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ABSTRACT

In this paper, we address the problem of locating mobile service units to cover random

incidents. The model does not assume complete knowledge of the probability

distribution of the location of the incident to be covered. Instead, only the mean value

of that distribution is known. We propose the minimization of the maximum expected

response time as an effectiveness measure for the model. Thus, the solution obtained is

robust with respect to any probability distribution. The cases of one and two service

units under the nearest allocation rule are studied in the paper. For both problems, the

optimal solutions are shown to be degenerate distributions for the servers.

Key Words: Location theory; Stochastic problems.

1. INTRODUCTION

In distribution systems and in continuous location models, a common problem is to

find the optimal placement of one or more servers minimizing the distances to a given set

of points. All the models considered so far in the literature assume that the positions of
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these points are either deterministic or distributed according to a known probability

distribution on the family of Borel sets in Rn (see for instance Anderson and Fontenot,[1]

Carrizosa, Muñoz-Márquez and Puerto,[2] Larson and Odoni,[5] Levine,[6] De Palma, Liu

and Thisse,[7] among others).

However, it is easy to find situations in the real-world where the hypothesis of

complete knowledge of this probability distribution is unrealistic. In this paper, we

propose a more general model where only the mean value of this distribution is known.

This assumption is not really restrictive because we can obtain good estimates of the

unknown mean value by sampling. Although more information can be obtained from the

sample, our model only needs the estimation of the mean value, which is a very well-

solved problem in mathematical statistics. A real-world application of such models is, for

instance, the problem of locating a read/write head of a computer hard-disk to easily

access the stored data. Similarly, our framework includes the problem of positioning

police-cars that must cover incidents where the law is being broken, and positioning idle

elevators to minimize response time(see Vickson, Gerchak and Rotem[10] or Smith[9] for a

different analyses assuming that the distribution of the data is known). Indeed, in these

cases, usually the distribution of the places where the law will be broken, the data are

stored, or the elevator is needed is not known. Nevertheless, it would be less restrictive to

assume that either we know the mean value for these distributions or we may estimate it by

means of an empirical study.

When the probability distribution of the position of the incident is unknown, the

classical minimization of the expected distances is not possible. Therefore, alternative

approaches have to be considered. In this paper, we propose a robust alternative consisting

of minimizing the maximum expected distance within the whole family of probability

measures which model the incident (see Gallego[4] and Puerto and Fernández[8] for similar

analyses applied to different problems in Operations Research).

Let F(l) and G(m) be the families of random variables (r.v.) (given by their

cumulative distribution functions (c.d.f.) defined on the n-dimensional hypercube [0,1]n

with mean values l [ Rn for F(l) and m [ Rn for G(m), that is,

F ðlÞ ¼ {X : r:v: on ½0; 1�n with c:d:f: FX ;

Z
½0;1�n

x dFXðxÞ ¼ l};

GðmÞ ¼ {A : r:v: on ½0; 1�n with c:d:f: GA;

Z
½0;1�n

a dGAðaÞ ¼ m}:

Define

F :¼
l[½0;1�n
< F ðlÞ:

The families F and G(m) are the sets of random variables which model the position of

the server and the incident, respectively. It is worth noting that we have defined these

random variables in the n-dimensional hypercube [0,1]n, but they can be extended to any

hyperrectangle by a linear transformation.

As previously mentioned, some authors have studied the problem of minimizing the

expected distance to the random incident, i.e.,

X[F
min

Z
½0;1�n

Z
½0;1�n

dðx; aÞ dGAðaÞ dFXðxÞ;
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where d is a measure of distance, X is a r.v. with c.d.f. FX, representing the position of the

server, and A is a r.v. with c.d.f. GA, representing the position of the incident.

Our model does not assume any a priori knowledge about the probability distribution

of the incident apart from its mean value. That is to say, we have almost complete

uncertainty about where the incident will take place, and we search for the policy that an

emergency unit, X, has to follow to minimize the maximum expected distance to any

random incident. Therefore, the problem is

X[F
min

A[GðmÞ
max

Z
½0;1�n

Z
½0;1�n

kx 2 ak1 dGAðaÞ dFXðxÞ; ð1Þ

where k·k1 is the l1-norm in Rn, so that, for x ¼ (x1,. . .,xn) [ Rn we have that

kxk1 ¼
Xn

i¼1

jxij:

The readers should note that there are essentially two kinds of factors that influence

the formulation of the problem: 1) the dimension n of the space where the incidents occur;

and 2) the number of service units to be located.

It is also worth noting that this problem formulation can be used to model the above

mentioned real-world situations because: a) we do not need to know the distribution of the

incident; and b) the read/write head only admits displacements following the directions of

the coordinate axes; and both the highway and the trajectory of the elevator can be

considered like line segments where displacements are linear. Thus, the l1-norm is an

appropriate measure of distance.

Finally, the formulation (1) gives us a new interpretation of the solutions obtained in

terms of statistics. As we shall show in the paper, the optimal probability distributions for

our problem are degenerate random variables. Since principal points of probability

distributions are those points optimizing some effectiveness measure (see Flury[3]), we can

see our solutions as a generalization of the principal points, but now we are optimizing

over a family of distributions with a fixed mean rather than the values of a single

probability distribution.

The paper is organized as follows. In Section 2, we consider the problem of locating a

single facility; we first study the problem considering the service unit as a degenerate

random variable and then we extend these results to the general case with any random

variable. In Section 3, we consider the two-facility problem under the nearest allocation

rule and we follow a scheme similar to that followed in Section 2. In Section 4, we include

some concluding remarks and possible extensions to the considered model. Finally, in the

Appendix, we include, for the sake of readability, several technical results that have been

used in the paper.

2. THE SINGLE FACILITY PROBLEM

We begin this section by considering the one-dimensional case, then we proceed to

the n-dimensional single facility problem. Let F1(l) and G1(m) be, respectively, the

families of random variables F(l) and G(m) in the 1-dimensional case. For ease of
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understanding, we distinguish two cases. In the first case, the server is not allowed to

patrol, i.e., we model the location of the server with a degenerate random variable. In the

second case, the server is allowed to patrol, which means that it is any random variable in

F1. For the first case, the mathematical formulation of the problem is:

x[½0;1�
min

A[G1ðmÞ
max

Z
½0;1�

jx 2 aj dGAðaÞ: ð2Þ

Theorem 2.1 The optimal positioning policy in the hypothesis of Problem (2) is

x* ¼

0 if m ¼ 0:5

y for any y [ ½0; 1� if m ¼ 0:5

1 if m . 0:5:

8>><
>>: ð3Þ

Remark 2.1 This result states that the optimal location for a fixed service unit when only

the mean value m of the distribution of the incident is known, is on an extreme point of the

interval of feasible locations for the incident. Further, when m ¼ 0:5 any point on the

interval is an optimal location of the server.

Proof: By Lemma A.2 in the Appendix we have that

x[½0;1�
min

A[G1ðmÞ
max

Z
½0;1�

jx 2 aj dGAðaÞ ¼
x[½0;1�
min

A[G1ðmÞ
max 2

Z x

0

GAðaÞ da 2 x þ m

� �
: ð4Þ

Hence, we prove that the maximum in the last expression is reached at the random variable

A* with the following c.d.f.

GA* ðaÞ ¼

0 if a , 0

1 2 m if 0 # a , 1

1 if a $ 1:

8>><
>>:

Indeed, since x and m are constants for the inner maximum in the right hand side of (4), we

have to prove the following inequalityZ x

0

GAðaÞ da 2 ð1 2 mÞx # 0; ;x [ ½0; 1�; ;A [ G1ðmÞ: ð5Þ

But, since
R 1

0
GAðaÞ da ¼ 1 2 m (Lemma A.2) and GA(·) is a distribution function, we are

under the hypotheses of Lemma A.1 which proves the inequality (5).

Therefore, the minimization Problem (2) reduces to the following problem:

x[½0;1�
min xð1 2 2mÞ þ m:

Hence, depending on the relative values of m, we obtain that the optimal positioning x*
satisfies equation (3). A
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In the second case, the service unit is also allowed to patrol. Initially, we permit the

service unit to be distributed on the interval according to a random variable with the only

condition that its mean value is fixed to l. Then, we solve the case when l is not fixed. For

the first case, the problem is

X[F 1ðlÞ
min

A[G1ðmÞ
max

Z
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ: ð6Þ

Theorem 2.2 Any random variable X [ F 1ðlÞ constitutes an optimal policy for

Problem (6).

Proof: By Lemma A.4, we have thatZ
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ ¼ 2 1 2

Z 1

0

GAðyÞ FXðyÞ dy

� �
2 l2 m:

Therefore, using that l and m are fixed,we can solve Problem (6) by solving the equivalent

problem

X[F 1ðlÞ
max

A[G1ðmÞ
min

Z 1

0

GAðyÞ FXðyÞ dy:

In order to do this, we are going to prove that the inner minimum is achieved by the

random variable A* such that P(A* ¼ 0) ¼ 1-m and P(A* ¼ 1) ¼ m.

IA;X :¼

Z 1

0

FXðyÞGAðyÞ dy 2

Z 1

0

FXðyÞð1 2 mÞ dy $ 0:

Considering t0 :¼ t0ðAÞ [ ð0; 1Þ such that t0 ¼ inf{t [R : GAðtÞ $ 1 2 m} we have

the following inequalities:

IA;X ¼

Z t0

0

FXðyÞðGAðyÞ2 ð1 2 mÞÞ dy þ

Z 1

t0

FXðyÞðGAðyÞ2 ð1 2 mÞ dy

$

Z t0

0

FXðt0ÞðGAðyÞ2 ð1 2 mÞÞ dy þ

Z 1

t0

FXðt0ÞðGAðyÞ2 ð1 2 mÞÞ dy

¼ FXðt0Þ

Z 1

0

ðGAðyÞ2 ð1 2 mÞÞ dy

� �
¼ 0;

by Lemma A.2. Similarly, Lema A.2 implies that

A[G1ðmÞ
min

Z 1

0

GAðyÞFXðyÞ dy þ
a[ð0;1Þ

X
aP½A ¼ a�P½X ¼ a� ¼

Z 1

0

FXðyÞð1 2 mÞ dy

¼ ð1 2 lÞð1 2 mÞ;

regardless of the choice of X [ F 1ðlÞ; and the result follows. A
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Let us consider in the following that no assumptions are made on the mean value, l, of

the random variable modelling the service unit. In this situation, the problem is

X[F 1

min
A[G1ðmÞ
max

Z
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ: ð7Þ

Corollary 2.1 An optimal positioning policy of Problem (7) is the random variable X*

such that P½X* ¼ x* � ¼ 1 where x* was defined in (3).

Proof: Note that

X[F 1

min
A[G1ðmÞ
max

Z
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ

¼
l[½0;1�
min

X[F 1ðlÞ
min

A[G1ðmÞ
max

Z
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ:

Let HðlÞ ¼
X[F 1ðlÞ

min
A[G1ðmÞ
max

R
½0;1�

R
½0;1� jx 2 aj dGAðaÞ dFXðxÞ:

For each l [ ½0; 1�; by the proof of Theorem 2.2 we have that

HðlÞ ¼ 2ð1 2 ð1 2 lÞð1 2 mÞÞ2 l2 m ¼ ð1 2 2mÞlþ m:

Thus, if we look for the minimum in l we obtain

arg
l[½0;1�
min HðlÞ ¼

{0} if m , 0:5

y for any y [ ½0; 1� if m ¼ 0:5

{1} if m . 0:5;

8>><
>>:

and the result follows. A
This corollary shows that it is optimal to park the service unit when no hypotheses are

made on the distribution of the service unit and only the mean value of the incident is

known. Thus, although patrolling may be good for other reasons such as crime prevention,

etc., it is not necessary in order to minimize the maximum expected distance to any

random incident.

Finally, we also solve the n-dimensional problem. Indeed, let us consider the problem:

X[F
min

A[GðmÞ
max

Z
½0;1�n

Z
½0;1�n

Xn

i¼1

jxi 2 aij dGAðaÞ dFXðxÞ; ð8Þ

where m ¼ ðm1; . . .;mnÞ; x ¼ ðx1; . . .; xnÞ and a ¼ ða1; . . .; anÞ: Problem (8) can be written

equivalently as follows:

X[F
min

A[GðmÞ
max

Xn

i¼1

Z
½0;1�

Z
½0;1�

jxi 2 aij dGAi
ðaiÞ dFXi

ðxiÞ

#
X[F
min

Xn

i¼1
Ai[G1ðmiÞ

max

Z
½0;1�

Z
½0;1�

jxi 2 aij dGAi
ðaiÞ dFXi

ðxiÞ;

ð9Þ
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where GAi
and FXi

are the marginal distributions of GA and FX respectively.

Let A*
1; . . .;A*

n be the 1-dimensional random variables attaining the inner maxima and

GA*
1
; . . .;GA*

n
their respective cumulative distribution functions. Consider dGA* ¼

dGA*
1
£ . . . £ dGA*

n
; the measure in the product space generated by the measures

dGA*
1
; . . .; dGA*

n
; and let A* be a n-dimensional random variable with cumulative

distribution GA*. That means, A* is a random vector whose components are independent

random variables. Since A* is feasible for the former maximum in (8), we have that (9)

holds with equality. By a similar argument, we get

X[F
min

A[GðmÞ
max

Z
½0;1�n

Z
½0;1�n

Xn

i¼1

jxi 2 aij dGAðaÞ dFXðxÞ

¼
Xn

i¼1
Xi[F 1

min
Ai[G1ðmiÞ

max

Z
½0;1�

Z
½0;1�

jxi 2 aij dGAi
ðaiÞ dFXi

ðxiÞ:

Thus, we have obtained that the n-dimensional problem can be solved by solving n

different 1-dimensional problems. This reduction allows the resolution of Problem (8) by

Corollary 2.1. In particular, the results in this section show that if the l1-norm is used, the

optimal policy is to park (to fix) the service unit at some vertex of the region where the

random incident takes place.

3. THE TWO-FACILITY PROBLEM

In the previous section, we considered the problem of locating only one facility to

cover a random incident. However, often more than one service unit is necessary,

especially if the coverage region is large. In this section, we consider the case where two

service facilities cover a random incident under the usual nearest allocation rule: the

random incident is covered by the closest service unit. This allocation rule leads to the

following formulation:

X1;X2[F 1

min
A[G1ðmÞ
max

Z
½0;1�2

Z
½0;1�

min jx1 2 aj; jx2 2 ajf g dGAðaÞ dF1;2ðx1; x2Þ; ð10Þ

where F1, G1(m) were defined in Section 2, GA(·) is the c.d.f. of the random variable A and

F1,2(·,·) is the joint c.d.f. of the random variables X1 and X2. It is worth noting that this is a

non-trivial problem: 1) it is a minmax problem, and 2) the decision space is a functional

space of random vectors.

This formulation allows us to model different real-world situations where there are

two-service units to cover a random incident. This is for example the case of highways

with two patrolling vehicles so that each one covers the closest incident.

In order to solve this problem, first we consider the case where the servers are not

allowed to patrol, that is, X1 and X2 are degenerate random variables. After that, we deal

with the general case: X1 and X2 are any random variables belonging to F1.

120018142_STM_019_001_R1_X0.ald 8/2/2003—KALYAN—59071

Robust Positioning of Service Units 131

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322



The formulation of Problem (10) for the first case is given by the following expression

x1;x2[½0;1�
min

A[G1ðmÞ
max

Z
½0;1�

min jx1 2 aj; jx2 2 ajf g dGAðaÞ: ð11Þ

Remark 3.1 Without loss of generality we can assume that x1 # x2:

Before we proceed to obtain the solution of Problem (11), we define the following

functions:

�dðx1; x2;AÞ :¼ 2

Z x1

0

GAðaÞ da þ

Z x2

x1þx2
2

GAðaÞ da

 !
þ m2 x2; ð12Þ

Cðx1; x2; p1Þ :¼ 2 ð1 2 mÞ
x1 þ x2

2
2 p1 x1 2

x1 þ x2

2

� �2
 ! !

2 x2 þ m; ð13Þ

and the set

Tðx1; x2Þ :¼ {p ¼ ðp0; p1; p2Þ $ 0 : p0 þ p1 þ p2 ¼ 1

and p1

x1 þ x2

2
þ p2 ¼ m}; ð14Þ

where A is a random variable in G1(m) with distribution function GA and x1; x2 [ ½0; 1�:

Theorem 3.1 The optimal positioning policy in the hypothesis of Problem (11) is

x1 ¼ m2 and x2 ¼ 2m2 m2:

Proof: First, by Lemma A.5 and A.7, we have that

0#x1#x2#1
min

A[G1ðmÞ
max

Z
½0;1�

min{jx1 2 aj; jx2 2 aj}dGAðaÞ ¼
0#x1#x2#1

min
p[Tðx1;x2Þ

max Cðx1; x2; p1Þ;

where C and T(x1,x2) were defined in (13) and (14), respectively. By Lemma A.8 the optimal

solution of this problem is x1 ¼ m2 and x2 ¼ 2m2 m2 and the proof is concluded. A

Once we have studied the problem of locating two deterministic service units, we

consider the general problem where the service units are random vectors. In this case we

consider the original Problem (10).

Theorem 3.2 The optimal positioning policy of Problem (10) are the random variables

X*
1 and X*

2 such that P X*
1 ¼ m2

� 

¼ 1 and P X*

2 ¼ 2m2 m2
� 


¼ 1:
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Proof: Using Lemma A.5, we can bound the expression in (10) as follows (recall that d̄

was defined in (12)):

A[G1ðmÞ
max

Z
½0;1�2

Z
½0;1�

min{jx1 2 aj; jx2 2 aj} dGAðaÞ dF1;2ðx1; x2Þ

¼
A[G1ðmÞ
max

Z
½0;x2�£½0;1�

�dðx1; x2;AÞdF1;2ðx1; x2Þ þ

Z
ðx2;1�£½0;1�

�dðx2; x1;AÞdF1;2ðx1; x2Þ

� �

#

Z
½0;x2�£½0;1�

A[G1ðmÞ
max �dðx1; x2;AÞ dF1;2ðx1; x2Þ

þ

Z
ðx2;1�£½0;1�

A[G1ðmÞ
max �dðx2; x1;AÞ dF1;2ðx1; x2Þ:

ð15Þ
Define

S1 ¼ {ðx1; x2Þ [ R2 : 0 # x1 # x2 # 1};

S2 ¼ {ðx1; x2Þ [ R2 : 0 # x2 , x1 # 1};

and let XSj
(·) denote the indicator function of the set Sj for j ¼ 1; 2: Now, Lemma A.7

allows to write the integrands in (15) as

A[G1ðmÞ
max �dðx1; x2;AÞ ¼

p[Tðx1;x2Þ
max Cðx1; x2; p1Þ for ðx1; x2Þ [ S1; ð16Þ

A[G1ðmÞ
max �dðx2; x1;AÞ ¼

p[Tðx1;x2Þ
max Cðx2; x1; p1Þ for ðx1; x2Þ [ S2: ð17Þ

Combining (16) and (17) we can rewrite the expression (15) asZ
½0;1�2 p[Tðx1;x2Þ

max ½Cðx1; x2; p1ÞXS1
ðx1; x2Þ þ Cðx2; x1; p1ÞX S2

ðx1; x2Þ� dF1;2ðx1; x2Þ:

Let p* ðx1; x2Þ ¼ ðp*
0ðx1; x2Þ; p*

1ðx1; x2Þ; p*
2ðx1; x2ÞÞ [ Tðx1; x2Þ be the function where the

expression above reaches its inner maximum. Notice that the expression of p*(x1,x2) can

be obtained from the proof of Lemma A.8, and it is defined in a different way depending on

the region that (x1,x2) belongs to.

Now, for all ðx1; x2Þ [ ½0; 1�2; let A*(x1,x2) be a random variable independent of (X1,X2),

whose probability distribution is dGA*(x1
,x2), defined by

dGA* ðx1;x2Þ
ðaÞ ¼

p*
0ðx1; x2Þ if a ¼ 0

p*
1ðx1; x2Þ if a ¼ x1þx2

2

p*
2ðx1; x2Þ if a ¼ 1:

8>><
>>: ð18Þ

Notice that, for a fixed x1 and x2 belonging to the interval [0,1], A*(x1,x2) is a discrete

random variable taking the values 0, x1þx2

2
and 1 with probabilities p*

0ðx1; x2Þ; p*
1ðx1; x2Þ and
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p*
2ðx1; x2Þ respectively. Thus, by the definition of the functions d̄ and C (see the proof of

Lemma A.7), A*(x1,x2) verifies that

�dðx1; x2;A* ðx1; x2ÞÞ ¼ Cðx1; x2; p*
1ðx1; x2ÞÞ with ðx1; x2Þ [ S1; ð19Þ

�dðx2; x1;A* ðx1; x2ÞÞ ¼ Cðx2; x1; p*
1ðx1; x2ÞÞ with ðx1; x2Þ [ S2: ð20Þ

Now, using (19), (20), and Lemma A.5, we have thatZ
½0;1�2 p[Tðx1;x2Þ

max ½Cðx1; x2; p1ÞX S1
ðx1; x2Þ þ Cðx2; x1; p1ÞXS2

ðx1; x2Þ� dF1;2ðx1; x2Þ

¼

Z
½0;1�2

½Cðx1; x2; p*
1ðx1; x2ÞX S1

ðx1; x2Þ

þ Cðx2; x1; p*
1ðx1; x2ÞÞX S2

ðx1; x2Þ� dF1;2ðx1; x2Þ

¼

Z
½0;x2�£½0;1�

�dðx1; x2;A* ðx1; x2ÞÞ dF1;2ðx1; x2Þ

þ

Z
½x2;1�£½0;1�

�dðx2; x1;A* ðx1; x2ÞÞ dF1;2ðx1; x2Þ

¼

Z
½0;1�2

Z
½0;1�

min{jx1 2 aj; jx2 2 aj} dGA* ðx1;x2Þ
ðaÞ dF1;2ðx1; x2Þ:

Therefore, using the inequality in (15), we have that

A[G1ðmÞ
max

Z
½0;1�2

Z
½0;1�

min{jx1 2 aj; jx2 2 aj} dGAðaÞ dF1;2ðx1; x2Þ

#

Z
½0;1�2

Z
½0;1�

min{jx1 2 aj; jx2 2 aj} dGA* ðx1;x2Þ
ðaÞ dF1;2ðx1; x2Þ:

Moreover, since p* ðx1; x2Þ [ Tðx1; x2Þ; we have that the mean value of A*(x1,x2) is m for

all ðx1; x2Þ [ ½0; 1�2: Therefore, A*(X1,X2) is also a random variable with mean value m,

that is, A* ðX1;X2Þ [ G1ðmÞ: Thus, the inequality above has to be an equality and Problem

(10) can be reformulated as follows:

X1;X2[F 1

min

Z
½0;1�2

½Cðx1; x2; p
*
1ðx1; x2ÞX S1

ðx1; x2Þ

þ Cðx2; x1; p*
1ðx1; x2ÞÞX S2

ðx1; x2Þ� dF1;2ðx1; x2Þ: ð21Þ

Let us define the following function;

Lðx1; x2Þ :¼ Cðx1; x2; p
*
1ðx1; x2ÞX S1

ðx1; x2Þ þ Cðx2; x1; p*
1ðx1; x2ÞX S2

ðx1; x2Þ:
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Since, it always holds that,

X1;X2[F 1

min

Z
½0;1�2

Lðx1; x2Þ dF1;2ðx1; x2Þ ¼
x1;x2[½0;1�

min Lðx1; x2Þ;

then the minimum in (21) is reached by two degenerate random variables. On the other

hand, using that the function L(x1,x2) is defined in disjoint sets,

Cðx1; x2; p*
1ðx1; x2ÞÞX S1

ðx1; x2Þ $ 0 and Cðx2; x1; p*
1ðx1; x2ÞÞX S2

ðx1; x2Þ $ 0 (see (19), (20)

and Lemma A.5 to justify the non-negativity of these functions), we have that

Lðx1; x2Þ ¼ max {Cðx1; x2; p*
1ðx1; x2ÞÞXS1

ðx1; x2Þ;Cðx2; x1; p*
1ðx1; x2ÞÞX S2

ðx1; x2Þ}:

Therefore, we can use the same arguments as in the deterministic case (Lemma A.8) in

order to obtain that the optimal solutions are the random vectors (X1,X2) such that:

P½ðX1;X2Þ ¼ ðm2; 2m2 m2Þ� ¼ 1 or P½ðX1;X2Þ ¼ ð2m2 m2;m2Þ� ¼ 1: A

In conclusion, Theorem 3.2 proves that it is optimal to park the service units when no

hypotheses are made on their c.d.f.’s and only the mean value of the position of the random

incident is known.

4. CONCLUDING REMARKS

The results in this paper extend other previously known results about the optimal

location of one or two service units to situations where no assumptions are made on the

probability distribution of the random incident that these service units cover apart from

the knowledge of its mean value (whereas all the previous papers require exact knowledge

of this distribution). This is accomplished by minimizing the maximum expected response

time (whereas the previous results minimize expected distances). In particular, we show

that when the only available information is the mean value of the position of the incidents,

then the optimal policy is to park the service units at concrete points.

On the other hand, since our goal is to minimize the response time from the service

unit to the incident, another interesting problem is to assume the same probability

distribution for both the service unit and the incident. Notice that one interpretation of this

policy is that we are fixing the location of the service unit at the location of the previous

incident. The worst case for this policy is given by

F[F 1ðmÞ
max

Z
½0;1�

Z
½0;1�

kx 2 ak1dFðaÞ dFðxÞ

(assuming that incidents occur independently). Using a similar argument to the one used in

the proof of Theorem 2.2, we have that

F[F 1ðmÞ
max

Z
½0;1�

Z
½0;1�

kx 2 ak1dFðaÞ dFðxÞ ¼ mþ mð1 2 2mÞ:
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Thus, the maximum objective value above is 1/2 and it is achieved by a c.d.f. F with mean

value m ¼ 1=2: Moreover, by the proof of Corollary 2.1, we have that the objective value

of the worst case for Problem (6) is mþ lð1 2 2mÞ: Thus, the best objective value when

l varies, is:

m if m # 0:5 and it is achieved at l* ¼ 0

1 2 m if m . 0:5 and it is achieved at l* ¼ 1:

(

Therefore, for a fixed m, the difference in worst case performance between the approach

considered above and the approach of the paper is given by

jðl* 2 mÞð1 2 2mÞj ¼
mð1 2 2mÞ if m # 0:5

ð1 2 mÞð21 þ 2mÞ if m . 0:5:

(

Notice that there is no difference when m [ {0; 0:5; 1}; but that there is a difference that

can be quantified for other choices of m. We can see that this difference is maximal when

m ¼ 0.25 and m ¼ 0:75 which is reasonable because these points are at the maximum

distances to the values of m where the difference is null.

Finally, we can also study the natural extension of Problem (10) where we consider

k service units instead of two. It should be noted that using similar arguments to those

used for the case k ¼ 2; we can obtain that the worst case in the distribution of the

incident is given by a random variable taking the values 0; x1þx2

2
; x2þx3

2
; . . .; xk21þxk

2
; 1 (see

Eq. (18) for the case when k ¼ 2). However, the complexity of the expressions obtained

in the analysis does not allow us to present an explicit formula of the optimal solution

of this problem.

APPENDIX

In this section, we include for the sake of completeness, several results and their

proofs which have been used in the paper.

Lemma A.1 Let G(·) be a nondecreasing function such that G:R ! [0,1). If there exists

M [ R such thatZ b

a

GðtÞ dt ¼ Mðb 2 aÞ with a; b [ R

then

IGðzÞ :¼

Z z

a

GðtÞ dt 2 Mðz 2 aÞ # 0 ;z [ ½a; b�:

Proof: Let t0 [ ½a; b� be such that t0 ¼ inf {t : GðtÞ $ M};
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i) If z , t0 we have that GðtÞ , M ;t # z thus, IGðzÞ # 0:
ii) If z $ t0 we obtain that,

IGðzÞ ¼

Z z

a

GðtÞ dt þ

Z b

z

GðtÞ dt 2

Z b

z

GðtÞ dt 2 Mðz 2 aÞ

¼ Mðb 2 aÞ2

Z b

z

GðtÞ dt 2 Mðz 2 aÞ ¼ Mðb 2 zÞ2

Z b

z

GðtÞ dt

# Mðb 2 zÞ2 GAðzÞðb 2 zÞ ¼ ðM 2 GðzÞðb 2 zÞ # 0;

where we have used the fact that the function G(·) is nondecreasing. Thus, the lemma is

proved. A

Lemma A.2 For any A [ G1ðmÞ with c.d.f. GA(·), we have that:

i)
R 1

0
GAðaÞ da ¼ 1 2 m:

ii)
R
½0;1� jx � aj dGAðaÞ ¼ 2

R x

0
GAðaÞ da 2 x þ m ;x [ ½0; 1�:

Proof: Denote DG the set of denumerable number of discontinuity points of GA(·) in the

interval [0,1] union with the set {0,1}. Applying integration by parts to the interval

(xi21,xi) where xi21 and xi are two consecutive points of DG, we have that

Z
ðxi21;xiÞ

GAðaÞ da ¼ aGAðaÞj
x2

i

xþ
i21

2

Z
ðxi21;xiÞ

a dGAðaÞ

¼ x2
i GAðx

2
i Þ2 xþi21GAðx

þ
i21Þ2

Z
ðxi21;xiÞ

a dGAðaÞ

¼ xiðGAðxiÞ2 P½A ¼ xi�Þ2 xi21GAðxi21Þ2

Z
ðxi21;xiÞ

a dGAðaÞ

¼ xiGAðxiÞ2 xi21GAðxi21Þ2

Z
ðxi21;xiÞ

a dGAðaÞ:

If we sum the equality above for each element of DG we obtain

xi[DG

X Z
ðxi21;xiÞ

GAðaÞ da ¼
xi[DG

X
xiGAðxiÞ2 xi21GAðxi21Þ2

Z
ðxi21;xi�

a dGAðaÞ

� �

¼ 1 2

Z
ð0;1�

a dGAðaÞ:
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Hence, since the integrant in the last expression is null at zero we have that

Z 1

0

GAðaÞ da ¼ 1 2

Z
½0;1�

a dGAðaÞ ¼ 1 2 m:

Now we prove the second assertion. We have the following equalities

Z
½0;1�

jx 2 aj dGAðaÞ ¼

Z
½0;x�

ðx 2 aÞ dGAðaÞ þ

Z
ðx;1�

ða 2 xÞ dGAðaÞ

¼ xGAðxÞ2

Z
½0;x�

a dGAðaÞ þ

Z
ðx;1�

a dGAðaÞ2 xð1 2 GAðxÞÞ

¼ xð2GAðxÞ2 1Þ2

Z
½0;x�

adGAðaÞ þ m2

Z
½0;x�

adGAðaÞ

¼ 2ðxGAðxÞ2

Z
½0;x�

a dGAðaÞÞ þ m2 x:

Applying integration by parts using the arguments above we have that

Z x

0

GAðaÞ da ¼ xGAðxÞ2

Z
½0;x�

a dGAðaÞ;

and the result follows. A

Lemma A.3 For any X [ F 1ðlÞ and A [ G1ðmÞ with c.d.f’s FX(·) and GA(·),

respectively, we have that

Z
½0;1�

yGAðyÞ dFXðyÞ þ

Z
½0;1�

yFXðyÞ dGAðyÞ ¼ 1 þ
y[D

X
yP½X ¼ y�P½A ¼ y�

2

Z 1

0

GAðyÞFXðyÞ dy;

where D is the set of denumerable number of discontinuity points either of FX(·) or GA(·)

(or both) union with the set {0,1}.
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Proof: Applying integration by parts to the inteval (xi-1,xi) where xi-1 and xi are two

Q1

consecutive points of D, we have the following equalities

Z
ðxi21;xiÞyGAðyÞ dFXðyÞ þ

Z
ðxi21;xiÞ

yFXðyÞdGAðyÞ

¼ yGAðyÞFXðyÞj
x2i
xþ

i21

2

Z
ðxi21;xiÞ

GAðyÞFXðyÞdy

¼ x2i GAðx
2
i ÞFXðx

2
i Þ2 xþi21GAðx

þ
i21ÞFXðx

þ
i21Þ2

Z xi

xi21

GAðyÞFXðyÞdy

¼ xiðGAðxiÞ2 P½A ¼ xi�ÞðFXðxiÞ2 P½X ¼ xi�Þ2 xi21GAðxi21ÞFXðxi21Þ

2

Z xi

xi21

GAðyÞFXðyÞdy ¼ xiGAðxiÞFXðxiÞ2 xi21GAðxi21ÞFXðxi21Þ

2 xiP½X ¼ xi�GAðxiÞ2 xiP½A ¼ xi�FXðxiÞ þ xiP½A ¼ xi�P½X ¼ xi�

2

Z xi

xi21

GAðyÞFXðyÞdy:

The equality above can be rewritten as

Z
ðxi21;xi�

yGAðyÞ dFXðyÞ þ

Z
ðxi21;xi�

yFXðyÞ dGAðyÞ

¼ xiGAðxiÞFXðxiÞ2 xi21GAðxi21ÞFXðxi21Þ

þ xiP½A ¼ xi�P½X ¼ xi�2

Z xi

xi21

GAðyÞFXðyÞdy:

If we sum the expression above for each element of D we have

xi[D

X Z
ðxi21;xi�

yGAðyÞ dFXðyÞ þ

Z
ðxi21;xi�

yFXðyÞ dGAðyÞ

� �

¼
xi[D

X
xiGAðxiÞFXðxiÞ2 xi21GAðxi21ÞFXðxi21Þ2þxiP½A ¼ xi�P½X ¼ xi�

"

2

Z xi

xi21

GAðyÞFXðyÞdy

�
¼ 1 þ

xi[D

X
xiP½A ¼ xi�P½X ¼ xi�2

Z 1

0

GAðyÞFXðyÞdy:
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Since, at zero the integrants of the first part of the equalities above are null, we have thatZ
½0;1�

yGAðyÞ dFXðyÞ þ

Z
½0;1�

yFXðyÞ dGAðyÞ ¼1 þ
xi[D

X
xiP½A ¼ xi�P½X ¼ xi�

2

Z 1

0

GAðyÞFXðyÞ dy;

and the result follows. A

Lemma A.4 For any X [ F 1ðlÞ and A [ G1ðmÞ with c.d.f’s FX(·) and GA(·),

respectively, we have that

Z
½0;1�

Z
½0;1�

jx 2 aj dGAðaÞ dFXðxÞ ¼ 2 1 2

Z 1

0

GAðyÞFXðyÞ dy

� �
2 l2 m:

Proof: We have thatZ
½0;1�

Z
½0;1�

jx–aj dGAðaÞ dFXðxÞ

¼

Z
½0;1�

Z
½0;x�

x dGAðaÞ dFXðxÞ2

Z
½0;1�

Z
½0;x�

a dGAðaÞ dFXðxÞ

þ

Z
½0;1�

Z
ðx;1�

a dGAðaÞ dFXðxÞ2

Z
½0;1�

Z
ðx;1�

x dGAðaÞ dFXðxÞ

¼

Z
½0;1�

xGAðxÞ dFXðxÞ2

Z
½0;1�

Z
½0;x�

a dGAðaÞ dFXðxÞ

þ

Z
½0;1�

Z
ðx;1�

a dGAðaÞ dFXðxÞ2

Z
½0;1�

xð1 2 GAðxÞÞ dFXðxÞ

¼ 2

Z
½0;1�

xGAðxÞ dFXðxÞ2 l2

Z
½0;1�

Z
½0;x�

a dGAðaÞ dFXðxÞ

þ

Z
½0;1�

ðm2

Z
½0;x�

a dGAðaÞÞ dFXðxÞ ¼ 2

Z
½0;1�

xGAðxÞ dFXðxÞ

2 2

Z
½0;1�

Z
½0;x�

adGAðaÞ dFXðxÞ2 lþ m ¼ 2

Z
½0;1�

xGAðxÞ dFXðxÞ

2 2

Z
½0;1�

a

Z
½a;1�

dFXðxÞ dGAðaÞ2 lþ m ¼ 2

Z
½0;1�

xGAðxÞ dFXðxÞ

2 2

Z
½0;1�

a

Z
ða;1�

dFXðxÞ dGAðaÞ2 2

Z
½0;1�

aP½X ¼ a� dGAðaÞ2 lþ m:
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Denote by D the denumerable number of discontinuity points of FX or GA union with

{0,1}. Then, we rewrite the expression above as

2

Z
½0;1�

xGAðxÞdFXðxÞ22mþ2

Z
½0;1�

aFXðaÞdGAðaÞ22
y[D

X
yP½X¼y�P½A¼y�2lþm

¼2

Z
½0;1�

yGAðyÞdFXðyÞþ

Z
½0;1�

yFXðyÞdGAðyÞ

� �
22

y[D

X
yP½X¼y�P½A¼y�2l2m:

ð22Þ

Now, using Lemma A.3 we have that

ð22Þ¼2 12

Z 1

0

GAðyÞFXðyÞdy

� �
2l2m;

and the result follows. A

Lemma A.5 For any A [ G1ðmÞ with c.d.f. GA(·), the function d̄ defined in (12) admits

the following representation.

�dðx1; x2;AÞ ¼

Z
½0;1�

min jx1 2 aj; jx2 2 ajf g dGAðaÞ ;x1 # x2 [ ½0; 1�:

Proof: We have the following equalities:

Z
½0;1�

min {jx1 2 aj; jx2 2 aj} dGAðaÞ ¼

Z
½0;

x1þx2
2

�

jx1 2 aj dGAðaÞ þ

Z
ð
x1þx2

2
;1�

jx2 2 aj dGAðaÞ

¼

Z
½0;x1�

ðx1 2 aÞ dGAðaÞ þ

Z
ðx1;

x1þx2
2 �

ða 2 x1Þ dGAðaÞ

þ

Z
ð
x1þx2

2
;x2�

ðx2 2 aÞ dGAðaÞ þ

Z
ðx2;1�

ða 2 x2Þ dGAðaÞ

¼ 2x1GAðx1Þ2 GA

x1 þ x2

2

� �
ðx1 þ x2Þ þ 2x2GAðx2Þ

2 x2 2

Z
½0;x1�

adGAðaÞ þ

Z
ðx1;

x1þx2
2

�

a dGAðaÞ

2

Z
ð
x1þx2

2
;x2�

a dGAðaÞ þ

Z
ðx2;1�

a dGAðaÞ

¼ 2 x1GAðx1Þð 2

Z
½0;x1�

a dGAðaÞ þ x2GAðx2Þ
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2GA

x1 þ x2

2

� �
x1 þ x2

2
2

Z
ð
x1þx2

2
;x2�

a dGAðaÞ

!

þ m2 x2 ¼ 2

Z x1

0

GAðaÞ da þ

Z x2

x1þx2
2

GAðaÞ da

 !

þ m2 x2 ¼ �dðx1; x2;AÞ;

and the result is proved. A

Lemma A.6 For each random variable A [ G1ðmÞ with distribution function GA(·) and

each 0 # x1 # x2 # 1; there exists a discrete random variable �A [ G1ðmÞ defined by

P½ �A ¼ a� ¼

p0 if a ¼ 0

p1 if a ¼ x1þx2

2

p2 if a ¼ 1;

8>><
>>:

where( p0, p1, p2) satisfies that

p0 þ p1 þ p2 ¼ 1

�dðx1; x2;AÞ # �dðx1; x2; �AÞ

Z x1þx2
2

0

GAðaÞ da ¼ p0

x1 þ x2

2
ð23Þ

Z 1

x1þx2
2

GAðaÞ da ¼ ðp0 þ p1Þ 1 2
x1 þ x2

2

� �
: ð24Þ

Remark A.1 It should be noted that from this result and part i) of Lemma A.2, one obtains

that for each 0 # x1 # x2 # 1; the maxA[G1ðmÞ
�dðx1; x2;AÞ is attained in a discrete random

variable with mean value m and defined only on the values 0, x1þx2

2
and 1. Moreover,

p ¼ ðp0; p1; p2Þ [ Tðx1; x2Þ (where T was defined in (14)).

Proof: First, we note that �A [ G1ðmÞ; see Remark A.1.

Second, in order to complete the proof of the lemma it suffices to prove:

i)
R x1

0
GAðaÞ da 2 p0x1 # 0

ii)
R x2

x1þx2
2

GAðaÞ da 2 ðp0 þ p1Þ x2 2
x1þx2

2

� �
# 0:

To this end, we apply Lemma A..1. Since (23) and (24) hold and GA(·) is a probability

distribution function, we are under hypotheses of Lemma A.1 and thus, i) and ii) are

proved. A
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Lemma A.7 If x1, x2 [ [0,1], x1 # x2, then

A[G1ðmÞ
max �dðx1; x2;AÞ ¼

p[Tðx1;x2Þ
max Cðx1; x2; p1Þ;

where d̄, C, and T were defined in (12), (13), and (14), respectively.

Proof: We have, by the definition of d̄ in (12) and Lemma A.6, that;

A[G1ðmÞ
max �dðx1; x2;AÞ ¼

A[G1ðmÞ
max 2

Z x1

0

GAðaÞ da þ

Z x2

x1þx2
2

GAðaÞ da

 !
þ m2 x2

¼
p[Tðx1;x2Þ

max 2 p0x1 þ ðp0 þ p1Þ x2 2
x1 þ x2

2

� �� �
þ m2 x2:

Using that p [ Tðx1; x2Þ; (i.e., p0 þ p1 þ p2 ¼ 1 and x1þx2

2
p1 þ p2 ¼ m) we have that

p[Tðx1;x2Þ
max 2 p0x1 þ ðp0 þ p1Þ x2 2

x1 þ x2

2

� �� �
þ m2 x2

¼
p[Tðx1;x2Þ

max m2 x2 þ 2 ð1 2 mþ p1ð
x1 þ x2

2
2 1ÞÞx1

�

þð1 2 mþ p1

x1 þ x2

2
Þðx2 2

x1 þ x2

2
Þ

�

¼
p[Tðx1;x2Þ

max m2 x2 þ 2 ð1 2 mÞ
x1 þ x2

2
2 p1 x1 2

x1 þ x2

2

� �2
 ! !

¼
p[Tðx1;x2Þ

max Cðx1; x2; p1Þ;

which proves the result. A

Lemma A.8 The optimal solution for the problem

0#x1#x2#1
min

p[Tðx1;x2Þ
max Cðx1; x2; p1Þ ð25Þ

is x1 ¼ m2 and x2 ¼ 2m2 m2; where C and T were defined in (13) and (14), respectively.

Proof: Since C(x1, x2, p1) is linear with respect to p1, we analyze the cases where the

coefficient that multiplies p1 is positive or negative separately.
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Case 1: x1 $ x1þx2

2

� �2

In this case, the function Cðx1; x2; p1Þ is decreasing in p1, thus the maximum is reached at

p1 ¼ 0: That means that p0 ¼ 1-m and p2 ¼ m. Therefore, the expression that we have to

consider is the following:

0#x1#x2#1
min C1ðx1; x2Þ :¼ 2 ð1 2 mÞ

x1 þ x2

2

� �
2 x2 þ m ð26Þ

s:t: x1 $
x1 þ x2

2

� �2

:

It is clear that:

›C1ðx1; x2Þ

›x1

¼ 1 2 m $ 0:

Since the function C1(x1,x2) is increasing in x1 and x1 $ x1þx2

2

� �2
we have that

C1ðx1; x2Þ $ C1ðt; x2Þ;

where t ¼ tþx2

2

� �2
: Thus, since x2 $ 0; this implies that x2 ¼ 2

ffiffi
t

p
2 t (notice that 2

ffiffi
t

p
2

t $ t for all t $ 0).Therefore, solving (26) is equivalent to solving the following problem;

x1[½0;1�
min 2ð1 2 mÞ

ffiffiffiffiffi
x1

p
2 2

ffiffiffiffiffi
x1

p
þ x1 þ m ¼

x1[½0;1�
min x1 þ ð1 2 2

ffiffiffiffiffi
x1

p
Þm;

and this problem reaches its minimum at the point x1 ¼ m2: Hence, x2 ¼ 2m2 m2 and the

minimum objective value is m 2 m 2. A

Case 2: x1 # x1þx2

2

� �2

Notice that in Case 1, we have already studied the points (0,0) and (1,1). Therefore, in what

follows, we can assume without loss of generality that (x1,x2) is neither (0,0) nor (1,1).

In this case, the function C(x1,x2,p1) is increasing in p1. Since p [ Tðx1; x2Þ we have that

p0 ¼ 1 2 mþ p1ð
x1þx2

2
2 1Þ; p2 ¼ m2 p1

x1þx2

2
; 0 # p0 # 1 and 0 # p2 # 1 then, we

have that,

a) 0 # ð1 2 mÞ2 p1ð1 2 x1þx2

2
Þ # 1; that is, 2 m

12
x1þx2

2

# p1 #
12m

12
x1þx2

2

if ðx1; x2Þ –
ð1; 1Þ:

b) 0 # m2 p1
x1þx2

2
# 1; that is, 2 12m

x1þx2
2

# p1 #
m

x1þx2
2

if ðx1; x2Þ – ð0; 0Þ:

Using that p1 $ 0; 2 m

12
x1þx2

2

# 0 and 2
12m
x1þx2

2

# 0 the previous conditions reduce to;

a) p1 #
12m

12
x1þx2

2

b) p1 #
m

x1þx2
2

:

Hence, p1 # min 12m

12
x1þx2

2

; m
x1þx2

2

� �
and to study this minimum we distinguish two cases;
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. Case 2.1: If x1þx2

2
$ m then 12m

12
x1þx2

2

$
m

x1þx2
2

; thus p1 #
m

x1þx2
2

:

. Case 2.2: If x1þx2

2
# m then 12m

12
x1þx2

2

#
m

x1þx2
2

; thus, p1 #
12m

12
x1þx2

2

:

Since the function C(x1,x2,p1) is increasing in p1, in Case 2.1. its maximum in p1 is reached

at p1 ¼ m
x1þx2

2

and in Case 2.2 at p1 ¼ 12m

12
x1þx2

2

:
Hence, to find the maximum of the function C(x1,x2,p1) we have the following two cases:

. Case 2.1: p1 ¼ m
x1þx2

2

:

. Case 2.2: p1 ¼ 12m

12
x1þx2

2

:

Case 2.1: p1 ¼ m
x1þx2

2In this case, Problem (25) reduces to the following optimization problem

0#x1#x2#1
min C2ðx1; x2Þ :¼ x1 1 2

2m
x1þx2

2

 !
þ m

s:t: : x1 #
x1 þ x2

2

� �2

m #
x1 þ x2

2
:

We obtain that

›C2ðx1; x2Þ

›x2

¼ m
x1

x1þx2

2

� �2
$ 0:

Therefore, C2(x1,x2) is a increasing function in x2. Since in this case, (x1,x2) satisfies that

x2 $ 2m2 x1 and x2 $ 2
ffiffiffiffiffi
x1

p
2 x1 we have that

C2ðx1; x2Þ $ C2ðx1; tÞ

where

. t ¼ 2m2 x1 if x1 # m2

. t ¼ 2
ffiffiffiffiffi
x1

p
2 x1 if x1 $ m2:

Thus,

a) If x1 # m2 we have that

x1;x2[½0;1�
min C2ðx1; x2Þ ¼

x1[½0;1�
min m2 x1:

b) If x1 $ m2 we have that

x1;x2[½0;1�
min C2ðx1; x2Þ ¼

x1[½0;1�
min x1 1 2

2mffiffiffiffiffi
x1

p

� �
þ m:
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Both cases give us the same optimal solution x1 ¼ m2 and x2 ¼ 2m2 m2 and its objective

value is m-m 2.

Case 2.2: p1 ¼ 12m

12
x1þx2

2

In this case, Problem (25) reduces to the following optimization problem

0#x1#x2#1
min C3ðx1; x2Þ :¼

x1;x2[½0;1�
min x2

1 2 m

1 2 x1þx2

2

2 1

 !
2 x1

1 2 m

1 2 x1þx2

2

þ m

s:t:x1 #
x1 þ x2

2

� �2

m $
x1 þ x2

2
:

We obtain that,

›C3ðx1; x2Þ

›x1

¼
ð1 2 mÞðx2 2 1Þ

ð1 2 x1þx2

2
Þ2

# 0:

That means that C3(x1,x2) is a decreasing function in x1. Since, in this case, (x1,x2) satisfies

that x1 # x1þx2

2

� �2
and m $ x1þx2

2
; we have that x1 # m2 then

C3ðx1; x2Þ $ C3ðm
2; x2Þ:

Thus, taking x1 ¼ m 2 we have that m $
m 2þx2

2
and m2 #

m 2þx2

2

� �2

; that is, x2 # 2m2 m2

and x2 $ 2m2 m2: (Notice that we do not have to consider the other solution x2 $

22m2 m2 since 22m2 m2 # 0 and x2 $ 0). Therefore, x2 ¼ 2m2 m2:
Since, all the cases give us the same optimal solution, the optimal solution to Problem (25)

is x1 ¼ m2 and x2 ¼ 2m2 m2:
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