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Breathers in a system with helicity and dipole interaction

B. Sánchez-Rey, J. F. R. Archilla, and F. Palmero
Departamento de Fı´sica Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012-Sevilla, Spain

F. R. Romero
Facultad de Fı´sica, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012-Sevilla, Spain

~Received 31 January 2002; published 3 July 2002!

Recent papers that have studied variants of the Peyrard-Bishop model for DNA, have taken into account the
long range interaction due to the dipole moments of the hydrogen bonds between base pairs. In these models
the helicity of the double strand is not considered. In this paper we have performed an analysis of the influence
of the helicity on the properties of static and moving breathers in a Klein-Gordon chain with dipole-dipole
interaction. It has been found that the helicity enlarges the range of existence and stability of static breathers,
although this effect is small for a typical helical structure of DNA. However, the effect of the orientation of the
dipole moments is considerably higher with transcendental consequences for the existence of mobile breathers.
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I. INTRODUCTION

A great deal of attention has been paid to the interp
between geometry and nonlinearity in locating problems
recent years. The relationship between geometry and no
earity has an important role in the functions of some biom
ecules, such as DNA, where the localization of energy
been put forward as a precursory mechanism of the trans
tion bubble @1#, and moving localized excitations as
method of transporting information along the double stra
@2#.

The fact that hydrogen bonds that link each pair of ba
in DNA have a finite dipole moment, has brought about
introduction of models@3–6# with long range dipole-dipole
interaction. Apart from its theoretical interest, this interacti
becomes relevant when the secondary structure of DNA
considered. The shape of the molecule can influence the
calization and transport properties of energy, which
thought to play a biological function@7#. Some of these mod
els @3# study the effects of the curvature in a chain of no
linear oscillators using the discrete nonlinear Schro¨dinger
equation. Other models consider Klein-Gordon systems
study kinks@4#, breathers in curved chains@5# or breathers
with two competing interactions@6#. However, all these
models with long range interaction fail to take into accou
the peculiar helicoidal structure of the DNA chain, althou
this has been considered in some models@8# without the
dipole interaction.

In this paper, we study the effect of helicity on the pro
erties of breathers in a Klein-Gordon model with dipo
dipole interaction. These periodic nonlinear localized os
lations in discrete systems are very localized excitations
appear as a consequence of the nonlinearity and discrete
of the system@9#. They are specially suitable for biomo
ecules when considering excitations that involve a few un
that is, far from the continuous limit. They can be static b
under certain conditions, also move and transport ene
along the system@10#.

We have found that the introduction of helicity enhanc
the stability of static breathers, although this effect is re
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tively small for the typical helicoidal structure of the DNA
On the other hand, the profile of the static breathers and
properties of moving ones are strongly dependent on
relative orientation between the dipole moments.

II. THE MODEL

The model is inspired by the primary structure of DNA
with dipole moments perpendicular to the helix axis, a
where the stretching of the hydrogen bonds within base p
is described as a variation of the dipole moments. More
tailed justification of the model can be found in@6#.

We denotefn the angle of then dipole with respect to a
reference axis perpendicular to the helix axis. Then,
angle between the nearest neighboring dipoles isu tw5fn
2fn21. We have considered this neighboring angle const
along the chain, and it will be called the twisting angle. Thu
fn1m2fn5mu tw , and, therefore, 2p/u tw dipoles are
needed to complete a turn of screw. In DNA, for examp
the twisting angle is 36° and a turn of screw requires
base pairs. Figure 1 shows a sketch of the model, whe
can be appreciated that the system of dipoles have a hel
dal structure.

FIG. 1. Sketch of the model at equilibrium. The arrows rep
sent the dipoles moments, perpendicular to the helix axis.
©2002 The American Physical Society01-1
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In the appropriate dimensionless variables, the Ham
tonian of our system becomes

H5 (
n51

N S 1

2
u̇n

21V~un!1
1

2
J (

m5n2N/2

n1N/2
unum

un2mu3

3cos@u tw~n2m!# D , ~1!

whereN is the number of variables. The variables$un%n51
N ,

whereun6N5un , represent, in the context of the Peyrar
Bishop model for DNA@1#, the transversal displacements
the two complementary nucleotides in thenth pair with re-
spect to the molecular axis. In our model, they describe
stretching of the dipoles with respect to their equilibriu
lengths.V(un) is the on-site potential, which, in DNA mod
els, describes the hydrogen bonds linking the two bases,
the parameterJ measures the strength of the long ran
dipole-dipole interaction. We have chosen the on-site po
tial as the Morse potential, given by

V~un!5 1
2 ~e2un21!2. ~2!

The reason for this, is that it is a suitable potential for re
resenting chemical bonds, being asymmetric, with a h
part, modeling the repulsion between atoms or molecu
and a soft part that becomes flat, modeling the breakag
the bond.

The dynamical equations become

ün1V8~un!1J (
m5n2N/2

n1N/2
cos@u tw~n2m!#

un2mu3
um50, ~3!

wheren51, . . . ,N. To study the linear modes of the syste
we replaceV8(un) in Eq. ~3! with the linear termun , which
implies that the time has been scaled so that the linear
quency v051. Considering solutions of the formun
5eiqn2 iwt the following dispersion relation is obtained:

wk5A112J (
m51

N/2
cos~mu tw!

m3
cos~mqk!, ~4!

where qk52pk/N, with k51, . . . ,N due to the periodic
boundary conditions.

The variation of the phonon band with the helicity
shown in Fig. 2, where the frequencies of the linear mo
are represented as a function of the twisting angle,u tw , for a
fixed value of the coupling parameterJ50.1. The effect of
the twisting is a narrowing of the phonon band, which w
enhance the range of existence and stability of the breath
This has been confirmed numerically.

III. BREATHER EXISTENCE AND STABILITY

We have studied the existence and stability of breather
this model using the standard numerical methods descr
in Ref. @11#.

The Morse potential is a soft potential with the cons
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quence that the frequency of a breather has to be lower
the linear frequencyv051. Thus, we have chosen,vb
50.8 so that the nonlinear effect will be significant but o
the other hand not overtly strong, as the nonlinearities
DNA are thought to be weak.

First of all, the helicity influences the breather profile. A
is shown in Fig. 3, for a fixed value of the coupling param
eterJ, the increase of the twisting angle produces a transit
from a zigzag profile~the nearest neighbor oscillating in an
tiphase! to a bell profile ~all dipoles oscillating in phase!.
This effect follows from the spatial profile of the phono
state with the lowest frequency since the breather freque
is below the phonon band, and all the higher harmonics
way too high to be relevant. Foru tw,p/2 the interaction is
effectively ‘‘antiferromagnetic,’’ which leads to staggere
phonons at the lower band edges. In the same way foru tw
.p/2 a ‘‘ferromagnetic’’ interaction is present, which lead
to a nonstaggered phonon at the lower band edge.
breather bifurcates from the lower band edge phonons
thus retains the property of the phonon structure. Foru tw
5p/2 the system separates into two noninteracting sub
tices: even and odd sites. As a result, in this case, the ne
neighbors are at rest and the odd site sublattice remains
excited.

One-site breathers are stable at low coupling as w
proved by Aubry@12#. For any value of the twisting angle
u tw,90° they can be continued from the anticontinuo
limit till vb enters the phonon band. Just before the brea
disappears, it becomes unstable due to the occurrence

FIG. 2. Effect of helicity on the breadth of the linear spectru
The curves represent the lower and higher limits of the pho
band as a function of the twisting angle in degrees for fixed c
pling parameterJ50.1. w is in dimensionless units.

FIG. 3. Profiles of the one-site breather when twisting is
creased for fixed couplingJ50.1 and Morse potential. Dimension
less units.
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harmonic bifurcation in the evolution of the Floquet eige
values. The increase of the twisting enhances the stabilit
is shown in Fig. 4~circles!. This can be understood if w
consider only the nearest neighbor interaction~NNI!. Then
the influence of helicity on the stability of the breathe
could be described by an effective couplingJe f f5J cosutw .
The one-site breather without twisting loses its stability fo
coupling value ofJc

0 . With twisting and only NNI this would
occur forJc5Jc

0/cosutw ~dash lines in Fig. 4!, which concurs
with the numerical results.

The two-site breather, which consist of two neighbori
oscillators excited in phase, is also stable at low coupli
This can be understood in terms of Aubry’s band theory@12#.
When coupling is increased, a bubble of instability appe
due to Krein crunches between the phonon band eigenva
and a localized eigenvalue of the Floquet operator. If
continue increasing the coupling the double breather d
nitely becomes unstable due to the occurrence of a sub
monic bifurcation. Again, the effect of the twisting is to e
large the range of stability toward higher values of t
coupling parameter~full circles in Fig. 4!. This suggests tha
twisting might be a way to control the stability of the breat
ers in real systems.

We have not considered the two-site breather in antiph
because it coincides with the one-site breather with zig
profile, i.e., the Newton method converges to the same s
tion if we start at the anticontinuous limit with one nonline
oscillator or with two nearest neighbor oscillators in a
tiphase.

A rather different situation is the one withu tw.90°. First,
the one-site breather is always stable until it disappears.
ond, the two-site breather is unstable at low coupling
becomes stable just before its extinction. This behavior
important consequences for the mobility of these breather
shown in the following section.

For the sake of thoroughness, we have also studied
effect of twisting with a hardf4 potential V(un)5un

2

11/4un
4 , and a breather frequencyvb51.2. Qualitatively the

results are similar except for the fact that breathers w
u tw,90° and breathers withu tw.90° exchange their prop
erties.

FIG. 4. Range of stability of the one-site~circles! and two-site
~full circles! breathers as a function of the twisting angle in degre
Jc is the maximum value of the coupling parameter for which
breather is stable. The dashed lines represent the values calcu
within the NNI approximation.Jc is in dimensionless units.
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IV. MOBILE BREATHERS

Static breathers under certain conditions can be mov
The standard method to move a breather consists in pert
ing its velocity with spatially antisymmetric vector, calle
the marginal mode@10#. Typically, this method works within
a certain range of parameters near an exchange stability
furcation. This occurs when a one-site breather becomes
stable and a two-site breather does the opposite at a ne
point.

We have looked for mobile breathers in our system b
with a hardf4 potential and with a Morse potential, but w
have only had success with Morse potential and ‘‘ferrom
netic’’ interaction, i.e.,u tw.90o. In this particular case, we
found a similar situation to a stability exchange and we w
able to move the breather perturbing it with the unsta
localized mode of the two-site breather. This is an interest
result because this configuration is equivalent to a chain
antiparallel dipoles twistedp2u tw,p/2. In fact, we can
only expect parallel dipoles in synthetic DNA.

A useful concept for describing the breather movemen
its effective mass. If the norm of the perturbation velocity
l, the kinetic energy added to the breather by the pertur
tion is E5l2/2. The resulting translational velocity of th
breather,v, is found to be proportional tol @10#. Thus, mov-
ing breathers can be considered as a quasiparticle wi
mass of m* , which can be defined through the relatio
m* v2/25l2/2.

We have studied the dependence of the effective m
m* , with the couplingJ. Figure 5 shows the result for ant
parallel dipoles (u tw5180°). Two different behaviors were
obtained depending on the initial conditions. If we pertu
the two-site breather, we observe that its effective mass
creases monotonically with the coupling~full squares in Fig.
5!. This reflects the fact that the two-site breather becom
stable with increasing coupling. But if a static one-s
breather is chosen as the initial configuration, a minimum
m* appears showing the existence of an optimal value of
coupling to move this breather~see blank squares in Fig. 5!.
We believe that this minimum expresses a balance betw
the two opposite effects produced by an increase of the c
pling on the stability of the one-site and two-site breathe
Similar results are obtained for other valuesu tw.p/2.

.

ted

FIG. 5. Dependence of the effective mass of the mobile bre
ers with the coupling parameter foru tw5180°. The blank squares
correspond to mobile breathers obtained from static one-site bre
ers. Full squares are obtained from static two-site breathers.
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V. CONCLUSIONS

We have considered a system of oscillating dipoles w
helicoidal structure in order to study the effect of helicity
the existence and properties of breathers. This study is
tivated by the helicoidal structure of DNA, and the fact th
it can be described by a reduced dynamics where the
degrees of freedom are the stretchings of the hydrogen b
between base pairs, which have a finite dipole moment
our model, the helicity produces a narrowing of the phon
band, and an enlargement of the range of existence and
bility of the breathers, although this effect is small for
typical helicoidal structure of DNA.
ys

on

S.

.B

ro

01760
h

o-
t
ly
ds

In
n
ta-

The effect of the orientation of the dipole moments, i.e.
the twisting angle is greater or not than 90°, is howev
considerably higher. In particular, we have only found m
bile breathers with a Morse potential andu tw.p/2. Under-
standing the necessary conditions to move a breather is
an open question today.
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