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Abstract The goal of this contribution is to present an application of discrete Morse theory
to tracking features in image sequences. The proposed algorithm can be used for tracking
moving figures in a filmed scene, for tracking moving particles, as well as for detecting canals
in a CT scan of the head, or similar features in other types of data. The underlying idea
which is used is the parametric discrete Morse theory presented in [13], where an algorithm
for constructing the bifurcation diagram of a discrete family of discrete Morse functions was
given. The original algorithm is improved here for the specific purpose of tracking features
in images and other types of data, in order to produce more realistic results and eliminate
irregularities which appear as a result of noise and excess details in the data.

1 Introduction

In this paper we would like to present an application of a parametric version of discrete Morse the-
ory to image analysis. In [13], an application of discrete Morse theory was proposed, which results
in an algorithm for constructing a discrete version of the bifurcation diagram of a1-parametric
family of Morse functions. In the smooth case, a 1-parametric family ft :M → R, t ∈ I, where
I ⊂ R is an interval, of smooth functions on a smooth manifold M consists in the generic case of
Morse function for all values of t, except maybe finitely many values t1, . . . , tk, where bifurcations
occur. The changes of the critical points of the functions ft as t increases are traced in the bi-
furcation diagram, where merges and deaths of critical points, as well as births of new ones occur
precisely in the bifurcation points ti, i = 1, . . . , k.

This phenomenon has potential applications in many fields, in particular it is useful in topo-
logical data analysis and image analysis. Critical points of the functions ft often correspond to
important features in the data which we would like to trace as t increases. For example in grayscale
images, a figure corresponds to a local maximum of the grayscale function, a white feature within
a dark area corresponds to a local minimum, and a saddle of the grayscale function can come for
example from a joint connecting to bigger elements in a large construction or to a point where two
lighted areas in a dark scene meet. In a sequence of images, figures and other features can thus
be traced by following the critical points in the bifurcation diagram of the grayscale function. In
the case of topological data analysis, values of the functions ft are given only in a specific (usually
finite) set of points from the domain M , or the domain itself is discrete, as in the case of digital
images where the grayscale function associates a value to each pixel. In addition, only a finite
sequence of function fti is considered. The smooth phenomenon described above can therefore
not be applied directly.

There are many approaches to extending Morse theory to the discrete setting, in particular for
the purpose of topological data analysis, for example in [6], [5], [4], [2], or [17]. Among them the
discrete Morse functions of Robin Forman [8] , [9] are well established and have been successfully
used in many domains. A discrete Morse function is defined on a cellular complex. In the case of
digital images, the natural cell structure is that of a cubical complex, but in the case of general data
a cell decomposition of the domain (for example a triangulation) must first be constructed. The

27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51389344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: A discrete Morse function on the torus, its discrete vector field V , and a V -path

function values, which are initially given only in the vertices of the complex must then be extended
to a discrete Morse function on the whole domain, which can be done using the algorithm of [12].
Morse functions obtained from data, for example from grayscale images, can have very many
critical points corresponding to unwanted (or unimportant) details or to noise, and an additional
advantage of Forman’s discrete Morse theory is that it contains a simple procedure for discarding
access critical points, similar to canceling pairs of critical points in smooth Morse theory. By
introducing a persistence level p, and canceling pairs of critical points with values differing by less
than p, unwanted details as well as noise can be reduced. As p increases, only the critical points
which correspond to the relevant features persist.

An algorithm for constructing the bifurcation diagram of a 1-parametric family of discrete
Morse functions has been proposed in [13]. A drawback of this algorithm in the context of figure
and feature tracking is that, since canceling is performed at each level t separately, the resulting
paths in the bifurcation diagram tend to appear discontinuous. For example, a figure in an image
is a dark patch on a lighter background with similar grayscale values, on which the grayscale
function is close to constant. As a result, many of the cells which form the region are critical and,
after canceling, they all collapse to a single critical point. As t varies and the figure moves this
surviving critical cell may jump within the region.

In this contribution we first review the basics on Forman’s discrete Morse functions, describe
the parametric version introduced in [13] and shortly review the algorithm for reconstructing the
bifurcation diagram of a 1-parametric family of discrete Morse functions (section 2). We then
discuss a canceling strategy, suitable for feature tracking in image analysis (section 3). Finally,
applications and further work are discussed (section 4).

2 Discrete Morse functions

A discrete Morse function, as defined by Robin Forman in [8], [9], is a function F :M → R defined
on a regular cell complex M a regular complex M that associates a value F (σ) ∈ R to each cell
σ ∈ M such that F increases with dimension, except possibly in one direction: for every σk ∈ M

• F (τk−1) ≥ F (σk) for at most one face τ < σ

• F (τk+1) ≤ F (σk) for at most one coface τ > σ.

The pairs (σk, τk+1), such that σ < τ and F (σ) > F (τ) contain the regular cells. The unpaired
cells are critical with index equal to the dimension of the cell.

For the purpose of presentation, a regular pair (σk, τk+1) is often denoted by an arrow pointing
in the direction of function descent, as in [10], and the collection of all regular pairs forms the
discrete gradient vector field V associated to the function F . A sequence of regular pairs forming
a path along which the function values decrease is a V -path. It is a well known result of Forman,
that a partial pairing V on a finite regular cell complex M is the discrete gradient vector field of a
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Figure 2: The remaining critical point corresponding to the top part of the scull after canceling,
represented by a red point, jumps from slice to slice

discrete Morse function if and only if its V -paths contain no cycles. The discrete gradient vector
field captures the qualitative properties of the function F .

A parametric discrete Morse function is a family Fti , i = 0, . . . , n of discrete Morse functions on
a M . In [13] an algorithm for connecting the critical cells of the functions Fti among the slices ti,
and constructing the bifurcation diagram of such a family is given. The basic idea of the algorithm
is to extend the discrete vector fields of the Morse functions Fti slice by slice to a discrete vector
field on M × I in such a way, that all critical cells in slice ti are paired backwards into the strip
M × [ti−1, ti]. In the extended discrete vector field there are no critical cells, except the initial
ones in slice t0. A critical cell τ in M × {ti} is then connected to a critical cell τ ′ in M × {ti−1} in
the bifurcation diagram if there is a V -path in the extended discrete vector field connecting them.
It can be shown [13] that if Fti are good enough cellular approximations of smooth functions on
|M |, belonging to a smooth generic 1-parametric family, then the bifurcation diagram obtained in
this way introduces no new unwanted connections (although some connections may be lost).

3 Canceling

In smooth Morse theory two critical cells of consecutive indices that are connected by only one
gradient path may be canceled, producing a simpler Morse function with fewer critical points
(this can be illustrated as straightening out unnecessary bumps in the graph). In discrete Morse
theory, canceling is implemented by a very simple process: a pair of critical cells of consecutive
dimensions, connected by only one V -path, is canceled simply by reversing all arrows along this
single path. Since the new discrete gradient vector field has no cycles (due to the condition of a
single V -path), it belongs to a discrete Morse function. Canceling is done up to a given persistence
level p, that is, pairs of critical cells satisfying the necessary condition on V -paths can be canceled
only in values differ by less than p.

In the case of image analysis, there are several reasons for canceling. The first is noise, which
is generally present. Because of this, canceling up to a persistence level corresponding to the
estimated noise level is a good idea. The second reason for canceling is the presence of larger
regions with a uniform shade of gray, where the grayscale function is almost constant. Such
regions contain many critical cells (in the extreme case all the cells can be critical), which all
correspond to the same feature in the image.

For example, Figure 3 shows a sequence of CT scans of the head. As a result of canceling,
only one critical point corresponds to the whole top part of the scull, but, since the canceling is
performed separately in each slice, this critical point jumps across the arch of the scull from slice
to slice.

This implies that in the task of feature tracking in image sequences it is reasonable to cancel
critical cells in each slice separately, in order to reduce the number of critical cells, if possible, to
the number of features that are of interest. As mentioned above, this introduces a new problem –
the critical cell that is traced in the bifurcation diagram tends to jump around a uniform region
as it moves from slice to slice, as in Figure 3. In order to eliminate this problem, we store for
each critical cell τ which survives after canceling in some slice ti also all the critical cells that
have been canceled in the process and, in the end, belong to the descending disk of τ (that is,
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Figure 3: Tracking the path of a skier, the smaller square denotes the original critical points after
canceling, and the larger square the path resulting from the modified algorithm

are connected to τ by a V -path beginning in the boundary of τ , [11]). All these could just as
well represent the same feature as τ if the order of canceling had been different. In other words,
instead of representing a feature in the slice ti by the one surviving critical cell τ , we represent it
by a collection V (τ) of V -paths beginning in the boundary of τ .

After the bifurcation diagram is constructed and τ is connected to critical cells in other slices,
a path τ = τ0, τ1, τ2, . . . , τn is optimized in sense that it seems to describe the smooth movement.
A representative ri for τi is chosen from the set of cells V (τi) for each time slice i using algorithm
based on a local optimization. First we define ri = τi for each i. Next we move through the path
several times and at each step optimize the choice of the representative ri as follows: fixing ri−1

and ri+1 the representative ri is chosen such that max(D(ri−1, ri), D(ri, ri+1)) is minimal. Here
D(x, y) denotes the Euclidean distance between points x and y. In other words the algorithm
minimizes the maximal distance between the representative ri and its neighbors, which creates a
sense of a smooth movement.

4 Applications and further work

We have tested the algorithm on image sequences from three different domains. The original
motivation for this work came from an attempt to use the algorithm of [13] for tracking a moving
figure in a movie. The path produced by the algorithm of [13] was irregular, it tended to jump
from point to point within the area representing the figure and even its surroundings. Figure 4
shows the results of the original and the modified algorithm applied to a movie showing a skier
skiing down a mountain face. The original critical point corresponding to the figure of the skier
produced by the original algorithm of [13] is framed by a smaller red square, and the path produced
by the modified algorithm is framed by a larger white square. In general, the path new path is a
much better approximation of the skiers path down the slope.
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Figure 4: Tracking the path of a superparamagnetized colloid particles in water controlled by an
external magnetic field, the smaller circle denotes the original critical points after canceling, and
the larger square the path resulting from the modified algorithm

The second domain is a series of movies taken in experiments conducted at the at the Depart-
ment of Complex Matter at the Josef Stefan Institute in Ljubljana, Slovenia, in the context of
a research leading to simulating the dynamics of atoms on surfaces [14]. The algorithm of [13]
was applied to a sequence of images taken by an optical microscope showing the interaction of
superparamagnetized colloid particles in water controlled by an external magnetic field. On figure
4 the moving particle is tracked using the original (smaller white circle) and modified (big white
square) algorithm.

The third image domain the sequence of CT scans of the head, a part of which is shown on
Figure 3. The algorithm was used to detect and follow canals and cavities within the scull. The
green dot in the figure shows the path of the single remaining critical point representing the top
part of the scull, produced by the modified algorithm.

The algorithm was also used in artificial intelligence in machine learning where a robot was
taught the concept of occlusion by learning from bifurcation diagrams arising from images taken
by an onboard camera [15],[16].

We have not addressed the question of the persistence level p systematically. In particular,
persistence barcodes or diagrams [1], [7], could be used as a mechanism for determining a suitable
choice of persistence level. In this context, 1-parametric families of persistence diagrams have been
introduced [3] which offer a framework for constructing discrete bifurcation diagrams.
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[11] G. Jerše and N. Mramor Kosta, Ascending and descending regions of a discrete morse func-
tion, Computational Geometry 42 (2009), no. 6-7, 639 651.

[12] H. King, K. Knudson, N. Mramor Kosta, Generating discrete Morse functions from point
data, Exp. math. 14 (4) (2005) 435–444.

[13] H. King, K. Knudson, N. Mramor Kosta, Birth and death in discrete Morse theory, available
at arXiv:0808.0051v1 (2007).
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[16] J. Žabkar, I. Bratko, G. Jerše, J. Prankl, M. Schlemmer, Learning qualitative models from
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