. We introduce a new pruned medial axis called homotopical axis and use it to
propose new sampling conditions. Finally, we prove that under these new sampling conditions
the above-mentioned “refinement reduction” algorithm results in a superset of a topologically
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equivalent approximation of the original non-manifold boundary. In this way, we extend the
guaranteed correctness of the reconstruction to any kind of shapes.

The paper is structured as follows: After introducing some preliminary concepts in Section 2,
we propose our new homotopical axis in Section 3 and give new sampling conditions in Section 4.
In Section 5, we recall the “refinement reduction” algorithm [11]. Finally, we discuss the above-
mentioned limitation of the lrs-based approach in Section 6 and give the central proof that our
new sampling conditions lead to a superset of a topological equivalent of the original boundary,
even for arbitrary non-manifolds.

2 Basic Definitions

The focus of this work is the reconstruction of surfaces of multiple regions, given a sampling of
their boundary. So, we do not only consider the 2-manifold surface of a single solid, but a partition
of the 3D space into different regions.

The following definition is adapted from [11]:

Definition 2.1 (Space Partition) In 3D, a space partition R is defined by a finite set of pair-
wise disjoint regions R = {Ri ⊂ R3} such that each region Ri ∈ R is a connected open set and
the union of the closures of the regions covers the whole space, i.e.

⋃
i Ri = R3. The boundary of

the partition is ∂R :=
⋃

i ∂Ri.

In order to investigate the volumetric information about the space partition, we make use of the
well known concept of the distance transform. The reversed distance transform delivers for each
input point the touching points of the maximal inscribed ball with the boundary.

Definition 2.2 (Distance Transform) The distance transform dB of a set B ⊂ R3 is defined as
dB(x) = miny∈B ‖x−y‖. The distance transform is called continuous if B is infinite, and discrete
otherwise. The reversed distance transform is defined as rdB(x) = {y ∈ ∂R|‖x−y‖ = dB(x)}. x is
a local maximum of the distance transform iff ∃ε > 0 ∀x′ : (‖x′ − x‖ < ε) → (dB(x′) < dB(x)).

Since the distance transform is a non-smooth function in general, regular gradient methods cannot
be applied to define the critical points and the steepest ascent on dB . Lieutier [9] extends the
definition of gradients:

Definition 2.3 (Gradient and Criticals [9]) Let Θ(x) be the center of the smallest closed ball
enclosing rdB(x). Then the gradient on x is defined as

∇(x) =
x−Θ(x)

dB(x)

and the set of critical points of ∇ is given by F(R) = {x ∈ R | ‖∇(x)‖ = 0}. More generally,
Fβ(R) = {x ∈ R | ‖∇(x)‖ ≤ β}.

Obviously, limβ→0 (Fβ(R)) = F0(R) = F(R) and β ≤ β′ ⇒ Fβ(R) ⊂ Fβ′(R).
Then ∇ gives the direction of the steepest ascent, i.e. the direction which maximizes the growth

of dB . Note that ∇ is not continuous. However, Lieutier [9] proves that Euler schemes using the
vector field ∇ converge uniformly when the integration step decreases. Integrating ∇ then results
in a continuous flow

C : R+ ×R ,→ R with C(t, x) = x+

∫ t

0
∇ (C(τ, x)) dτ

Throughout our research, the study of volumetric conditions inside the regions is done by
following simple paths. A simple path is characterized by means of the values of the distance
transform along the path:
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Figure 1: left: medial axis, right: our new homotopical axis (illustrated in 2D for simplicity)

Definition 2.4 (Simple Path) A continuous map π : [0, 1] → R3 is also called a simple path.
Further, π is an increasing (strictly increasing, decreasing, strictly decreasing) path on the distance
transform iff dB ◦ π is increasing (strictly increasing, decreasing, strictly decreasing) on [0, 1]
respectively. π with π(0) = x is a steepest path (starting at x) iff ∀t ∈ [0, 1] ∃t′ ∈ R+ : π(t) =
C(t′, x).

In order to investigate which volumetric information about the space partition can be used to
define the new sampling criteria of the boundary, we refer to the well known concept of a complete
shape descriptor, the medial axis:

Definition 2.5 (Medial Axis [4]) The medial axis of a set B ⊂ R3 is defined as MA = {x ∈
R3 |#(rdB(x)) > 1}.

Let Ω(x, ε) be the intersection of an open ball placed on x with radius ε and MA. x is a local
maximum on MA iff ∃ε > 0 ∀x′ ∈ Ω(x, ε) : dB(x′) > dB(x).

3 Homotopical Axis

We introduce the homotopical axis as a subset of the medial axis (cf. Fig. 1), bounded by i) criticals
of the distance transform ( and ) and ii) points which can be reached by steepest ascent starting
on infinitesimal environments of criticals (points on thick line ):

Definition 3.1 (Homotopical Axis) The homotopical axis(HA) is defined as:

HA = lim
β→0+

Gβ(R) where

Gβ(R) = {x ∈ R| ∃t ∈ R+∃y ∈ Fβ(R) : x = C(t, y)}.

Gβ(R) is the smallest superset of Fβ that contains all points reachable via the flow C; this
concept and notation has been introduced by Chazal and Lieutier [5] together with the proof of
the following lemma:

Lemma 3.2 (Homotopy Type of Gβ [5]) Let O be a bounded open set. Then for any β > 0,
Gβ(O) has the same homotopy type as O.

This has the following implications relevant for our work:

Corollary 3.3 (Homotopy Type of HA on O) Let HAO be the homotopical axis of a bounded
open set O. Then, since HAO is defined with β > 0, HAO has the same homotopy type as O.

Corollary 3.4 (Homotopy Type of Gβ(R)) Since R is the union of pairwise disjoint bounded
open sets, then for any β > 0, Gβ(R) has the same homotopy type as R

Corollary 3.5 (Homotopy Type of HA) Since HA is defined with β > 0 and Gβ(R) has the
same homotopy type as R (corrolary 3.4), HA has the same homotopy type as R.
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Notice that while the medial axis (MA) is a complete shape descriptor, an infinite class of different
smooth and non-smooth shapes can have the same homotopical axis.

If β is small enough, the closed set Fβ(R) can also be seen as the union of connected components
Fβ(x) containing at least one critical x ∈ F0(R) each.

The gradient on criticals is zero, consequently the steepest path starting on an arbitrary point
in space stays in the critical reached first. For the definition of our new feature size, we will
need the set of local maxima that are reachable by steepest ascent. In order to be able to escape
critical points (where the gradient vanishes) and include maxima that can only be reached by
passing other criticals, we use the following recursive definition, starting in the ε environment of
an arbitrary point x ∈ R3:

F0
β(R, x) =

{
y ∈ F0(R) | ∀ε ∈ R+ ∃y′ ∈ R3 : ‖y′ − x‖ < ε ∧ y = lim

t→∞
C(t, y′)}

Fi
β(R, x) =

{
y ∈ F0(R) | ∃y′ ∈ Fi−1

β (R, x) ∃y′′ ∈ Fβ(y
′) : y = lim

t→∞
C(t, y′′)

}

Finally, the set of all criticals reachable by steepest paths starting on an arbitrary point x ∈ R3 is
given by F∞(R, x) = limβ→0+ F∞

β (R, x).

4 Sampling Criteria

The proof of correctness of previous surface reconstruction algorithms [1, 2] demanded a local
sampling density based on the so-called local feature size (lfs). The local feature size lfs(b) of a
boundary point b is simply its shortest distance to the medial axis. Since the local feature size is
zero at non-smooth boundary points (e.g. corners), all reconstruction algorithms which require a
sampling density based on the lfs can only be applied to smooth surfaces, as they need an infinite
number of sampling points at non-smooth surface parts.

A weaker condition on sampling density has been proposed to recover topological properties of
a bounded set [6]. The so-called weak feature size is defined as the distance between the boundary
and the set of criticals. Even though this feature size is suitable for non-smooth boundaries, the
definition is still global for the whole boundary.

In [11], the sampling constraints are based on volumetric conditions of every region yielding
local, variable feature sizes for boundary points:

Definition 4.1 (Local Region Size [11]) Let b ∈ ∂R be a boundary point of R. Let H(R, b) ⊆
F∞(R, b) contain all local maxima of F∞(R, b). Then the local region size (lrs) of a boundary
point b is defined as:

lrs(b) = min
y∈H(R,b)

dB(y)

The local region size is based on the nearest center of the greatest of all maximal inscribed balls in
each adjacent region. This has two advantages. First, the sampling density of corners is no longer
infinite. Second, since any number of surrounding regions are taken into account, this definition
is also suitable for non-manifold surfaces (i.e. junctions).

Definition 4.2 (Stable Sampling [11]) Let ∂R be the boundary of a space partition R = {Ri ⊂
R3} and S ⊂ R3 be a finite set of points. Then S is said to be a stable sampling of ∂R, if
∀b ∈ ∂R ∃s ∈ S : ||b− s|| < 1

2 lrs(b) and ∀s ∈ S ∃b ∈ ∂R : ||b− s|| < 1
2 lrs(b).

Obviously, the volumetric information between the local maxima in each region is lost in samplings
based on the local region size. Consequently, the surface parts corresponding to narrowings of the
solid are undersampled.

We extend lrs and introduce the local homotopical feature size (lhfs) based on the homotopical
axis. In particular, we take the smallest distance value of the reachable local maxima and the
distance to HA into account (cf. arrows in Fig. 1):
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Definition 4.3 (Local Homotopical Feature Size) Let b ∈ ∂R be a boundary point of R and
x ∈ HA be its nearest point in HA. Then the local homotopical feature size of a boundary point b
is defined as

lhfs(b) = min

(
‖b− x‖, min

y∈H(R,b)
(dB(y))

)

Reconstruction algorithms which require a sampling based on the local homotopical feature
size will then be able to handle a locally adaptive sampling density and non-smooth shapes.

Now we define the sampling conditions in such a way that all sampling points are covered
by the lhfs-dilation of the boundary. The lower bounds on the sampling density affect the mesh
construction and obviously restrict the edges to a certain size.

Definition 4.4 (Locally Stable Sampling) Let ∂R be the boundary of a space partition and
S ⊂ R3 be a finite set of points. Then S is said to be a locally stable sampling of ∂R, iff
∀b ∈ ∂R ∃s ∈ S : ||b− s|| < 1

2 lhfs(b) and ∀s ∈ S ∃b ∈ ∂R : ||b− s|| < 1
2 lhfs(b).

5 Refinement Reduction

In this section we recall the definition of the “refinement reduction” algorithm introduced in [11].
Let S ⊂ R3 be a finite set of points. Then the convex hull of up to four points s0, ..., sn ∈ S is
called an n-simplex. Any simplex σ1 based on the convex hull of a subset of the points defining
the simplex σ2, is called a face of σ2 and σ2 is called a coface of σ1. A face and a coface a called
proper if their dimensions differ by exactly one. A simplex is called centered, if it contains its
circumcenter. A simplex is called equivocal, if its circumball contains an other point of S. Notice,
these definitions are equivalent to the definitions given in [8]. If rσ and rτ are the circumradii of
σ and τ then we write σ < τ iff rσ < rτ . Now a (simplicial) complex K is a set of simplices such
that any face of a simplex in K is also a simplex in K.

Now, if each region of the space partition represents an object of the real world, the recon-
struction task is to reconstruct a second space partition from a discrete set of sampling points of
the first partition, such that the two partitions share as much as possible properties of the objects
and the relations between them. The following definitions are adapted from [11].

Definition 5.1 (Reconstruction) Let K be a simplicial complex based on a set of points S ∈ R3.
Then a simplicial complex partition D is a set of disjoint subsets Di of K, such that the regions
|Di| covered by the sets Di define a space partition |D| := {|Di|}. In case of K being a Delaunay
triangulation, the subcomplex ∂D ⊂ D, ∂D := K \

⋃
i Di is called the result of a reconstruction.

Then, |∂D| is called the reconstructed boundary, and the pairwise disjoint components Di interiors
of reconstructed regions. For each Di, the underlying space |Di| is the reconstructed region. A
simplex σ is called a boundary simplex if at least two of its cofaces lie in different interiors of
reconstructed regions. Given the radii ri and rj of the greatest simplices in the regions |Di| and
|Dj | we write |Di| < |Dj | iff ri < rj,

In order to avoid degenerate cases of the Delaunay triangulation, the points in S are assumed to
be in general position, which means that no three points are collinear, no four points are cocircular
and no five points are cospherical. In addition to that, we assume that no two triangles of the
Delaunay triangulation have the same circumradius.

In order to investigate the properties of the resulting reconstruction let us first recall the
refinement reduction algorithm proposed in [11]. Let a simplex be called simple if it has exactly
one proper coface. Let a simplex σ be called critical if more than one proper face contains a
further point of σ in its circumball. We call such faces the critical faces.

Let σ be a boundary simplex between two neighbouring reconstructed regions Di, Dj , and let
rσ denote its circumradius. Further let τi ∈ Di and τj ∈ Dj be the centered tetrahedra with
greatest circumradius rτi and rτj respectively in the interiors of the reconstructed regions. Then
σ is called an undersampled simplex if 2rσ ≥ rτi or 2rσ ≥ rτj .
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(a) (b) (c)

Figure 2: (a): original surface; (b): irreducible refinement; (c): stable refinement

The refinement reduction algorithm
Given a sampling S of the boundary of a partition of the space,
1. compute the 3D Delaunay triangulation K of S
2. Delete all centered tetrahedra from K.
3. Delete all simple equivocal, not critical simplices.
4. Delete all simple criticals in lexicographic order with respect to their circumradius.
5. Delete all undersampled simplices lexicographically according to pairs (rτ ,−rσ) in increasing
order, where rσ is the circumradius of the undersampled simplex σ, and τ is the tetrahedron with
the greatest circumcenter rτ in the reconstructed region.

6 Stability of Reconstruction

The contribution in [11] is that the refinement reduction algorithm results in a refinement of the
original space partition:

Definition 6.1 (Refinement [11]) Given the space partition R, the continuous distance trans-
form d∂R on R, the stable sampling S, and the discrete distance transform dS on S, let x be the
local maximum of d∂R and H(S, x) be its set of reachable local maxima on dS. Then, we call
y = argmaxy′∈H(S,x) dS(y

′) the associated discrete maximum of x.
The discrete complex partition D is called a refinement of R, if for any two local maxima x1, x2

of d∂R lying inside different regions Ri1 , Ri2 of R, the discrete maxima y1, y2 being associated to
x1, x2 lie in different reconstructed regions Di′1

, Di′2
of D.

As we may see on Fig. 2 (b), the reconstruction is a refinement of the original region Fig. 2 (a),
but its topology deviates from the original. Any further deletion of a simplex destroys the neigh-
bourhood relation. The narrowing was so sparsely sampled that the resulting mesh intersects the
homotopical axis. The goal of a topologically correct reconstruction is to preserve all topological
properties. So the refinement of a space partition must be reducible to a topological equivalent of
the original space partition. The reconstruction of locally stable sampled surface based on lhfs is
demonstrated in Fig. 2 (c).

Definition 6.2 (Stable Refinement) Given a space partition R with boundary ∂R and a sam-
pling S of ∂R. Let HA be the homotopical axis of ∂R. Then a refinement D built on S is called
a stable refinement of R, if the underlying space of its boundary ∂D does not cut HA.

In the following, we show that the result of the refinement reduction algorithm is reducible to
stable refinement if the boundary sampling is locally stable as defined in 4.4 and that a stable
refinement is reducible to a topologically correct reconstruction.

The main idea of the proof is based on two facts. First, we already have a refinement which
means that all maxima are correctly separated and all decreasing paths starting on the homotopical
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axis meet the reconstructed boundary. Second, increasing paths starting in the homotopical axis
stay in the homotopical axis. The outline of the resulting proof is as follows: After we have
treated the arising trivial cases in I, in II we cover the case of the homotopical axis cutting the
reconstructed boundary. We show that all increasing paths from the cutting point to maxima of
different reconstructed regions belong to the homotopical axis of one original region.

So, removing the cutting simplex will preserve the topological properties of the original region.
Assuming the opposite will lead to a contradiction. The result of III is that every path to the
different original region goes through the boundary and needs to be partly decreasing. In contra-
diction, IV shows that there is an increasing path between the cutting point and the maximum
of neighbouring region, which falsifies the assumption.

Theorem 6.3 (Stability of the Minimal Refinement) Let S be a locally stable sampling of
∂R and D be the result of refinement reduction with no undersampled simplices in the boundary
∂D of D. Then the boundary ∂D contains the boundary of a stable refinement.

Proof: We need to show that removing all simplices of ∂D which cut or touch the homotopical
axis result in a space partition which is still a refinement.

I The result of refinement reduction is a minimal refinement D without undersampled simplices.
Obviously, if D is a stable refinement, the theorem holds. So let D not be a stable refinement.
Let |∂D| be the underlying space of ∂D and HA be the homotopical axis of ∂R, then |∂D|∩HA =
X 2= ∅.

Let |D| and |D′| be two reconstructed regions such that there is an x ∈ X in the common
boundary of |D| and |D′|. There are two cases to consider: First, at least one reconstructed region
contains no continuous maximum, then merging the reconstructed regions does not destroy the
refinement condition. Thus, we only have to consider the second case: each reconstructed region
contains at least one continuous maximum.

II All continuous local maxima are also local maxima of MAT ([13] Observation 2.6) and so
are in HA. Let y ∈ |D| and y′ ∈ |D′| be two nearest local maxima on HA reachable by steepest
paths starting on x. We have to show that there is a path π in |D| between x and y and a path
π′ in |D′| between x and y′ with π,π′ entirely contained in HA.

III Let us assume that there is no such π. Since for each continuous region R the intersection
HA ∩ R is continuous (corrolary 3.5), x and y must belong to different continuous regions. It
follows that any path between x and y must cross ∂R. Therefore, for all paths πx,y in |D| between
x and y there is a t such that πx,y(t) = b ∈ ∂R and dS(b) <

1
2 lhfs(b), since by definition of the

locally stable sampling ∀b′ ∈ ∂R ∃s ∈ S : ‖b′ − s‖ < 1
2 lhfs(b

′).
IV Let b be the nearest boundary point to x, then, since x ∈ HA, d∂R(x) ≥ lhfs(b) and

dS(x) ≥ 1
2 lhfs(b). But by construction of the refinement reduction algorithm, the circumradius

of the previously deleted simplices in D are greater than dS(x), and so there exists a path πx,y

between x and y through the circumcenters of the deleted simplices which fulfills ∀t ∈ [0, 1] :
dS(π(t)) ≥ dS(x) ≥ 1

2 lhfs(b), which contradicts the previous paragraph.
Obviously the same is valid for π′ and for all x ∈ X which are also in the boundary of |D| and

|D′|. Since π and π′ exist, there is a continuous path between y and y′ in HA. Consequently, the
local maxima of the continuous distance transform lying inside D and D′ lie in the same contin-
uous region. Then, after removing the simplex containing x, no local maxima lying in different
continuous regions will lie in one reconstructed region, and the resulting discrete space partition
is still a refinement. !

The consequence of theorem 6.3 is that neither elementary thinning nor undersampled merge
result in a reconstructed region containing points of the homotopical axis belonging to different
continuous regions.

In fact the stable refinement does not make any conclusions about the reconstructed regions
which do not contain any points of HA. Such regions are often called voids, since they do not
contribute to the topologically correct separation of the space. It is possible to get rid of these
voids by reducing the refinement incrementally into the desired result using so-called “Euler Op-
erators” [10].
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7 Conclusions

We illustrated that the result of the “refinement reduction” algorithm does not correspond to a
superset of a mesh which is topologically equivalent to the original boundary, even if the sampling
conditions based on lrs are fulfilled. We introduced the concept of a homotopical axis that is
a homotopy equivalent subset of the medial axis and used this to propose the local homotopical
feature size (lhfs), for the first time supporting locally adaptive sampling of arbitrary non-manifold
surfaces. Finally, we proved that the “refinement reduction” can be reduced to a topologically
equivalent approximation of the original boundary under new sampling conditions based on the
lhfs.
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