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7 Abstract

8 The dynamic single-facility single-item lot size problem is addressed. The finite planning horizon is divided into

9 several time periods. Although the total demand is assumed to be a fixed value, the distribution of this demand among

10 the different periods is unknown. Therefore, for each period the demand can be chosen from a discrete set of values. For

11 this reason, all the combinations of the demand vector yield a set of different scenarios. Moreover, we assume that the

12 production/reorder and holding cost vectors can vary from one scenario to another. For each scenario, we consider as

13 the objective function the sum of the production/reorder and the holding costs. The problem consists of determining all

14 the Pareto-optimal or non-dominated production plans with respect to all scenarios. We propose a solution method

15 based on a multiobjective branch and bound approach. Depending on whether shortages are considered or not, dif-

16 ferent upper bound sets are provided. Computational results on several randomly generated problems are reported.

17 � 2002 Published by Elsevier Science B.V.

18 Keywords: Scenarios; Inventory; Multiple objective programming

19 1. Introduction

20 Since the late 1950s, special attention has been paid to the dynamic lot sizing problems. The interest lies

21 in the fact that these models fit a great number of real world problems. Wagner and Whitin [24], and in-

22 dependently, Manne [9] pioneered this field. They assumed a multiperiod planning horizon with known

23 demand, and proposed a procedure which is based on both the dynamic programming approach and the

24 zero inventory order (ZIO) property. This property states that, among all those optimal plans, there exists
25 at least one, in which for each period, the product between the stock level and the production/reorder must

26 be equal to zero. This cost-minimizing production/reorder schedule has interesting qualitative features. The

27 extension to backlogging was studied by Zangwill [25,27] and Manne and Veinott [10]. Also, Veinott [20]

28 introduced the case with convex costs.

29 Unlike the original dynamic lot size problem [24], where the demands through the whole horizon are

30 known, in this paper we consider that the demand vector is unknown rather than the total demand, which is
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31 assumed to be a fixed value. Furthermore, for each period, the demand can be chosen from a discrete finite

32 set. As a result, different scenarios can arise combining the different admissible values of the demand per

33 period. One of the most common examples for this problem are the promotions to clear stock. In this case,

34 although we know in advance the total number of items to be sold we can not determine an optimal reorder

35 plan because it is impossible to know with certainty how the demand is to occur period per period. Another
36 instance happens when a wholesaler of bricks should satisfy the demands for distinct builders. Despite the

37 wholesaler may know in advance the total demand of bricks needed to carry out the different constructions,

38 he does not know how this total demand is distributed through the planning horizon. However, the decision

39 maker can assume that the demand per period is taken from a discrete finite set. Besides, we allow in our

40 model that the production/reorder and holding cost vectors change from one scenario to another. Taking

41 into account these assumptions, the decision maker can not predict what scenario is to occur. Therefore,

42 this problem concerns with the optimization under uncertainty and, it takes place when a firm has to make

43 a decision under variable market conditions. In fact, the uncertainty is present up to a point in almost all
44 the decisions made in the real world.

45 How to handle the uncertainty in the scenario occurrence is not easy at all. One may want to come up

46 with a unique solution using conservative techniques or the principle of incomplete reason (utilities). On the

47 other hand, one may want to obtain the whole range of solutions that are non-dominated component-wise,

48 as a first step in the analysis of the problem, in order to shed light on the decision process. This set can be

49 seen as a sensitivity analysis of the admissible solutions of the scenario problem for any �a priori� infor-
50 mation on the occurrence of the scenarios. The former analysis is normative: it prescribes a concrete course

51 of action (based on a utility), the latter is descriptive: it informs on the variability of the solution space.
52 Both analyses have advantages and disadvantages. The final decision should be made according to the goals

53 of the decision-maker. Notice that our goal in this paper is to study the second approach. It is worth re-

54 marking that similar analysis has been followed for other scenario problems in the recent literature of

55 operations research (see for instance [4,5,13,16]).

56 Dantzig [7] mentions the importance of considering uncertainty in the systems. In this sense, the so-

57 called scenario analysis has been developed to deal with the problem of the uncertainty. Assuming that all

58 the different situations of the system can be identified, this approach calculates the non-dominated solu-

59 tions. These solutions are robust with respect to any possible occurrence because they are non-dominated,
60 component-wise, by any other. Therefore, the approach consists of obtaining the Pareto-optimal solution

61 set.

62 This article is devoted to the problem of determining the Pareto-optimal policies for the multiscenario

63 dynamic lot sizing problem. For each scenario, we assume a planning horizon split into N periods. Three N -
64 tuple vectors represent the input data for each scenario: a deterministic demand vector, the carrying cost

65 vector and the replenishment cost vector. Also, in the backlogging case, a shortage cost vector is consid-

66 ered. As usual, the overall cost function consists of the sum of carrying and replenishment costs. The goal is

67 to schedule production/reorder in the various periods of each scenario so as to satisfy demand at minimal
68 cost simultaneously in all the scenarios.

69 The problem introduced in this paper fits into the multiobjective combinatorial optimization (MOCO).

70 MOCO problems are an emergent area of research in many fields of operations research (see e.g. [6,19]).

71 Nowadays, MOCO (see [3,19]) provides an adequate framework to tackle various types of discrete mul-

72 ticriteria problems. Within this research area, several methods are known to handle different problems. Two

73 of them are dynamic programming enumeration (see [22] for a methodological description and Klamroth

74 and Wiecek [8] for a recent application to knapsack problems) and implicit enumeration [15,28,29]. In

75 particular, the branch and bound scheme corresponds to an implicit enumeration method and, although it
76 is widely used in the single objective case, only a few papers apply this technique for MOCO since bounds

77 may be difficult to compute (see, e.g. [1,14,21]. The reader is referred to [3] for a complete survey of MOCO

78 methods).
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79 It is worth noting that most of MOCO problems are NP -hard and intractable. In most cases, even if the
80 single objective problem is polynomially solvable the multiobjective version becomes NP -hard. This is the
81 case of spanning tree problems and min-cost flow problems, among others. As we have mentioned, an

82 important tool to deal with these problems is the multicriteria dynamic programming (MDP) [3]. In the

83 single objective case Morin and Esoboque [11] exploited the embedded-state recursive equations to over-
84 come many of the problems caused by the curse of the dimensionality (see, for example, [2,12]). As an

85 extension of the previous result, Villarreal and Karwan [22] introduced a procedure based on the dynamic

86 multicriteria discrete mathematical programming (DMDMP) to generate the Pareto-optimal solution set

87 for problems with more than one objective function. We will make use of these techniques to resolve our

88 model. In this context, when time and efficiency become a real issue, different alternatives can be used to

89 approximate the Pareto-optimal set. One of them is the use of general-purpose MOCO heuristics [6].

90 Another possibility is the design of �ad hoc� methods based on computing the extreme non-dominated
91 solutions. Obviously, this last strategy does not guarantee that we obtain the whole set of non-dominated
92 solutions. Nevertheless the reduction in computation time can be remarkable.

93 The rest of this paper is organized as follows. Section 2 introduces the notation and the model. In Section

94 3, we show that when the objective function is concave and shortages are not allowed, the extreme points of

95 the region of feasible production plans satisfy a modified version of ZIO property, and that the Pareto-

96 optimal set will always contain modified ZIO solutions. Therefore, we propose an algorithm to compute

97 this approximated solution set: the non-dominated modified ZIO policies. A subset of such policies will be

98 used later as initial upper bound set in the general algorithm. Furthermore, in Section 4, when shortages are

99 allowed, we show that the polyhedron extreme points hold a modified version of the property for the single
100 scenario case. Again, a subset of the non-dominated policies satisfying the latter property are proposed as

101 the initial upper bound set for the algorithm when shortages are allowed. In Section 5, we propose a MDP

102 that solves the problem and a branch and bound scheme to reduce the computational burden of the above

103 MDP. Also, in Section 6, computational results are reported for a set of dynamic multiscenario lot size

104 problems. Finally, Section 7 contains conclusions and some further remarks.

105 2. Notation and statement of the problem

106 We consider a dynamic production/inventory system with a finite planning horizon of N periods where
107 an external known demand must be met at minimal cost. It is assumed that M scenarios or replications of

108 that system are to be considered simultaneously and a unique (robust) policy belonging to the Pareto-

109 optimal set is to be implemented. These replications model uncertainty in the parameter estimation, since

110 neither the true values of the parameters of the system nor a probability distribution over them are known

111 before hand. Therefore, we look for compromise solutions which must behave acceptably well in any of the

112 admissible scenarios. This sort of system represents a multiple/serial decision process, since each scenario
113 behaves as a serial multiperiod decision system and each production/reorder decision implies a parallel

114 decision process. A graphical representation of this process is shown in Fig. 1.

115 Throughout we use the following notation:

116 hjið�Þ holding cost for the jth period in the ith scenario.
117 cjið�Þ production/reorder cost for the jth period in the ith scenario.
118 Iji inventory on hand at the end of the jth period in the ith scenario.
119 dji the demand for the jth period in the ith scenario.
120 D the total demand ð

PN
j¼1 d

j
i ¼

PN
j¼1 d

j
s for any i and s in f1; . . . ;MgÞ.

121 xj the production/reorder quantity for the jth period.
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122 We assume, without loss of generality, that I0i ¼ INi ¼ 0 for i ¼ 1; . . . ;M .
123 The following definitions are required to simplify the formulation of the problem. Given a production/

124 reorder vector x ¼ ðx1; . . . ; xN Þ 2 NN
0 , the inventory level vector for a scenario i is denoted by

125 IiðxÞ ¼ ðI1i ; . . . ; INi Þ, where

I ji ¼ Ij�1i þ xj � dji ; j ¼ 1; . . . ;N : ð1Þ
127 In addition, the cumulative cost from period j to period k in scenario i is given by

Rj;k
i ðxÞ ¼

Xk
t¼j

rtiðxt; I ti Þ; ð2Þ

129 where rtiðxt; I ti Þ ¼ ctiðxtÞ þ htiðI ti Þ:
130 Therefore, the total cost vector R xð Þ in all the scenarios for a production/reorder vector x 2 NN

0 is as

131 follows

RðxÞ ¼ R1;N1 ðxÞ; . . . ;R
1;N
M ðxÞ

� �
: ð3Þ

133 Then, the Pareto-optimal or non-dominated production/reorder plans set P can be stated as

P ¼ fx 2 NN
0 : there is no othery 2 NN

0 : RðyÞ6RðxÞ;
with at least one of the inequalities being strictg; ð4Þ

Fig. 1. The multiscenario lot size problem scheme.
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135 where RðyÞ6RðxÞ means that R1;Ni ðyÞ6R1;Ni ðxÞ for i ¼ 1; . . . ;M .
136 Using the previous definitions, we can state the dynamic multiscenario lot size problem (DMLSP), or P
137 for short, as follows:

ðP Þ v�minðR1;N1 ðxÞ; . . . ;R
1;N
M ðxÞÞ

s:t: :
I0i ¼ INi ¼ 0; i ¼ 1; . . . ;M ;

Ij�1i þ xj � Iji ¼ dji ; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;
xj P 0; integer; j ¼ 1; . . . ;N ;
Iji P 0; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;

ð5Þ

139 where v�min stands for finding the Pareto-optimal set. Thus, the goal consists of determining the Pareto-
140 optimal solutions with respect to the M objective functions. The first constraint in P forces both the initial
141 and the final inventory level to be zero in all the scenarios. The second constraint set concerns the well

142 known material balance equation, and hence it states the flow conservation among periods in all the sce-

143 narios. Production/reorder quantity must be always a non-negative integer. Finally, the last constraints set

144 in P disallows shortages.
145 Since the single objective version for this problem can be solved using a dynamic programming algo-
146 rithm, it seems reasonable to apply MDP for problem P : Accordingly, let F ðj; Ij�11 ; . . . ; Ij�1M Þ be the set of the
147 reachable non-dominated values, which correspond to production/reorder subplans (subpolicies) from the

148 state ðIj�11 ; . . . ; Ij�1M Þ at period j. Since there are finitely many non-negative integers xj that satisfy (1), the
149 principle of optimality gives rise to the following functional equation:

F ðj; ðI j�11 ; . . . ; Ij�1M ÞÞ ¼ v�min
xj2N0

cj1ðxjÞ
..
.

cjMðxjÞ

264
375

8><>: þ
hj1ðI

j�1
1 þ xj � dj1Þ

..

.

hjMðI
j�1
M þ xj � djMÞ

264
375
 F ðjþ 1; ðIj1; . . . ; I

j
MÞÞ

9>=>;; ð6Þ

151 where A
 B ¼ faþ b : a 2 A; b 2 Bg for any two sets A;B.
152 Therefore, the set of Pareto-optimal production/reorder plans of problem P is given by the policies
153 associated with the vectors in the set F ð1; 0; . . . ; 0Þ, and hence MDP algorithms give a solution for our
154 problem. However, due to the inherent curse of the dimensionality of the MDP approach, we introduce a
155 branch and bound scheme to decrease the running times of the solution method. For this reason, before

156 introducing our procedure, we propose two upper bound sets to be applied in the branch and bound al-

157 gorithm. According to Villarreal and Karwan [22], a set of upper bounds is a set of vectors such that each

158 element is either efficient or is dominated by at least one efficient solution. Thus, the first upper bound set

159 concerns the case without shortages and the second one represents the upper bound set for when stockouts

160 are allowed.

161 In the next section, we propose an initial upper bound set assuming that both the carrying and the

162 production/reorder costs are concave and stockouts are not permitted.

163 3. Case without shortages

164 In this section we assume that the cost function Rj;k
i ðxÞ is concave in x for i ¼ 1; . . . ;M , j ¼ 1; . . . ;N and

165 kP j. Therefore, the following inequality holds:

R1;Ni ðxþ 1Þ � R1;Ni ðxÞ6R1;Ni ðxÞ � R1;Ni ðx� 1Þ; ð7Þ
167 where the plan x� 1 differs from plan x only in two periods where one unit of production/reorder is added

168 or subtracted. In other words, let j and k be the periods (components) where the plan x is to be modified,
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169 then xþ 1 equals to x excepting in period j where one more production/reorder unit is added and in period
170 k where one production/reorder unit is subtracted. On the other hand, the plan x� 1 equals to x excepting

171 in the period j in which one production/reorder unit is subtracted and in period k where one production/
172 reorder unit is added.
173 Notice that the single objective model [24] can be formulated as a network flow problem [26]. Consid-

174 ering concave costs, the solutions for the single objective version of this problem lie on extreme points of the

175 feasible polyhedron. Furthermore, for each partition over the state set, there is always a representative plan

176 satisfying that Ij�1xj ¼ 0 for any period j: This property is commonly known as zero inventory ordering
177 (ZIO). Therefore, we can use a OðN 2Þ algorithm [24] to determine the minimum cost plan via pairwise

178 comparison.

179 We define now the ZIO property for the multiscenario case as follows: a plan x is said to be ZIO for P if
180 and only if

xjminfIj�11 ; . . . ; I j�1M g ¼ 0 for j ¼ 1; . . . ;N : ð8Þ
182 It is worth noting that this modification is the natural extension of the corresponding property in the
183 scalar case. As it will be shown subsequently, efficient ZIO policies play an important role in the deter-

184 mination of the Pareto set because they represent the set of basic solutions, namely, extreme solutions of P .
185 For the sake of simplicity, we formulate problem P as a multicriteria network flow problem since efficient
186 ZIO plans correspond to acyclic flows in the network as well. Accordingly, assuming non-negative concave

187 costs, the underlying network for this problem, depicted in Fig. 2, is as follows. Let G ¼ ðV ;EÞ be a directed
188 network, where V stands for the set of n ¼ ðN þ 2ÞM þ 1 nodes, and E represents the set of m ¼ 3MN edges.
189 The nodes are classified in: production/reorder node (node 0), demand per scenario nodes nds, s ¼ 1; . . . ;M ,

Fig. 2. The network of problem P .
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x1 x2 � � � xN I11 � � � IN�11 IN1 � � � I1M � � � IN�1M INM
ð0; 1Þ ð0; 2Þ � � � ð0;NÞ ð1; 2Þ � � � ðN � 1;NÞ ðN ;N þ 1Þ � � � ð1; 2Þ � � � ðN � 1;NÞ ðN ;N þ 1Þ

0 1 1 � � � 1 0 � � � 0 0 � � � 0 � � � 0 0

1 )1 0 � � � 0 1 � � � 0 0 � � � 0 � � � 0 0
2 0 )1 � � � 0 )1 � � � 0 0 � � � 0 � � � 0 0
..
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.
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..
. . .

. . .
. . .

. . .
.
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.
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190 and intermediate nodes. The intermediate nodes are organized per layers. Thus, in layer j, there are M
191 nodes denoted by njs s ¼ 1; . . . ;M , j ¼ 1; . . . ;N þ 1.
192 There are M arcs from node 0 to each layer. The flow entering these arcs is equal. It can be seen as a

193 single flow that is virtually multiplied M times so that the same amount is directed to each one of the nodes

194 in this layer. These arcs can be considered as a pipeline that at a certain point is transformed into M
195 branches. Each one of these branches receives exactly the same flow that the one that enters through the

196 initial node of the arc. The arc from production/reorder node 0 to layer j is related to the production/re-
197 order variable xj in period j. The virtual multiplication of the production/reorder is because the different
198 scenarios do not occur simultaneously in reality. Actually, only one of them is to occur, and we are con-

199 sidering simultaneous (parallel) network flow problems with the same kind of input. The arc from 0 to njs
200 has a cost cjsð�Þ, s ¼ 1; . . . ;M and j ¼ 1; . . . ;N :
201 In addition, there are also arcs from njs to n

jþ1
s s ¼ 1; . . . ;M and j ¼ 1; . . . ;N : Each arc in this category is

202 an inventory arc associated to the state variables I js and its cost is h
j
sð�Þ: Finally, there are arcs leaving each

203 node njs towards nds with values d
j
s s ¼ 1; . . . ;M and j ¼ 1; . . . ;N :

204 We proceed now to show that non-dominated ZIO policies represent the set of extreme solutions of

205 problem P . Previously, let us consider first the explicit representation of the multicriteria node-arc incidence
206 matrix A of the network:
207 Notice that each block of N þ 2 rows represents a scenario and the columns are divided in two groups:
208 the first N columns are related to the arcs from the producer node to the N periods, and the rest of columns
209 concern the inventory holding between two consecutive periods for each scenario. Using the above matrix A
210 and denoting by x ¼ ðx1; . . . ; xN Þ and I ¼ ðI11 ; . . . ; IN1 ; . . . ; I1M ; . . . ; INMÞ it is straightforward that we get the
211 constraints set of problem P as follows:

ðx; IÞAt ¼ �ð�D; d11 ; . . . ; dN1 ; 0; . . . ;�D; d1M ; . . . ; dNM ; 0Þ:

Proposition 1. The constraint matrix A for problem P has rank MN þ 1.

214 Proof. Indeed, each block of N þ 2 rows has one row (e.g. the last one) being linearly dependent since the
215 sum by blocks equals zero. According to this argument, the rank is, at most, MðN þ 1Þ. In addition, in the
216 remaining matrix the row corresponding to node 0 appears M times (one per block), hence ðM � 1Þ of them
217 could be removed resulting in a matrix with MN þ 1 rows.
218 Now, removing the last constraint in each block and using the columns corresponding to

219 xN ; I11 ; . . . ; I
N
1 ; . . . ; I

1
M : . . . ; I

N
M , a triangular matrix is obtained with elements in the diagonal equal to one.

ð9Þ

221 Therefore, since a submatrix with rank MN þ 1 exists the result follows. �
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222 The following theorem states that the basic solutions for our problem fulfill that the demand in each

223 period is satisfied from either the production/reorder in that period or the units carried in the inventory, but

224 not by both simultaneously. Thus, in the underlying network of the problem, each node (excepting the

225 production/reorder node) is attainable either from the production/reorder node or from the predecessor

226 holding node, but never from both. Hence, the graph associated to the non-null variables of any feasible
227 basic solution verifies for any period j : xjminfI j�11 ; . . . ; Ij�1M g ¼ 0:

228 Theorem 2. Any basic solution of problem P fulfills that xjminfIj�11 ; . . . ; I j�1M g ¼ 0 for any period j,
229 j ¼ 1; . . . ;N .

230 Proof. Assume without loss of generality that the variables x1; x2 are non-null. Let us consider the columns
231 that correspond with these variables and the inventory carrying variables from period 1 to 2, i.e. I11 ; . . . ; I

1
M .

232 The matrix has two columns ð0; 1Þ and ð0; 2Þ, for the variables x1 and x2; and M columns, one per scenario
233 for the I1s variables s ¼ 1; . . . ;M .

x1 x2 I11 I12 � � � I1M
ð0; 1Þ ð0; 2Þ ð1; 2Þ ð1; 2Þ � � � ð1; 2Þ
þ � þ þ � � � þ
1 1 0 0 � � � 0

�1 0 1 0 � � � 0

0 �1 �1 0 � � � 0

..

. ..
.

0 0 0 0 � � � 0

1 1 0 0 � � � 0

�1 0 0 1 � � � 0

0 �1 0 �1 � � � 0

..

. ..
.

0 0 0 0 � � � 0

1 1 0 0 � � � 0

�1 0 0 0 � � � 1

0 �1 0 0 ��� �1
� � �

0 0 0 0 � � � 0

266666666666666666666666666666666666664

377777777777777777777777777777777777775

:

235 It is easy to see that the linear combination of columns with coefficients þ1;�1;þ1; � � � ;þ1 gives the null
236 vector. Therefore, all the considered variables can not be part of any basic solution. Hence, the condition
237 holds. �

238 For linear cost problems this results implies that there is always a non-dominated ZIO policy. However,

239 for general concave cost problems this results must be proven.

240 Proposition 3. The Pareto-optimal solution set of problem P contains, at least, one ZIO policy.

241 Proof. Assume that all ZIO policies are dominated. Let z be a non-extreme efficient point such that z makes
242 the function R1;Ni ð�Þ minimal. That is, z is a plan with cost smaller than or equal to the rest of non-domi-
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243 nated policies in the ith scenario. We can assert that z exists, otherwise, the efficient point that minimizes
244 R1;Ni ð�Þ would be an extreme point and the theorem would follow. Furthermore, assume x being a feasible

245 extreme point such that the following inequality holds:

R1;Ni ðzÞ < R1;Ni ðxÞ:
247 We can also guarantee that x always can be found, otherwise, R1;Ni ðzÞ ¼ R1;Ni ðxÞ for all the extreme points
248 x, that is, the ith component of the cost vector of x equals to the minimal value for this component and z

249 could have been taken an extreme point.

250 Also, by concavity of the cost functions, the following expression must be fulfilled:

R1;Ni ðhzþ ð1� hÞxÞP hR1;Ni ðzÞ þ ð1� hÞR1;Ni ðxÞ;
252 where h is a scalar that ranges in ½0; 1
.
253 In addition, let p be a point on a facet of the feasible set such that p is aligned with z and x; and z can be

254 expressed as a convex combination of p and x. Hence, the following inequality holds:

R1;Ni ðhxþ ð1� hÞpÞP hR1;Ni ðxÞ þ ð1� hÞR1;Ni ðpÞ:
256 Since z is minimal for R1;Ni ð�Þ

R1;Ni ðzÞ6R1;Ni ðpÞ:
258 Taking ĥh such that z ¼ ĥhxþ ð1� ĥhÞp, the following contradiction occurs

R1;Ni ðĥhxþ ð1� ĥhÞpÞ ¼ R1;Ni ðzÞP ĥhR1;Ni ðxÞ þ ð1� ĥhÞR1;Ni ðpÞ:
260 Notice that R1;Ni ðzÞ < R1;Ni ðxÞ and R1;Ni ðzÞ6R1;Ni ðpÞ, then we have that

R1;Ni ðzÞP ĥhR1;Ni ðxÞ þ ð1� ĥhÞR1;Ni ðpÞ > ĥhR1;Ni ðzÞ þ ð1� ĥhÞR1;Ni ðzÞ ¼ R1;Ni ðzÞ:
262 That is, R1;Ni ðzÞ > R1;Ni ðzÞ. �

263 Since we know that there exist Pareto policies satisfying the ZIO property and the procedure in (6) that

264 computes the complete Pareto set has a large complexity, we are now interested in determining the Pareto
265 policies within the ZIO plans. This may be considered in some cases as an approximation to the actual

266 Pareto set (indeed, ZIO plans coincide with extreme solutions as Theorem 2 shows). The fact is that the

267 non-dominated ZIO policies represent an initial upper bound set to be used in the branch and bound al-

268 gorithm.

269 In order to compute the Pareto ZIO plans, we need to introduce some notation. Let IðjÞ denote the set of
270 state vectors at the beginning of period j. Notice that Ið0Þ ¼ IðN þ 1Þ ¼ ð0; . . . ; 0Þ. In addition, let
271 Dj;k

i ¼
Pk�1

t¼j d
t
i be the accumulated demand from period j to k in scenario i and let ðI

j�1
1 ; . . . ; Ij�1M Þ 2 IðjÞ be a

272 given state vector in period j. Moreover, let us admit that there is a null component in ðIj�11 ; . . . ; Ij�1M Þ, hence
273 the decision variable xj should be distinct to zero to prevent shortages. Thus, the feasible decisions set
274 corresponding to a state vector ðIj�11 ; . . . ; Ij�1M Þ in period j is given by

Wðj; ðIj�11 ; . . . ; Ij�1M ÞÞ ¼
0; if Ij�1i > 0 for all i;
max
16 i6M

f0;Dj;k
i � I j�1i g; k ¼ jþ 1; . . . ;N þ 1; otherwise:

(
276 Assuming that ðI j�11 ; . . . ; Ij�1M Þ contains a component equal to zero, it can be easily proved that any decision
277 xj 6¼ max16 i6M f0;Dj;jþl

i � Ij�1i g, l ¼ 1; . . . ;N þ 1� j, results in a non-ZIO policy.
278 Accordingly, given a period j and an inventory vector ðIj�11 ; . . . ; I j�1M Þ 2 IðjÞ, the set F ðj; ðI

j�1
1 ; . . . ; Ij�1M ÞÞ

279 of cost vectors corresponding to Pareto ZIO subpolicies for the subproblem with initial inventory vector

280 ðIj�11 ; . . . ; Ij�1M Þ is as follows:
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F ðj; ðI j�11 ; . . . ; Ij�1M ÞÞ ¼ v�min
xj2Wðj;ðIj�11

;...;Ij�1M ÞÞ

cj1ðxjÞ
..
.

cjMðxjÞ

264
375

8><>: þ
hj1ðI

j�1
1 þ xj � Dj;jþ1

1 Þ
..
.

hjMðI
j�1
M þ xj � Dj;jþ1

M Þ

264
375
 F ðjþ 1; ðIj�11

þ xj � Dj;jþ1
1 ; . . . ; Ij�1M þ xj � Dj;jþ1

M ÞÞ

9>=>;: ð10Þ

282 Notice that the whole set of Pareto ZIO policies for P is determined when F ð1; ð0; . . . ; 0ÞÞ is achieved.

283 Proposition 4. The MDP algorithm for problem (10) runs in Oð4NM2Þ.

284 Proof. Given an initial inventory vector ðIj�11 ; . . . ; I j�1M Þ 2 IðjÞ, it is clear that xj can only take values in
285 Wðj; ðIj�11 ; . . . ; Ij�1M ÞÞ to satisfy property (8). Thus, if I

j�1
i 6¼ 0 for all i, the number of decisions for state

286 ðIj�11 ; . . . ; Ij�1M Þ is at most N � jþ 1, otherwise the unique decision is xj ¼ 0. Each different decision leads to a
287 new state vector in the following period, hence the maximum number of states at the beginning of stage jþ 1
288 is N � jþ 1 as well. Remark that the computational effort to make up the accumulated demands matrix
289 DMxN ¼ fdi;j ¼ Dj;Nþ1

i g is OðMNÞ, and also OðMðN � jÞ þ 1Þ comparisons must be carried out to obtain the
290 maximum values. Hence, the determination ofWðj; ðIj�11 ; . . . ; Ij�1M ÞÞ requires of OðMðN � jÞ þ 1Þ operations.
291 By virtue of the ZIO property, there are at most two vectors reaching one state in period 2 and, at most,
292 four vectors can achieve any state in period 3. In general, in one state of period j there are at most 2j�1

293 vectors to be evaluated via pairwise comparisons. Therefore, the number of comparisons for one state of

294 period j is given by Oðð2j�1ð2j�1 � 1Þ=2ÞMÞ: Accordingly, the number of comparisons in period j is
295 Oððð2j�1ð2j�1 � 1Þ=2ÞMÞðMðN � jÞ þ 1ÞÞ: Thus, the procedure carries out OðM

PN
j¼2 2

j�2ð2j�1 � 1Þ
296 ðMðN � jÞ þ 1ÞÞ comparisons, and hence the complexity is Oð4NM2Þ. �

297 As Proposition 4 states, the implicit enumeration process of the whole set of efficient ZIO policies for P
298 requires a number of operations which grows exponentially with the input size. This is not a surprising
299 result since the multicriteria network flow problem, which is in general NP -hard (Ruhe [17]), can be reduced
300 to the problem we deal with.

301 From the computational point of view, the algorithm based on (10) is inefficient, hence we propose a

302 different approach to obtain an approximated solution set. This method consists of obtaining the optimal

303 solution for each scenario in OðN 2Þ. Notice that, as a consequence of disallowing shortages, some of these
304 solutions could be infeasible for problem P . In this case, all the scenarios with infeasible solutions are solved
305 again using a demand vector where each component corresponds to the marginal maximum demand,

306 namely, the jth value in this vector coincides with ðmax16 i6M fD1;jþ1i g �max16 i6M fD1;ji gÞ: Remark that
307 the demand vector obtained in this way is a ZIO plan and, hence, is feasible for P . Moreover, the com-
308 putational effort to determine this set of policies is OðMN 2Þ: In addition, these plans can also be used as the
309 starting upper bound set of the branch and bound scheme when shortages are not permitted.

310 We proceed below to analyze the case when both the carrying and the production/reorder costs are

311 concave and shortages are permitted.

312 4. Case with shortages

313 This section is devoted to the case in which inventories on hand are not restricted to be positive. When I ji
314 is negative, it now represents a shortage of �I ji units of unfilled (backlogged) demand that must be satisfied
315 by production/reorder during periods j through N .
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316 We assume, for simplicity, that hjiðIji Þ represents the holding/shortage unit cost function for period j in
317 scenario i. When I ji is non-negative, h

j
iðIji Þ remains equal to the cost of having Iji units of inventory on hand

318 at the end of period j in scenario i. When I ji is negative, h
j
iðIji Þ becomes the cost of having a shortage of �Iji

319 units of unfilled demand on hand at the end of period j in scenario i.
320 In the single scenario version, there exists at least one period with inventory on hand equal to zero
321 between two consecutive periods with production/reorder different from zero [25,27]. That is, if xj > 0 and
322 xl > 0 for j < l, then Ik ¼ 0 for at least one k so that j6 k < l. This idea is exploited to develop an OðN 3Þ
323 algorithm to determine an optimal policy [27].

324 Assuming that inventory levels are unconstrained, we can adapt the previous property to the multi-

325 scenario case as follows:

If xj > 0 and xl > 0 for j < l; then Iki ¼ 0; for some i and k; j6 k < l: ð11Þ
327 Unlike the ZIO property for the multiscenario case, the above expression allow us to obtain all the plans

328 satisfying (11) independently. In other words, any plan satisfying (11) for one scenario is to be feasible for

329 the rest of scenarios, hence a straightforward approach to generate the whole plans set is to determine each

330 set (one per scenario) separately. Again, these plans play a relevant role for obtaining the Pareto set of
331 problem P with stockouts, since, as Theorem 5 shows, they represent the extreme points of the feasible set.
332 We can use again the network introduced in Section 3 to characterize the extreme solutions of P with
333 shortages. Accordingly, the following theorem states that such extreme points represent acyclic policies.

334 That is, demand in a period k is satisfied from the production/reorder either in a previous period ðj6 kÞ or
335 in a successor period ðlP kÞ. Therefore, in the underlying network of the problem, each node (excepting the
336 production/reorder node) is attainable from only one of the following nodes: the production/reorder node,

337 the predecessor holding node or the succesor backlogging node.

338 Theorem 5. Any basic solution for problem P with shortages is acyclic.

339 Proof. Following a similar reasoning to that in Theorem 2, let us select, for each block (scenario), any two

340 columns corresponding to production/reorder arcs in (9), e.g., columns j and l. Moreover, we select, for
341 each scenario, the columns related to periods j up to l. It is easy to see that a linear combination of these
342 columns with coefficients þ1;�1;þ1; . . . ;þ1 respectively, gives the null vector. Therefore, any basic so-
343 lution is acyclic. �

344 Proposition 6. The Pareto-optimal set of problem P with shortages contains, at least, one plan satisfying
345 property (11).

346 Proof. Similar to that in Proposition 3. �

347 Notice that not all the basic plans belong to the Pareto-optimal set and, the solution time required to

348 determine the whole non-dominated solutions set increases with the input data. Therefore, obtaining the

349 efficient plans among the extreme plans seems to be a reasonable approach, not only as approximation to
350 the real Pareto-optimal set but also as an upper bound set to be used in the branch and bound scheme.

351 Thus, taking into account that the feasible decisions set verifying (11) for one state ðI j�11 ; . . . ; Ij�1M Þ 2 IðjÞ is
352 as follows

Uðj; ðIj�11 ; . . . ; Ij�1M ÞÞ ¼
0; if Ij�1i > 0 for all i;

f0g [ f�Ij�1i þ Dj;k
i g;

k ¼ jþ 1; . . . ;N þ 1;
i ¼ 1; . . . ;M ;

otherwise:

8<:
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354 we can now determine the non-dominated cost vectors set for the state ðIj�11 ; . . . ; Ij�1M Þ in period j according
355 to the following functional equation:

F ðj; ðIj�11 ; . . . ; Ij�1M ÞÞ ¼ v�min
xj2Uðj;ðIj�11

;...;Ij�1M ÞÞ

cj1ðxjÞ
..
.

cjMðxjÞ

2664
3775þ

hj1ðI
j�1
1 þ xj � Dj;jþ1

1 Þ
..
.

hjMðI
j�1
M þ xj � Dj;jþ1

M Þ

2664
3775

8>><>>:

F ðjþ 1; ðIj�11 þ xj � Dj;jþ1

1 ; . . . ; Ij�1M þ xj � Dj;jþ1
M ÞÞ

9>>=>>;:

ð12Þ

357 Remark that when F ð1; ð0; . . . ; 0ÞÞ is evaluated, the non-dominated solutions set satisfying (11) is achieved.

358 Proposition 7. The MDP algorithm for the problem (12) runs in OððMðMN þ 1Þ2N Þ=ð2ðMNÞ2ÞÞ.

359 Proof. In period j, xj can take values from Uðj; ðIj�11 ; . . . ; Ij�1M ÞÞ. Accordingly, the maximum number of
360 states in any period is MðN � 1Þ þ 1. Also, in one state of period j there are, at most, ðMN þ 1Þj�1 vectors.
361 Therefore, at most, ðMðMN þ 1Þj�1ððMN þ 1Þj�1 � 1ÞÞ=2 comparisons have to be made. Consequently, the
362 total number of comparisons is O M

PN
j¼2 ððMN þ 1Þj�1ððMN þ 1Þj�1 � 1ÞÞ=2

� �
, and hence the procedure

363 runs in OððMðMN þ 1Þ2N Þ=ð2ðMNÞ2ÞÞ. �

364 Since the implementation of the algorithm based on (10) involves a number of operations, which in-

365 creases exponentially with the input size, we propose a different approach to obtain an approximated so-

366 lution set. This method consists of obtaining the optimal solution for each scenario in OðN 3Þ. Unlike the
367 case without shortages, all the single scenario solutions are to be feasible for problem P . Therefore, the
368 computational effort to determine the set of optimal solutions for each scenario is OðMN 3Þ, and these plans
369 are proposed as the starting upper bound set of the branch and bound scheme when shortages are allowed.

370 Once the initial upper bound sets for both shortages and not shortages situations have been introduced,

371 we present in the following section the branch and bound scheme, as well as an initial lower bound set to

372 determine the Pareto-optimal set.

373 5. The Pareto-optimal Set for the dynamic multiscenario lot size problem

374 Before introducing the solution method, we need some additional notation. Let Dj 2 NM
0 be a vector

375 where each component i ¼ 1; . . . ;M corresponds to D1;ji and, also, let T ðjþ 1; ðIj1; . . . ; I
j
MÞÞ denote the set of

376 cost vectors associated to subplans that attain the state vector ðIj1; . . . ; I
j
MÞ 2 Iðjþ 1Þ. That is,

T ðjþ 1; ðIj1; . . . ; I
j
MÞÞ ¼ fT ðj; ðI

j�1
1 ; . . . ; Ij�1M ÞÞ 
 ðr

j
1ðx; I

j
1Þ; . . . ; r

j
Mðx; I

j
MÞÞ : x 2 N0;

Ij�1i þ x� Dj;jþ1
i ¼ Iji ; for all i and ðIj�11 ; . . . ; Ij�1M Þ 2 IðjÞg:

378 Since we are interested in calculating the non-dominated policies that reach the state ð0; . . . ; 0Þ 2
379 IðN þ 1Þ, we must determine the efficient plans among those in T ðN þ 1; ð0; . . . ; 0ÞÞ via pairwise compar-
380 ison. As Villarreal and Karwan [22] pointed out, a necessary condition for a Pareto-optimal point is that it

381 must contain, as its first n� 1 components, an efficient solution to an ðn� 1Þ-stage problem, hence the
382 previous process must be applied in all the attainable states. Thus, the efficient subplans should be selected
383 in every attainable state. Therefore, we define T �ðjþ 1; ðIj1; . . . ; I

j
MÞÞ to be the set of non-dominated

384 subplans that attain the state ðIj1; . . . ; I
j
MÞ.
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385 Moreover, the interval for the decision variable x can be calculated according to the following argument:
386 the lot size for the state ðIj1; . . . ; I

j
MÞ must be at least equal to zero or max16 i6M f0;Djþ1;jþ2

i � Iji g, respec-
387 tively, depending on whether shortages are permitted or not. On the other hand, the upper bound for the

388 interval corresponds to the remaining quantity to reach the total demand, hence x ranges in

389 ½0;max16 i6M f0;Djþ1;Nþ1
i � Iji g
 in case of allowing shortages or in ½max16 i6M f0;Djþ1;jþ2

i � I ji g;
390 max16 i6M f0;Djþ1;Nþ1

i � Iji g
, otherwise. In addition, given a period j, let s be the scenario so that
391 D1;jþ1s ¼ max16 i6M fD1;jþ1i g: Then, we consider as initial state vector in IðjÞ either vector

392 ðD1;jþ1s � D1;jþ11 ; . . . ;D1;jþ1s � D1;jþ1M Þ, if shortages are not allowed, or vector ð�D1;jþ11 ; . . . ;�D1;jþ1M Þ otherwise.
393 Thus, the rest of vectors in IðjÞ are obtained just augmenting one unit each component as many times as
394 D� ðD1;jþ1s � D1;jþ1i Þ or D� ð�D1;jþ1i Þ for any i, respectively.
395 Taking into account that Ið1Þ ¼ IðN þ 1Þ ¼ ð0; . . . ; 0Þ, we can now outline the MDP algorithm.

396 Algorithm 1. Determine the Pareto-optimal set for problem P
397 DATA: matrices dji , c

j
i , h

j
i , numbers M and N , and sets IðjÞ; j ¼ 1; . . . ;N þ 1

398 1:for j N downto 1 do

399 2: for all state ðIj1; . . . ; I
j
MÞ 2 Iðjþ 1Þ do

400 3: for all state ðIj�11 ; . . . ; Ij�1M Þ 2 IðjÞ do
401 4: if Iji � Ij�1i þ dji P 0 and I ji � Ij�1i þ dji ¼ I js � Ij�1s þ djs for i 6¼ s then

402 5: xj ¼ Iji � Ij�1i þ dji
403 6: insert xj and its cost vector in state ðIj�11 ; . . . ; I j�1M Þ and update T �ðj; ðI

j�1
1 ; . . . ; Ij�1M ÞÞ

404 7: end if
405 8: end for

406 9: end for

407 10: end for

408 11: return T �ð1; ð0; . . . ; 0ÞÞ

409 Example 1. For the sake of completeness, we present the following numerical example to illustrate the

410 previous results for the case without shortages.

411 As you can see, all possible plans are collected in the graph depicted in Fig. 3. In this graph, each node
412 represents one state that is identified by its inventory level vector (in parenthesis). Also, within each node,

413 the partial cost vectors (in brackets) associated to subplans that attain this node are shown. Those subplans

414 which are dominated by any other subplan in the same node are marked with an asterisk. For each node,

415 the leaving arcs (arrows) represent the possible decisions for this node. The right-most node contains the

416 non-dominated solution set.

417 Fig. 3 illustrates also the case where a non-ZIO plan dominates a ZIO plan, namely, the ZIO plan

418 ð17; 0; 3Þ with cost vector f114; 326; 300g is dominated by the non-ZIO plan ð15; 3; 2Þ with cost vector
419 f113; 268; 200g.

dji cji hji
j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 1 5 10 5 5 5 5 1 1 0

i ¼ 2 10 6 4 10 2 5 20 1 0

i ¼ 3 15 2 3 5 5 5 100 100 0
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420 Since Algorithm 1 becomes untractable as the difference ðD�max16 i6M fd1i gÞ increases, a branch and
421 bound approach is proposed. We first focus our attention on the case without shortages. The other case is

422 commented later on. We should reformulate problem P without shortages in a more appropriate way.
423 Accordingly, we denote by ðIn1 ; . . . ; InMÞ 2 Iðnþ 1Þ a state vector at the beginning of period nþ 1, and let
424 P ðn; ðIn1 ; . . . ; InMÞÞ be the set of Pareto-values of the subproblem consisting of periods 1 to n with final in-
425 ventory vector ðIn1 ; . . . ; InMÞ. Therefore, we can now state the problem as follows

P ðn; ðIn1 ; . . . ; InMÞÞ ¼ v�min
Xn
j¼1

cj1ðxjÞ
"

þ
Xn�1
j¼1

hj1
Xj
k¼1

xk

 
� D1;jþ11

!
þ hn1ðIn1 Þ; . . .;

Xn
j¼1

cjMðxjÞ þ
Xn�1
j¼1

hjM
Xj
k¼1

xk

 
� D1;jþ1M

!
þ hnMðInMÞ

#

s:t: :
Xk
j¼1

xj PD1;kþ1i ; k ¼ 1; . . . ; n� 1; i ¼ 1 . . . ;M

Xn
j¼1

xj ¼ D1;nþ1i þ Ini ; i ¼ 1 . . . ;M ;

Fig. 3. Complete description of Pareto-optimal plans of Example 1.
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427 It is worth noting that P ðn; ðIn1 ; . . . ; InMÞÞ ¼ T �ðnþ 1; ðIn1 ; . . . ; InMÞÞ: Now, it can be determined the Pareto
428 values of the complementary problem P ðnþ 1; ðIn1 ; . . . ; InMÞÞ, i.e., the problem consisting of periods nþ 1 to
429 N with initial inventory vector ðIn1 ; . . . ; InMÞ, as follows

P ðnþ 1; ðIn1 ; . . . ; InMÞÞ ¼ v�min
XN
j¼nþ1

cj1ðxjÞ
"

þ
XN�1
j¼nþ1

hj1 In1

 
þ
Xj
k¼nþ1

xk � Dnþ1;jþ1
1

!

þ hN1 In1

 
þ
XN
k¼nþ1

xk � Dnþ1;Nþ1
1

!
; . . . ;

XN
j¼nþ1

cjMðxjÞ

þ
XN�1
j¼nþ1

hjM In1

 
þ
Xj
k¼nþ1

xk � Dnþ1;jþ1
M

!

þ hNM InM

 
þ
XN
k¼nþ1

xk � Dnþ1;Nþ1
M

!#

s:t: :
Xk
j¼nþ1

xj PDnþ1;kþ1
i � Ini ; k ¼ nþ 1; . . . ;N ; i ¼ 1 . . . ;M

XN
j¼nþ1

xj ¼ Dnþ1;Nþ1
i � Ini ; i ¼ 1 . . . ;M ;

431 Remark that when shortages are allowed, the first set of constraints in both formulations P and P should
432 be removed. Again, the optimality principle gives rise to the following recursive equation which provides

433 the Pareto-optimal set for P .

F ð1; ð0; . . . ; 0ÞÞ ¼ v�min
ðIn
1
;...;InM Þ2Iðnþ1Þn¼1;...;N

ðP ðn; ðIn1 ; . . . ; InMÞÞ 
 P ðnþ 1; ðIn1 ; . . . ; InMÞÞÞ:

435 These equations along with upper and lower bound sets allow us to introduce the branch and bound
436 scheme into the dynamic programming heap. According to Villarreal and Karwan [22], a set LB of lower
437 bounds for a vector-valued problem is a set of points that satisfy the following conditions: (i) each element

438 is either efficient or dominates at least one of the efficient solutions of the problem, and (ii) each efficient

439 solution is dominated by at least one member of the set, or it is indeed a member of the set. In addition,

440 recall that a set UB of upper bounds is a set of points such that each element is either efficient or is
441 dominated by at least one efficient solution.

442 Assume that we know both lower bounds LBðnþ 1; ðIn1 ; . . . ; InMÞÞ for each subproblem P ðnþ 1;
443 ðIn1 ; . . . ; InMÞÞ and also global upper bounds UB for the original problem F ð1; ð0; . . . ; 0ÞÞ.
444 Consider f 2 P ðn; ðIn1 ; . . . ; InMÞÞ such that for any lb 2 LBðnþ 1; ðIn1 ; . . . ; InMÞÞ : f þ lbP u for some

445 u 2 UB. It is straightforward that the branch generated by f needs not being explored. Indeed, u 2 UB and,
446 therefore, there exists bff efficient (it may occur that lb ¼ bff ) so that bff 6 u. Hence, bff 6 f þ lb6 fþ (any
447 feasible completion). This implies that no completion of f can be efficient.
448 Once the branch and bound scheme has been outlined, the following step consists of determining how

449 the UB and LB sets are initialized. We set the UB with the non-dominated ZIO policies which are obtained
450 in previous sections. On the other hand, different LB sets can be determined depending on the cost functions
451 type. In case of linear costs, we propose two sets. The first concerns with the continuous relaxation of the
452 problem. The second approach consists of determining the optimal policies for each scenario using the

453 Wagelmans et al. algorithm [23] and applying, for each pair of optimal plans, a procedure to calculate the

454 lower envelope. Another case arises when the cost functions are concave. Under this assumption, Theorem
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Table 1

Parameter values for ten randomly generated problems

d c h

1 2 3 1 2 3 1 2 3

P1

S1 6 3 3 3 7 5 1 2 x

S2 7 2 3 2 3 2 6 5 x

P2

S1 7 4 4 2 7 8 1 1 x

S2 3 7 5 3 4 4 1 5 x

S3 7 3 5 7 3 4 1 1 x

P3

S1 6 7 2 2 6 5 1 2 x

S2 5 7 3 6 2 1 3 3 x

S3 6 6 3 5 4 5 2 4 x

S4 7 7 1 1 3 7 4 5 x

d c h

1 2 3 4 1 2 3 4 1 2 3 4

P4

S1 5 7 5 3 5 5 7 5 1 1 1 x

S2 7 5 3 5 7 5 5 5 1 1 1 x

P5

S1 5 6 5 4 1 5 5 3 2 1 1 x

S2 4 5 6 5 6 4 2 2 3 3 2 x

S3 6 4 4 6 2 1 2 3 5 4 3 x

P6

S1 3 9 7 5 7 3 5 6 4 1 2 x

S2 7 5 6 6 5 4 4 5 4 3 3 x

S3 7 5 5 7 7 5 5 2 5 5 4 x

S4 8 4 4 8 3 4 5 4 3 3 5 x

P7

S1 5 2 7 7 6 7 2 3 1 1 2 x

S2 10 5 4 2 7 7 6 1 3 1 4 x

S3 6 6 4 5 4 4 5 3 4 1 1 x

S4 11 3 4 3 2 8 6 7 1 1 2 x

S5 9 2 6 4 3 5 7 6 1 2 2 x

d c h

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

P8

S1 8 2 6 5 4 8 7 5 7 6 4 3 3 1 x

S2 5 5 5 5 5 1 6 7 5 6 1 2 2 2 x

S3 4 4 5 6 6 2 2 3 2 1 5 6 7 6 x

P9

S1 9 5 6 2 3 7 5 2 7 6 5 6 1 1 x

S2 10 3 5 3 4 8 3 6 4 2 2 1 4 3 x

S3 7 4 7 4 3 6 4 5 5 4 4 3 5 2 x

S4 8 5 4 3 5 5 6 4 6 5 1 2 7 5 x
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455 8 shows that a linear conversion of the cost functions reduces to the problem of finding a LB set for the
456 original problem.

457 Theorem 8. The Pareto-optimal solution set obtained with any linear function LðxÞ ¼ ðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ

458 such that for any feasible x it holds R1;Ni ðxÞP L1;Ni ðxÞ, i ¼ 1 . . . ;M ; is a LB set for problem P .

459 Proof. Let us assume that the cost functions R1;ji defined in (2) are concave. Furthermore, let L1;Ni be a linear

460 function such that for any feasible x it holds R1;Ni ðxÞP L1;Ni ðxÞ, i ¼ 1 . . . ;M , and let

461 LðxÞ ¼ ðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ.

462 Let us denote LB ¼ LðEðL1;N1 ; . . . ; L1;NM ÞÞ where EðL1;N1 ; . . . ; L1;NM Þ is the set of Pareto-optimal solutions of
463 the problem

v�minðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ

s:t: :
I0i ¼ INi ¼ 0; i ¼ 1; . . . ;M ;

I j�1i þ xj � Iji ¼ dji ; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;
I ji P 0; xj integer; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;

465 Moreover, we denote by EðR1;N1 ; . . . ;R1;NM Þ the Pareto-optimal set of the original problem P . Accordingly,
466 if x 2 EðR1;N1 ; . . . ;R1;NM Þ then either x 2 EðL1;N1 ; . . . ; L1;NM Þ or x 62 EðL1;N1 ; . . . ; L1;NM Þ. In the first case,

467 LðxÞ ¼ ðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ 2 LB and hence LðxÞ6RðxÞ, where RðxÞ was defined in (3). In the second case,

468 it must exist y such that y 2 EðL1;N1 ; . . . ; L1;NM Þ and LðyÞ6
6¼
LðxÞ: Thus, LðyÞ 2 LB and LðyÞ6RðxÞ. Therefore,

469 LB is an actual lower bound for problem P . �

470 6. Computational experience

471 This section is divided into two parts. In the first part, the Pareto-optimal set for ten randomly generated

472 problems are reported. On the other hand, the second part is devoted to test the efficiency of the two al-

473 gorithms, the MDP procedure and the Branch and Bound (B&B) approach, as a function of both the

474 number of scenarios and the number of periods.

475 To simplify the computational experiment, we have chosen the cost functions to be linear and the in-
476 ventory levels to be non-negative. Taking into account these assumptions, the problems have been solved

477 using the procedure given in the previous section.

478 In this part, Tables 1 and 2 show the input data for ten problems and the non-dominated plans with their

479 overall cost vectors respectively. Table 1 is organized as follows: the first column indicates the number of

480 the problem, the rows represent the scenarios (Si represents the ith scenario) and the rest of columns give
481 for the different periods the values for the demand, unit holding cost and unit reorder cost respectively. This

482 computational experience involves problems with two scenarios and four periods up to problems with five

Table 1 (continued)

d c h

1 2 3 1 2 3 1 2 3

P10

S1 5 3 2 2 3 2 8 6 7 5 2 1 2 1 x

S2 7 3 2 1 2 6 3 5 5 2 5 3 2 4 x

S3 6 6 1 1 1 5 4 8 6 6 1 1 4 6 x

S4 8 1 3 1 2 4 8 7 6 5 4 2 5 3 x

S5 5 2 3 3 2 5 4 7 7 6 1 3 3 2 x
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483 scenarios and five periods. In Table 2, for each problem, the efficient plans with their respective costs are
484 allocated in consecutive cells of the same row.

Table 2

Pareto-optimal sets for the ten problems in Table 1

P1 f7; 2; 3g f8; 1; 3g f9; 0; 3g
ð51; 26Þ ð48; 31Þ ð45; 36Þ

P2 f7; 4; 4g f8; 3; 4g f9; 2; 4g f10; 1; 4g f11; 0; 4g
ð74; 62; 78Þ ð70; 62; 83Þ ð66; 62; 88Þ ð62; 62; 93Þ ð58; 62; 98Þ
f12; 0; 3g f13; 0; 2g f14; 0; 1g f15; 0; 0g
ð54; 67; 103Þ ð50; 72; 108Þ ð46; 77; 113Þ ð42; 82; 118Þ

P3 f7; 7; 1g f8; 6; 1g f9; 5; 1g f10; 4; 1g f11; 3; 1g
ð64; 69; 78; 35Þ ð61; 76; 81; 37Þ ð58; 83; 84; 39Þ ð55; 90; 87; 41Þ ð52; 97; 90; 43Þ
f12; 2; 1g f13; 1; 1g f14; 0; 1g
ð49; 104; 93; 45Þ ð46; 111; 96; 47Þ ð43; 118; 99; 49Þ

P4 f7; 5; 5; 3g f7; 6; 4; 3g f7; 7; 3; 3g f7; 8; 2; 3g f7; 9; 1; 3g
ð112; 116Þ ð111; 117Þ ð110; 118Þ ð109; 119Þ ð108; 120Þ
f7; 10; 0; 3g
ð107; 121Þ

P5 f6; 5; 5; 4g f7; 4; 5; 4g f8; 3; 5; 4g f9; 2; 5; 4g f10; 1; 5; 4g
ð70; 88; 49Þ ð68; 93; 55Þ ð66; 98; 61Þ ð64; 103; 67Þ ð62; 108; 73Þ
f11; 0; 5; 4g f12; 0; 4; 4g f13; 0; 3; 4g f14; 0; 2; 4g f15; 0; 1; 4g
ð60; 113; 79Þ ð59; 123; 88Þ ð58; 133; 97Þ ð57; 143; 106Þ ð56; 153; 115Þ
f16; 0; 0; 4g
ð55; 163; 124Þ

P6 f8; 4; 7; 5g f8; 5; 6; 5g f8; 6; 5; 5g f8; 7; 4; 5g f8; 8; 3; 5g
ð153; 116; 134; 110Þ ð152; 119; 139; 112Þ ð151; 122; 144; 114Þ ð150; 125; 149; 116Þ ð149; 128; 154; 118Þ
f8; 9; 2; 5g f8; 10; 1; 5g f8; 11; 0; 5g
ð148; 131; 159; 120Þ ð147; 134; 164; 122Þ ð146; 137; 169; 124Þ

P7 f11; 4; 4; 2g f12; 3; 4; 2g f13; 2; 4; 2g f14; 1; 4; 2g f15; 0; 4; 2g
ð132; 134; 112; 95; 107Þ ð132; 137; 116; 90; 106Þ ð132; 140; 120; 85; 105Þ ð132; 143; 124; 80; 104Þ ð132; 146; 128; 75; 103Þ
f16; 0; 3; 2g f17; 0; 2; 2g f18; 0; 1; 2g f19; 0; 0; 2g f20; 0; 0; 1g
ð138; 151; 132; 73; 102Þ ð144; 156; 136; 71; 101Þ ð150; 161; 140; 69; 100Þ ð156; 166; 144; 67; 99Þ ð163; 180; 151; 66; 101Þ
f21; 0; 0; 0g
ð170; 194; 158; 65; 103Þ

P8 f8; 2; 6; 5; 4g f9; 1; 6; 5; 4g f10; 0; 6; 5; 4g f11; 0; 5; 5; 4g f12; 0; 4; 5; 4g
ð167; 118; 117Þ ð172; 114; 122Þ ð177; 110; 127Þ ð187; 107; 137Þ ð197; 104; 147Þ
f13; 0; 3; 5; 4g f14; 0; 2; 5; 4g f15; 0; 1; 5; 4g f16; 0; 0; 5; 4g
ð207; 101; 157Þ ð217; 98; 167Þ ð227; 95; 177Þ ð237; 92; 187Þ

P9 f10; 4; 6; 2; 3g f10; 5; 5; 2; 3g f10; 6; 4; 2; 3g f10; 7; 3; 2; 3g f10; 8; 2; 2; 3g
ð139; 154; 159; 160Þ ð148; 152; 161; 164Þ ð157; 150; 163; 168Þ ð166; 148; 165; 172Þ ð175; 146; 167; 176Þ
f10; 9; 1; 2; 3g f10; 10; 0; 2; 3g f10; 4; 7; 1; 3g f10; 4; 8; 0; 3g f10; 4; 9; 0; 2g
ð184; 144; 169; 180Þ ð193; 142; 171; 184Þ ð135; 160; 164; 165Þ ð131; 166; 169; 170Þ ð129; 177; 177; 181Þ
f10; 4; 10; 0; 1g f10; 4; 11; 0; 0g
ð127; 188; 185; 192Þ ð125; 199; 193; 203Þ

P10 f8; 4; 1; 1; 1g f9; 3; 1; 1; 1g f10; 2; 1; 1; 1g f11; 1; 1; 1; 1g f12; 0; 1; 1; 1g
ð84; 89; 78; 96; 105Þ ð80; 97; 80; 96; 107Þ ð76; 105; 82; 96; 109Þ ð72; 113; 84; 96; 111Þ ð68; 121; 86; 96; 113Þ
f8; 5; 0; 1; 1g f9; 4; 0; 1; 1g f10; 3; 0; 1; 1g f11; 2; 0; 1; 1g f12; 1; 0; 1; 1g
ð87; 90; 75; 99; 105Þ ð83; 98; 77; 99; 107Þ ð79; 106; 79; 99; 109Þ ð75; 114; 81; 99; 111Þ ð71; 122; 83; 99; 113Þ
f13; 0; 0; 1; 1g
ð67; 130; 85; 99; 115Þ
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485 The MDP solution procedure was coded in C++ using LEDA libraries. The main difficulty to implement

486 this code is the storage requirement which increases with the difference ðD�max16 i6M fd1i gÞ. This diffi-
487 culty, known as curse of dimensionality, was already discussed by Villarreal and Karwan [22]. These au-

488 thors argued that as the number of objective functions increases so does the solution time. The problems

489 proposed in Table 1 were solved in a workstation HP 9000-712/80. Another interesting aspect of the
490 problem concerns its sensitivity. After several samples, we notice that slight changes in the input data make

491 the Pareto-optimal set to vary drastically.

492 The B&B scheme has been incorporated to the MDP procedure as follows: for each subproblem

493 P ðnþ 1; In1 ; . . . ; InMÞ, the LB set is obtained from calls to the ADBASE code developed by Steuer [18]. This
494 code gives the supported non-dominated solutions for continuous linear multicriteria problems. As a

495 consequence of both the input to and the output from the ADBASE code is file typed, conversions of the

496 form matrix(C++)-file(ADBASE) and file(ADBASE)-matrix(C++) are required. Moreover, since all the

497 parameters are integer and the constraints matrix is unimodular, the extreme solutions given by ADBASE
498 are integer-valued as well, i.e., feasible for P . Hence, as a result the non-dominated solutions associated to
499 the first subproblem are also considered as the initial UB for the original problem F ð1; ð0; . . . ; 0ÞÞ:
500 Now, we provide, in Table 3, the average running times for different instances of this problem. For each

501 pair ðM ;NÞ ten instances were run. The parameters have been generated according to the following values:
502 the total demand D ranges in the interval ½1; 1000
, the unit carrying and reorder costs vary between 1 and
503 100. The troubles in the computational experience arise as a consequence of the ADBASE limitations. As

504 the number of scenarios or periods increases so does the number of rows and columns in the constraint

505 matrix of the linear multiobjective problem and the problem becomes intractable. Therefore, only some
506 ðM ;NÞ combinations can be tested.
507 Our computational experiments show that the B&B scheme outperforms the MDP approach in all cases.

508 The small difference in some instances between the average running times of both procedures is due to each

509 subproblem in the B&B calls to the ADBASE code. Therefore, the bottleneck of the B&B procedure is just

510 the time required to obtain the LB set for each subproblem. In spite of this difficulty, the B&B results in
511 CPU times smaller than the MDP method.

512 7. Concluding remarks

513 In this article we introduce different algorithms to solve the multiscenario lot size problem. Throughout

514 the paper, the case with concave costs is discussed. The solution procedures for this case have been im-

515 plemented using the DMDMP approach and exploiting the dynamic lot size problem�s properties. More-

Table 3

Comparison of running times (in sec.)

Scenarios ðMÞ Periods ðNÞ Average time (MDP) Average time (B&B)

2 3 7.08 4.98

2 4 8.90 0.66

2 5 24.67 12.80

3 3 19.93 13.25

3 4 11.23 1.24

3 5 2.76 0.63

4 3 10.70 4.65

4 4 15.94 5.90

4 5 22.85 1.46

5 3 20.54 5.00

5 4 76.47 13.15

5 5 17.06 11.28
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516 over, a B&B procedure has been implemented with a reasonably good behavior in most cases. We are

517 interested in improving this procedure by finding LB sets that are not obtained from external routine, which
518 will decrease much more the running times of the B&B versus MDP.
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