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Abstract

This paper concerns with a multi-echelon inventory/distribution system considering one-warehouse and N-retailers.

The retailers are replenished from the warehouse. We assume that the demand rate at each retailer is known. The

problem consists of determining the optimal reorder policy which minimizes the overall cost, that is, the sum of the

holding and replenishment costs. Shortages are not allowed and lead times are negligible. We study two situations:

when the retailers make decisions independently and when the retailers are branches of the same firm. Solution methods

to determine near-optimal policies in both cases are provided. Computational results on several randomly generated

problems are reported.

r 2002 Published by Elsevier Science B.V.
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1. Introduction

The multi-echelon inventory/distribution sys-
tems represent a special category of inventories
encountered in practice where several installations
are involved. Due to their applicability in real-
world situations, the multi-echelon systems have
caught the researchers’ attention. A special type of
such inventory systems deals with one-warehouse
and N-retailers (e.g., a chain of stores supplied by
a single regional warehouse). In this problem, the
warehouse is the sole supplier of N retailers.

Customer demand occurs at each retailer at a
constant rate. This demand must be met as it
occurs over an infinite horizon without either
shortages or backlogging. Orders placed by
retailers generate demands at the warehouse.
There is a holding cost rate per unit stored per
unit time and a fixed charge for each order placed
at the warehouse and at each retailer. The demand
rates, holding unit costs, and setup costs are
stationary and facility dependent. Delivery of
orders is assumed to be instantaneous, that is,
lead times are assumed to be zero. The goal is to
find a policy with minimum or near-minimum
long-run average cost.
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This one-warehouse and N-retailers system was
examined by Schwarz (1973) and he showed that
the form of the optimal policy can be very
complex; in particular, it requires that the order
quantity at one or more of the locations varies
with time even though all relevant demand and
cost factors are time invariant. Thus, he consid-
ered the possibility of restricting the class of
strategies, where the order quantity at each
location does not change with time and he
determined the necessary conditions of an optimal
policy. Moreover, he provided a solution method
for the one-warehouse and N identical retailers
problem and suggested heuristic solutions for the
general case. Schwarz (1973) proved that an
optimal policy can be found in the set of ‘‘basic’’
policies. A basic policy is any feasible policy where
deliveries are made to the warehouse only when
the warehouse has zero inventory and, at least one
retailer has zero inventory. Moreover, deliveries
are made to any given retailer only when that
retailer has zero inventory. In addition, all
deliveries made to any given retailer between
successive deliveries to the warehouse are of equal
size.

In particular, Schwarz (1973) introduced two
classes of basic policies: myopic and single cycle
policies and he also tested the near optimality of
these policies using three lower bounds. A myopic
policy is one which optimizes a given objective
function with respect to any two stages and it
ignores multi-stage interaction effects. Accord-
ingly, the system one-warehouse and N-retailers
is viewed as N one-warehouse and one-retailer
systems. A single cycle policy is one that is
stationary and nested. A policy is said to be
stationary if each facility always orders the same
quantity at equally spaced points in time. A nested
policy is one in which each time any stage orders,
all of its successors also order.

Graves and Schwarz (1977) performed a similar
analysis for arborescent systems in which each
stage obtains its supply from an unique immediate
predecessor and supplies its output to a set of
immediate successors. They reduced the class of
admissible policies for stationary continuous-time
infinite-horizon multi-stage production/inventory
problems to find a good approximation to optimal

policies, presenting a branch-and-bound algorithm
to determine optimal single cycle policies for
arborescent systems. They also examined the
near-optimality of the myopic policies.

Roundy (1985) showed that nested policies can
have very low effectiveness in the worst case and
he defined new classes of policies for the one-
warehouse N-retailers problem: q-optimal integer-
ratio and optimal power-of-two policies. He
proved that for any data set, the effectiveness of
q-optimal integer-ratio and optimal power-of-two
policies is at least 94% and 98%, respectively.

In this paper, we introduce near-optimal policies
for inventory/distribution systems with one-ware-
house and N-retailers considering an instanta-
neous demand pattern at the warehouse. We study
two cases: if the warehouse and the retailers belong
to the same firm (centralization), or if the ware-
house and retailers belong to different firms
(decentralization).

Outside customer demand rates are assumed
known and constant. Shortages and lead times are
not allowed. At each stage, a fixed-order cost
which is independent of the lot size and a holding
unit cost are considered. The goal consists of
determining the optimal policy with minimum
overall cost both when there exists dependence and
when not.

We introduce a solution method to obtain the
near-optimal plan in the case of independence or
decentralization. This method allows us to know
in advance the number of periods of the demand
vector at the warehouse. Once this number is
calculated, either the Wagner and Whitin (1958)
algorithm or the Wagelmans et al. (1992) proce-
dure for inventory systems with time-varying
demand can be applied. On the other hand, when
the N retailers are branches of the same firm
(centralization), we deal with the class of single
cycle policies and we propose a branch and bound
algorithm to determine the near-optimal plan.

The outline of the remaining of this paper is
divided into seven sections. In Section 2, we
introduce the notation and terminology required
to state the problem. Section 3 is devoted to the
one-warehouse and N-retailers problem assuming
that the retailers are independent of the ware-
house. In such a situation, the problem becomes a
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time-varying demand inventory system and a
procedure to determine the number of periods at
the warehouse is provided. Section 4 deals with the
centralized situation, that is, when the retailers and
the warehouse belong to the same firm. In this
case, two different policies are suggested: the
retailers can place their orders at a common
replenishment time or at different replenishment
times. In the former case, the solution can be
obtained directly using an analytical approach. In
the latter case, a solution method based on a
branch and bound scheme is proposed. Section 5
presents a numerical example which is analyzed
assuming that there is both centralization and
decentralization among the warehouse and the
retailers. Computational results are reported in
Section 6. Finally, in Section 7, we present our
conclusions and final remarks.

2. Terminology and problem statement

Consider a multi-echelon inventory/distribution
system where a warehouse supplies N retailers.
Assume that customer demand occurs at each
retailer at a constant rate. This demand must be
met as it occurs without shortages. Orders placed
by retailers generate demands at the warehouse.
There is a holding cost per unit stored per unit
time and a fixed charge for each order placed at
the warehouse and at each retailer. The demand
rates, holding unit costs, and replenishment costs
are stationary and facility dependent. Deliveries of
orders are assumed to be instantaneous.

Hereafter we use the following notation:

Dj demand per unit time at retailer j; j ¼
1;y;N

Dw demand vector at the warehouse (for
decentralized decisions)

Dw demand per unit time at the warehouse
(for centralized decisions)

kj fixed ordering cost of a replenishment at
retailer j; j ¼ 1;y;N

kw fixed ordering cost of a replenishment at
the warehouse

hj unit carrying cost at retailer j; j ¼
1;y;N

hw unit carrying cost at the warehouse
tj time interval between replenishments at

retailer j; j ¼ 1;y;N
tw vector that contains the time instants

where the retailers place their orders to
the warehouse (for decentralized deci-
sions)

tw time horizon at the warehouse (for
decentralized decisions)

tw time interval between replenishments at
the warehouse (for centralized decisions)

Qj order quantity at retailer j; j ¼ 1;y;N
Qw order quantities vector at the warehouse

(for decentralized decisions)
Qw order quantity at the warehouse (for

centralized decisions)
Cj total cost at retailer j; j ¼ 1;y;N
Cw total cost at the warehouse
C overall cost of the firm.

The aim consists of minimizing the overall cost,
that is, the holding and replenishment costs at the
warehouse and at the retailers. In general, the cost
function is

C ¼Cw þ
XN

j¼1

Cj

¼Cw þ
XN

j¼1

kj

Dj

Qj

þ hj

Qj

2

� �
: ð1Þ

Depending on whether there exists dependence or
not among the warehouse and the retailers, the
cost function at the warehouse is formulated in a
different way.

From this point on, we propose a procedure
which determines near-optimal solutions for the
decentralized case.

3. Decentralized case

Suppose that there exists independence among
the retailers and the warehouse. In such a
situation, it is assumed that each installation
belongs to different firms. For this reason, each
retailer is interested in minimizing its own cost
independently.
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Let CjðQjÞ be the cost function at retailer j;
CjðQjÞ ¼ hjQj=2 þ kjDj=Qj : Since the previous
formula stands for the cost function for a EOQ
system, we can determine the optimal lot size, Qn

j ;
the optimal planning time, tnj ; and the optimal
cost, Cn

j ; using the following classical expressions,
that is,

Qn

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Djkj

hj

s
; tnj ¼

Qn
j

Dj

and Cn

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Djkjhj

p
for j ¼ 1;y;N:

Since each retailer places orders according to an
EOQ pattern, the planning times are not related.
Therefore, the warehouse behaves as an inventory
system with time-varying demand. When the
demand rate varies with time, we can no longer
assume that the best strategy is to always order the
same replenishment quantity. In fact, this will
seldom be the case. Hence, the warehouse does not
follow the classical saw-teeth pattern of the EOQ
model. Indeed, we now have to use the demand
information at the retailers, over a finite planning
horizon, to determine the appropriate replenish-
ment quantities at the warehouse.

Following Schwarz (1973), deliveries are made
to the warehouse only when the warehouse and at
least one retailer have zero inventory. Note that
the optimal planning times for each retailer are
real values. Therefore, we cannot assure that a
point in time exists where all the retailers order
simultaneously. In this case, the number of periods
of the demand vector at the warehouse is not finite
and, the problem cannot be solved by the Wagel-
mans et al. algorithm (1992). Under this assump-
tion, we propose an approach to overcome this
problem. The idea consists of either truncating or
rounding up to rational times the real planning
times. It is clear that the solution provided by this
method is not the real optimal plan but it is quite a
good approximation. Furthermore, in practice, it
does not make sense to work with irrational times.

Let B be the set of rational times where any
retailer orders to the warehouse, that is,
B ¼ ftAQ: t ¼ nti; for some nAN and
iAð1; 2;y;NÞg; where each ti ¼ ai=bi; i ¼
1; 2;y;N; is obtained by rounding or truncating
the optimal planning time at each retailer. More-

over, following the characterization of the ‘‘basic’’
policies stated by Schwarz (1973), each value in B

represents a candidate instant where the ware-
house can place an order.

Since the optimal planning times have been
transformed into rational values, a set S ¼
fn1; n2;y; nNg of integer values can always be
found such that n1t1 ¼ n2t2 ¼ ? ¼ nNtN ¼ tw; or,
in other words

n1
a1

b1
¼ n2

a2

b2
¼ ? ¼ nN

aN

bN

¼ tw: ð2Þ

Recall that tw or an integer multiple of tw

represents the planning time for the warehouse.
Note that (2) represents a linear equations

system with n variables and n � 1 equations. In
order to assure the integrality of the ni’s, set

nN ¼ bNaN�1aN�2?a2a1: ð3Þ

Therefore, the remaining integer values in (2) are
obtained by

ni ¼ nN

aN

bN

bi

ai

; i ¼ 1; 2;y;N � 1: ð4Þ

Finally, each ni’s is divided by the
m.c.d.(n1; n2;y; nN Þ: Then, the values thus ob-
tained are considered as the new ni’s values and tw

can be calculated by (2). Also, these values can be
used to determine the number P of different
instants in time over tw where the warehouse
receives an order from some retailer. First of all,
the values ni’s must be clustered in the following
way. Those nj’s that are powers of some ni value
are included in a cluster. That is, nj ¼ nk

i ; for some
k integer. If there are not nj’s values that are
powers of some ni; then this cluster contains only
the ni value. Let R be the number of clusters. For
each cluster i; we choose the highest power value n0

i

as the representative element. That is, n0
i ¼ nk

i

being k the highest power. Then, set mi ¼ n0
i � 1

for i ¼ 1; 2;y;R: The integer mi represents the
number of equidistant points over tw needed to get
n0

i intervals. The theorem below states when orders
are placed to the warehouse. The proof of
Theorem 2 requires the following lemma.

Lemma 1. Let t1 and t2 be two rational numbers

and let n1 and n2 be integer numbers such that

n1t1 ¼ n2t2 ¼ tw: Then, the number of points in
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ð0; twÞ where it1 ¼ jt2 for i ¼ 1; 2;y; n1 and j ¼
1; 2;y; n2 is given by the m.c.d.ðn1; n2Þ � 1:

The proof of this lemma is straightforward.

Theorem 2. The number P of different instants in

time where the warehouse receives an order from

some retailer is

P ¼
XR

i¼1

mi �
XR�1

i¼1

XR

j¼iþ1

ðm:c:d:ðn0
i; n

0
jÞ � 1Þ: ð5Þ

Proof. By Lemma 1, the double summation in (5)
represents the points in ð0; twÞ which have been
considered more than once in the first summation.
Therefore, P stands for the number of different
instants in ð0; twÞ where the warehouse receives an
order from some retailer. &

Once the number of points P is obtained, we can
generate the demand vector at the warehouse of
dimension P þ 1 or a multiple of P þ 1: Since the
planning times have been rounded the order
quantity at each retailer, Qn

j ; has changed to be
Qj ¼ tjDj : Let Jj be the set of retailers ordering
from the warehouse in period j: This set can be
used to determine the quantity to be satisfied by
the warehouse in period j; j ¼ 0; 1;y;P; in the
following way Dw½j
 ¼

P
iAJj

Qi: This demand
vector represents the quantities that the warehouse
has to supply. To solve this problem, the Wagel-
mans et al. algorithm (1992) can be used.

Below, we present a numerical example with five
retailers and one warehouse where the planning
times at each retailer are

Retailer
1

Retailer
2

Retailer
3

Retailer
4

Retailer
5

t1 ¼ 5 t2 ¼ 5=2 t3 ¼ 5=3 t4 ¼
10=3

t5 ¼
10=9

Then, using the method shown above, the values
in S are n1 ¼ 2; n2 ¼ 4; n3 ¼ 6; n4 ¼ 3; n5 ¼ 9 and
tw ¼ 10:

The next step consists of clustering these values
including into a cluster all the nj’s values that are
powers of some ni value in S: Hence, the
representative elements of each cluster are: n0

1 ¼
4; n0

2 ¼ 9; n0
3 ¼ 6 and, therefore, m1 ¼ 3; m2 ¼ 8;

m3 ¼ 5: Then, according to Theorem 2, P is equal
to 13 and the number of periods at the warehouse
is 14.

Now, we have to determine the demand ordered
from the warehouse in each interval, that is, Dw;
and then we apply the Wagelmans et al. algorithm
(1992). See the numerical example presented in
Section 5 for more details.

The following section is devoted to the centra-
lized case. Under this assumption, we study
different policies.

4. Centralized case

In this case, the warehouse and the retailers
belong to the same firm. Therefore, the firm should
pay all the costs, and the goal is to minimize (1),
that is, the cost at the warehouse plus the costs at
the retailers. Taking into account that the firm has
to make decisions about the stock control, it can
force the retailers to place their orders at the same
time or to place an order either at different instants
of time or independently. The latter case was
already studied in the previous section.

4.1. Assuming common replenishment time

To coordinate the replenishments, the firm
can force the retailers to place their orders at the
same time, say every t time units.

Then, the cost at each retailer j; j ¼ 1;y;N; is

Cj ¼ hj

Djt

2
þ

kj

t
:

Let D be the sum of the demands at the retailers,
that is, D ¼

PN
j¼1 Dj : Since all retailers place an

order at the same time, the one-warehouse N-
retailers problem can be viewed as a one-ware-
house one-retailer problem where the demand per
unit time at the warehouse is Dw ¼ D: Besides, the
new retailer orders the sum of the quantities
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ordered by the retailers, that is, Q ¼
PN

j¼1 Qj every
t time units.

For that reason, the order quantity Qw at the
warehouse can be determined according to the
integer-ratio policy. Crowston et al. (1973) and
Williams (1982) proved the optimality of the
integer-ratio policy for two-echelon systems.
Therefore, in our problem, we can follow this
integer-ratio policy and set Qw ¼ nQ; where n is a
positive integer. Then, the cost at the warehouse,
assuming instantaneous demand pattern, is Cw ¼
hwððn � 1Þ=2ÞtD þ kw=nt:

The aim consists of minimizing the sum of total
holding cost plus ordering cost at the warehouse
and at the retailers, that is,

Cðt; nÞ ¼
t

2

XN

j¼1

hjDj þ hwðn � 1ÞD

 !

þ
1

t

XN

j¼1

kj þ
kw

n

 !
:

Note that the overall cost depends on t and n

only. To calculate the optimal solution ðtn; nnÞ we
need the following Lemma.

Lemma 3. If hwohj ; j ¼ 1;y;N ; and n is a

continuous variable, then Cðt; nÞ is convex over the

region: fR:0onoN; 0otpBðnÞg; and has its

global minimum at ðtn; nnÞ; where

BðnÞ ¼
1

n

2kw

hwD
2 1 þ n

PN
j¼1 kj

k0

 !1=2

�1

2
4

3
5

2
4

3
5

1=2

and

tn ¼
2
PN

j¼1 kj þ
kw

n

� �
PN

j¼1 hjDj þ hwðn � 1ÞD

2
664

3
775

1=2

; ð6Þ

nn ¼
kw

PN
j¼1 hjDj � hwD

� �
hwD

PN
j¼1 kj

2
4

3
5

1=2

: ð7Þ

Proof. Assuming that n is a continuous variable
and setting the first partial derivatives of Cðt; nÞ
equal to zero, we obtain tn by (6) and nn by (7).

It is easy to see that the Hessian is positive
definite at t ¼ tn and n ¼ nn; therefore, Cðt; nÞ has
a local minimum at ðtn; nnÞ:

The Hessian matrix is non-negative definite for
any n and t in the region:
fR:0onoN; 0otpBðnÞg: Also, ðtn; nnÞAR: Thus,
Cðt; nÞ is convex on R with the global minimum at
ðtn; nnÞ: &

From the value tn; we can obtain the optimal
order quantities for each retailer, that is,

Qn

j ¼ Djt
n; j ¼ 1;y;N ð8Þ

and

Qn

w ¼ n
XN

j¼1

Qn

j ; ð9Þ

where n is the nearest integer to nn:
Summarizing, if the firm forces the retailers to

place their orders at the same time, the optimal
solution is given by the formulae in Table 1.

However, due to some reasons such as logistics
problems, it could be preferable to satisfy the
demand at the retailers at different time instants.
Hence, in the following section, we develop the
case where the retailers can place orders at
different instants of time.

4.2. Assuming different replenishment times

The firm can allow the retailers to place their
orders at different instants of time tj ; j ¼
1; 2;y;N: This case concerns the class of single
cycle policies, and hence, the unique condition that
must be verified is that there must exist
n1; n2;y; nNAN; such that, n1t1 ¼ n2t2 ¼ ? ¼
nNtN ¼ tw:

Schwarz (1973) was the first who considered this
class of policy. He provided an optimal solution
for the one-warehouse and N identical retailers
problem (transforming the system into a one-
warehouse one-retailer system), and suggested a
heuristic solution for the general one-warehouse
N-retailers problem. However, this heuristic does
not always provide good solutions. Graves and
Schwarz (1977) proposed a solution method to get
optimal single cycle policies for this problem.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

B. Abdul-Jalbar et al. / Int. J. Production Economics ] (]]]]) ]]]–]]]6

PROECO : 2593



UNCORRECTED P
ROOF

Roundy (1985) focused on the special class of
single cycle policies known as power-of-two
policies. He proved that the effectiveness of
power-of-two policies with fixed base planning
period, is at least 94%. That is, when we restrict
ourselves to such policies, we can guarantee a
solution whose cost is at most 6% above the cost
of an optimal policy. Furthermore, if the base
planning period is assumed to be variable, the
power-of-two policies are at least 98% effective.

We propose a procedure which combines the
relaxation of the integrality constraint of the ni’s,
along with a branch and bound scheme. This
approach runs with lower computational effort
than the Graves and Schwarz’s method (1977).
Moreover, as it is shown in Section 6, this
procedure generates better single cycle policies
than those provided by the Roundy’s method
(1985) when stationary and nested policies are
considered.

The new approach assumes that, in period tw;
retailer j has to order nj times and it holds
njDjt

2
j =2 ¼ twtjDj=2 units of item. Therefore, the

cost at retailer j is as follows Cj ¼
1=twðhjðtwtjDj=2Þ þ kjnjÞ ¼ hjtjDj=2 þ kj=tj :

On the other hand, the warehouse only places an
order once, and it holds tw

PN
j¼1 Djðtw � tjÞ=2 units

of item. Thus, the cost at the warehouse is given by

Cw ¼
1

tw
hwtw

XN

j¼1

Djðtw � tjÞ
2

þ kw

 !

¼ hw

XN

j¼1

Djðtw � tjÞ
2

þ
kw

tw
:

Therefore, to find the optimal single cycle policy
we have to solve

minCðtw; t1; t2;y; tN Þ

¼
kw

tw
þ hw

tw
PN

j¼1 Dj

2

þ
XN

j¼1

kj

tj

þ ðhj � hwÞ
Djtj

2

� �
ð10Þ

s:t: niti ¼ njtj ¼ tw; i; j ¼ 1; 2;y;N; ð11Þ

njX1; integer; j ¼ 1; 2;y;N:

The first step to solve (10) consists of relaxing
the integrality constraint of the nj ’s. Then, the
optimal replenishment times that minimize (10) are
tw ¼ ½2kw=hwD
1=2; being D ¼

PN
j¼1 Dj ; and tj ¼

½2kj=ðhj � hwÞDj
1=2; j ¼ 1;y;N:
Taking into account (11), the optimal nj’s values

can be calculated as

nj ¼
tw

tj

¼
kwðhj � hwÞDj

kjhwD

� �1=2

:

Unfortunately, in general, these nj’s are not
integers. However, we propose a solution method
based on a branch and bound scheme to obtain
near-optimal integer nj’s from the real values.

We start sorting the retailers so that retailer i is
smaller than retailer j; iif nionj : We can assume,
without loss of generality, that n1on2o?onN :

Then, we proceed to find the near-optimal
integers by generating an initial feasible solution
setting nj equals to the nearest integer value, or
nj ¼ 1 if njo1; j ¼ 1; 2;y;N: This feasible solu-
tion provides an upper bound, UB; for the total
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Table 1

Time Quantity

Retailer 1

t1 ¼ tn ¼
2ð
PN

j¼1 kj þ kw=nÞ

ð
PN

j¼1 hjDj þ hwðn � 1ÞDÞ

" #1=2 Qn
1 ¼ D1tn

Retailer 2 t2 ¼ tn Qn
2 ¼ D2tn

^ ^ ^

Retailer N tN ¼ tn Qn
N ¼ DN tn

Warehouse tw ¼ ntn Qn
w ¼ n

PN
j¼1 Qn

j
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cost which allows us to ignore worse solutions
than the UB:

Afterward, the procedure generates an enumera-
tion tree with N levels where each level corre-
sponds to a different nj ; j ¼ 1; 2;y;N : At level
i þ 1; each nj ; j ¼ 1; 2;y; i is fixed and only nk’s,
k ¼ i þ 1;y;N; have to be determined.

Note that if nj’s, j ¼ 1;y; i; are known, each
reorder time tj has changed to satisfy tj ¼ njtw:

Thus, the total cost can be reformulated as
follows:

Cðtw; tiþ1;y; tNÞ

¼
kw

tw
þ hw

twD

2

þ
Xi

j¼1

kj

nj

tw
þ ðhj � hwÞ

Dj

2

tw

nj

� �

þ
XN

j¼iþ1

kj

tj

þ ðhj � hwÞ
Djtj

2

� �

¼
1

tw
kw þ

Xi

j¼1

kjnj

 !

þ
tw

2
hwD þ

Xi

j¼1

ðhj � hwÞ
Dj

nj

 !

þ
XN

j¼iþ1

kj

tj

þ ðhj � hwÞ
Djtj

2

� �
:

Let ti
w denote the optimal reorder time at the

warehouse assuming that nj’s, j ¼ 1;y; i; are
known, that is,

ti
w ¼

2ðkw þ
Pi

j¼1 kjnjÞ

hwD þ
Pi

j¼1 ðhj � hwÞ Dj=nj

" #1=2

:

Once we know ti
w and taking into account (11),

we can calculate the new optimal niþ1 as

niþ1 ¼
ti
w

tiþ1
: ð12Þ

Thus, considering that nj’s, j ¼ 1; 2;y; i are
known, the minimum cost given by the above
procedure is Cðtw; tiþ1;y; tNÞ: This cost represents
a lower bound LB for the subproblem where the
nj’s, j ¼ 1; 2;y; i; are known and integer-valued.
If this lower bound exceeds the upper bound UB,
the subproblem does not need to be examined. In

the opposite case, if Cðtw; tiþ1;y; tNÞ does not
exceed the upper bound UB, then, the subproblem
is branched at level i þ 1 generating two new
subproblems. The first corresponds to set niþ1 ¼
Iniþ1m and the second corresponds to set niþ1 ¼
Iniþ1mþ 1; where niþ1 is the real value determined
from (12). For each subproblem the previous
procedure is applied.

When the cost associated with a feasible
solution at level N is lower than the current upper
bound UB, we update UB to be the new cost
which has been calculated and the procedure
continues looking for a better solution.

Finally, when the branch and bound stops, we
can assure that each nj is an integer value and the
replenishment time at the warehouse is given by

tN
w ¼

2ðkw þ
PN

j¼1 kjnjÞ

hwD þ
PN

j¼1ðhj � hwÞDj=nj

" #1=2

:

Once we know n1; n2;y; nN and tN
w ; the

replenishment time at each retailer is computed
using (11). Given the tj’s, we can calculate the
quantity ordered by retailer j as Qj ¼ Djtj : Finally,
it is easy to see that the order quantity at the
warehouse is Qw ¼

PN
j¼1 njQj :

The computational experience shows that the
procedure is quite fast since the lower bound for
each subproblem allows us to ignore a lot of
possible branches in the enumeration tree.

The following section illustrates the different
solution methods for both decentralized and
centralized cases.

5. Numerical example

Consider a numerical example with three-
retailers and one-warehouse with the input data
(Table 2).

Now we proceed to calculate the optimal costs
provided by the three policies introduced in the
previous sections.
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5.1. Assuming decentralization

Using the classical EOQ expressions, we can
calculate the optimal order quantities and plan-
ning times (Table 3).

As you can see, the planning times are not
rational numbers. For that reason, we round the
tni ’s to obtain the following values: t1 ¼ 0:2 ¼ 2

10;
t2 ¼ 0:3 ¼ 3

10
and t3 ¼ 0:1 ¼ 1

10
: Now, the ni’s

values can be calculated using (3) and (4) to give
n1 ¼ 60 � 1

10
� 10

2
¼ 30; n2 ¼ 60 � 1

10
� 10

3
¼ 20 and n3 ¼

10 � 3 � 2 ¼ 60:
Then, we divide the ni’s values by the

m.c.d.ðn1; n2; n3Þ ¼ 10 obtaining the following re-
sults: n1 ¼ 3; n2 ¼ 2 and n3 ¼ 6: After that, the
different clusters are calculated. In this case there
are three clusters, one for each nj : Hence, n0

j ¼ nj ;
j ¼ 1; 2; 3:

Using the new planning times, the order
quantities and the costs at each retailer are given
in Table 4.

The planning time is tw ¼ niti ¼ 0:6: The
number P of instants where the warehouse receives
an order is

P3
i¼1 mi �

P3�1
i¼1

P3
j¼iþ1

(m.c.d.ðn0
i; n

0
jÞ � 1Þ ¼ 5 and the time vector tw is

0:0 0:1 0:2 0:3 0:4 0:5

The demand vector at the warehouse Dw is given
by

48:4 9:7 24:7 33:4 24:7 9:7

Once the demand vector is obtained, the Wagel-
mans et al. algorithm (1992) provides the optimal
order planning for the warehouse. That is,

Qw ¼

58.1 0.0 58.1 0.0 34.4 0.0

The cost at the warehouse is 255.4 $/time unit.
The overall cost including the costs at the retailers
and at the warehouse is 1939.7833 $/time unit.

5.2. Centralization with common replenishment

time

In this case, the retailers place their orders at the
same time. Using (6) and (7), we have tn ¼ 0:2004
time units and nn ¼ 0:9482 and, therefore, n ¼ 1:
Thus, the retailers and the warehouse place their
orders once every tn ¼ 0:2004 time units. The
order quantities at the retailers are calculated
using (8). Accordingly, Qn

1 ¼ 15:03 units of item,
Qn

2 ¼ 15:83 units of item and Qn
3 ¼ 19:44 units of

item. Then, the order quantity at the warehouse
can be computed from (9) to give Qn

w ¼ 50:30 units
of item. Following this policy the overall cost is
2065.2947 $/time unit.
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Table 2

Di ki hi

Retailer 1 75 42 48

Retailer 2 79 100 21

Retailer 3 97 28 52

Warehouse 37 8

Table 3

Qn
i tni

Retailer 1
ffiffiffiffiffiffiffiffiffiffiffi
2�75�42

48

q
C11:4564

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�75�42=48

p
75

C0:1527

Retailer 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2�79�100

21

q
C27:4295

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�79�100=21

p
79

C0:3472

Retailer 3
ffiffiffiffiffiffiffiffiffiffiffi
2�97�28

52

q
C10:2206

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�97�28=52

p
97

C0:1053

Table 4

Qi Ci

Retailer 1 15:0 570:0000

Retailer 2 23:7 582:1833

Retailer 3 9:7 532:2000
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5.3. Centralization with different replenishment

times

Now, the retailers can place their orders at
different times tj ; j ¼ 1; 2; 3; subject to the con-
straint n1t1 ¼ n2t2 ¼ n3t3 ¼ tw; where n1; n2; n3AN:
The new approach introduced in Section 4.2 and
Roundy’s procedure (1985) can be applied. Below,
we show the optimal stationary and nested power-
of-two policy given by the Roundy’s procedure,
and the policy provided by the new approach
(Table 5).

As you can see, when the Roundy’s procedure is
used, the overall cost is 1922.1409 $/time unit. In
contrast, when the new approach is applied, the
overall cost is 1906.3500 $/time unit. Therefore,
the solution obtained using the new approach is
better than Roundy’s solution (1985). For this
example, this solution is also better than the
policies generated by the procedures in Sections 3
and 4.1. Unfortunately, we cannot assure that the
centralized policy (with different replenishment
times) is always better than the decentralized one.
There are instances where the best solution is
obtained when the retailers make decisions in-
dependently.

The computational experience developed in the
next section shows that the new approach always
provides policies equal to or better than those
given by Roundy’s approach. Moreover, we will
see that as the number of retailers increases so does
the number of instances where the new procedure
generates better solutions than Roundy’s method.

6. Computational results

Before starting with the comparison analysis
between centralized and decentralized policies, we
should choose the approach to be implemented in
the centralized case. We have carried out a
computational experience consisting of 100 in-
stances, where the parameters Dj ; kw; hw and kj

vary uniformly in the interval ½1; 100
 and the value
hj is selected from a uniform distribution in ½hw þ
1; 101
: The results summarized in Table 6 show
that the new procedure introduced in Section 4.2
always provides policies equal to or better than
those given by Roundy’s method (1985). This is
due to the fact that solutions provided by
Roundy’s procedure are confined to power-of-
two policies, while the new approach generates
integer policies which are not limited by the
power-of-two constraint. The first row in this
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Table 5

Roundy’s procedure New approach

ni ti Qi ni ti Qi

Retailer 1 2 0:1441 10:8075 2 0:1608 12:0600

Retailer 2 1 0:2882 22:7678 1 0:3216 25:4064

Retailer 3 2 0:1441 13:9777 3 0:1072 10:3984

Warehouse 1 0:2882 72:3382 1 0.3216 80.7216

Table 6

Comparison between Roundy’s procedure and the new approach when Dj ; kw; hw and kj are selected from a uniform distribution on

½1; 100
 and hj from a uniform distribution on ½hw þ 1; 101


N 2 3 4 5 6 7 8 9 10 15 20 25 30

CNA ¼ CR 85 76 69 66 64 62 54 47 48 46 32 14 10

CNAoCR 15 24 31 34 36 38 46 53 52 54 68 86 90

CR denotes the cost of the policy computed using Roundy’s method and CNA represents the cost of the solution provided by the new

approach.
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table represents the number of retailers N and the
second row contains the number of instances
where both methods provide the same solution.
Finally, the last row provides the number of
problems where the new procedure is better than
Roundy’s approach. The results in Table 6 suggest
that we should use the new procedure instead of
Roundy’s method.

Once we have determined that the new proce-
dure is better than Roundy’s method, we proceed
to compare this approach with the decentralized
method proposed in Section 3. In this analysis, the
number of retailers N takes the following values:
2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20; 25 and 30. The para-
meters Dj ; kw; hw and kj have been chosen from
two different uniform distributions varying on
½1; 100
 and on ½1; 10
; respectively. Moreover,
given hw; the value hj is selected from a uniform
distribution on ½hw þ 1; 101
 and on ½hw þ 1; 11
;
respectively. For each problem, 100 instances were
carried out and the results are shown in Table 7.
The first column represents the number of
retailers. The results in the second and third
columns are obtained when Dj ; kw; hw and kj are
selected from a U ½1; 100
 and hj from a U ½hw þ
1; 101
: In contrast, the results in the fourth and
fifth columns are obtained when Dj ; kw; hw and kj

are selected from a U ½1; 10
 and hj from a U ½hw þ
1; 11
: In particular, the second column collects the
number of instances where the decentralized
approach provides better costs than the centralized
case, and the third column shows the number of
instances where the centralized case is better.
When parameters range in ½1; 100
; the average
number of instances where it is preferable to apply
the centralized policy, assuming different replen-
ishment times, is around 45%. On the other hand,
when parameters vary on ½1; 10
; the average
number of instances where it is preferable to apply
the centralized policy is around 52%. However,
these percentages change depending on the num-
ber of retailers. For example, for N ¼ 2 and
considering the first interval, it is better to assume
the centralized policy in 87% of instances. Never-
theless, for N ¼ 20 and considering the same
interval, the best solution is always given by the
decentralized approach.

From Table 7, it is easy to see that as the
number of retailers increases, so does the number
of instances where the decentralized policy is
better. However, the gap between this number
and the one corresponding to the centralized case
decreases when the parameters vary in the interval
½1; 10
: In our opinion, this fact can be explained
since the variability of the parameters is reduced
from [1,100] to [1,10]. Conversely, the reduction of
the interval leads the demands and costs of the
retailers to be quite similar. For that reason, in
some instances the centralized policy gives better
solutions even when N ¼ 20:

In order to analyze the effect of the parameters,
a more detailed analysis is required. Accordingly,
the number of retailers is fixed to 10 and the
parameters are chosen from different uniform
distributions, which are shown in the first three
columns in Table 8. For each combination, 10
problems are tested. The fourth, sixth and eighth
columns in Table 8, contain the number of
instances where the decentralized approach pro-
vides better policies than the centralized case. In
contrast, the fifth, seventh and ninth columns
show the number of instances where the centra-
lized case is better.

Table 8 shows that as the interval of the
replenishment cost at the warehouse increases so
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Table 7

Comparison between decentralized and centralized policies with

different replenishment times

N Dj ; kw; hw; kjBU ½1; 100
 Dj ; kw; hw; kjBU ½1; 10

hjBU ½hw þ 1; 101
 hjBU ½hw þ 1; 11


Dec. Cent. Dec. Cent.

2 13 87 10 90

3 20 80 17 83

4 43 57 30 70

5 37 63 43 57

6 33 67 37 63

7 50 50 47 53

8 50 50 50 50

9 63 37 37 63

10 43 57 53 47

15 67 33 47 53

20 100 0 70 30

25 100 0 80 20

30 100 0 100 0
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does the number of instances where the centralized
policy provides better solutions. On the other
hand, when the costs at the retailers are signifi-
cantly greater than the costs at the warehouse, it is
preferable that the retailers make decisions in-
dependently.

In Tables 7 and 8, we have only shown the ratio
where either the decentralized or centralized policy
is better, but nothing is told about the difference
between the costs of both procedures. In Table 9,
we report a collection of 25 instances, where
parameters Dj ; kw; hw and kj vary in ½1; 100
 and hj

in ½hw þ 1; 101
: The first column represents the
number of retailers with N ¼ 3; 5; 10; 15 and 20.
For the decentralized case, the cost of each
instance is shown in the second column. The next
two columns contain the costs for the centralized
case assuming common and different replenish-
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Table 8

Comparison between decentralized and centralized policies with

different replenishment times when kw; hw are selected from the

uniform distributions: U1 � U ½1; 10
; U2 � U ½10; 100
; and

U3 � U ½100; 1000


kw hw hj U1 U2 U3

Dec. Cent. Dec. Cent. Dec. Cent.

U1 U1 U4 5 5 4 6 10 0

U1 U2 U5 5 5 10 0 7 3

U1 U3 U6 7 3 6 4 10 0

U2 U1 U4 0 10 6 4 8 2

U2 U2 U5 0 10 5 5 7 3

U2 U3 U6 0 10 1 9 5 5

U3 U1 U4 0 10 0 10 3 7

U3 U2 U5 0 10 0 10 1 9

U3 U3 U6 0 10 0 10 2 8

hj ’s are selected from the uniform distributions: U4 � U ½hw þ
1; 101
; U5 � U ½hw þ 1; 1001
; and U6 � U ½hw þ 1; 10001
:

Table 9

Comparison among costs using the different policies for several instances

N Cost for the Cost for the Cost for the Gap

decent case centralized case centralized case (%)

(common times) (different times)

3 4381.57 4374.70 4252.46a 3

3 3719.15 3547.20 3547.20a 4

3 1523.50a 1600.41 1600.41 5

3 3763.06 3831.73 3663.96a 2

3 1573.08 1545.73 1540.28a 2

5 6739.30 6926.62 6512.45a 3

5 4185.26 4178.21 4009.00a 4

5 5277.57a 5788.62 5678.70 7

5 3695.20a 3881.59 3881.59 2

5 5732.79a 5966.72 5918.62 3

10 8064.20 7503.95 7470.76a 7

10 8669.57a 8996.98 8867.98 2

10 6419.84 6747.98 6176.58a 3

10 7564.83 7717.85 7322.83a 3

10 7083.12a 7247.13 7225.19 2

15 13955.70a 15032.60 15015.90 7

15 9433.32a 10126.52 9904.33 5

15 13483.20a 14935.30 14064.90 8

15 16597.80 17032.40 16415.10a 1

15 8337.82 8172.11 8172.11a 2

20 14427.30a 15883.00 15623.77 8

20 11082.80a 12352.40 11932.30 7

20 13419.60a 14605.50 14335.00 6

20 9719.26a 11224.80 10484.90 7

20 14801.40a 17334.30 16893.00 14

a Indicates the smallest cost.

The gap (%) represents the quotient between the difference of the costs in the second and fourth column and the minimum of them.
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ment times, respectively. For each instance,
footnote a indicates the smallest cost. In the last
column, the gap (%) represents the quotient
between the difference of the costs in the second
and fourth column and the minimum of them.

7. Conclusions and final remarks

In this paper, we have studied the one ware-
house and N-retailers problem, where stocking
decisions have to be adopted to achieve an optimal
plan. We have focused our attention on the
decentralized and the centralized cases. We have
implemented an algorithm to obtain near-optimal
ordering plans at the warehouse when the decen-
tralization is addressed. Also, when the centralized
case is assumed, we have devised two procedures
considering a common replenishment time and
different reorder times, respectively.

When the parameters are generated using the
same uniform distribution, the results show that as
the number of retailers increases so does the
number of instances where the decentralized policy
is better.

In addition, given a number of retailers, we have
carried out an analysis of sensitivity of the
parameters. This analysis suggests that, under
specific conditions of the unit replenishment and
holding costs at the warehouse, the centralized
policy can provide better solutions.

Our future research will be focused on the one-
warehouse and N-retailers system assuming

shortages at the warehouse or at the retailers.
Another relevant aspect consists of determining
inventory policies for more general structures
where several warehouses can deliver goods to
different retailers.
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