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Abstract

The minimum cost spanning tree game (mcst-game) is a well-known model within operations research games that

has been widely studied in the literature. In this paper we introduce the multi-criteria version of the mcst-game as a set-

valued TU-game. We prove that the extension of Bird�s cost allocation rule provides dominance core elements in this

game. We also give a family of core solutions that are different from the previous one; these solutions are based on

proportional allocations obtained using scalar solutions of the multi-criteria spanning tree problem. Besides, we prove

necessary and sufficient conditions ensuring that the preference core of this game is not empty.

� 2003 Published by Elsevier B.V.

Keywords: Cooperative game theory; Multi-criteria optimization; Minimum cost spanning tree
NCORREC1. Introduction

Optimization problems in which one or several decision-makers that consider one or several objective
functions, analyze how to act in an optimal way constitute the essence of operations research models.

Optimization theory analyzes situations in which one decision-maker faces an optimization problem with

one or several criteria. If several decision-makers interact conventional game theory is a suitable frame-

work. (See Owen, 1995 for further details.) Finally, when several decision-makers each one controlling

several criteria interact it appears multi-criteria game theory. A methodological approach to cooperative

games with vector-valued payoff can be seen in Fern�aandez et al. (2002).

Traditionally, operations research focus on choosing the optimal alternatives and game theory focus on

models of competition and cooperation. Nevertheless, recent developments in both disciplines have shown
strong interplay between then. These models are called Operations Research Games (see Borm et al., 2001).

In these models apart from the inherent optimization problem it arises the natural question of how to

allocate the joint cost/benefit among the individual decision-makers. Recently, a new issue in game theory

has been to consider the multi-criteria operations research games, see for instance Nishizaki and Sakawa

(2001) and Fern�aandez et al. (2001).
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In this paper we concentrate on the minimum cost spanning tree (mcst) game. These games arise from
analyzing the problem of allocating the costs of a spanning tree in a graph among the users which are

located at the nodes of a graph, with one node reserved for a common supplier which is not to participate in

the cost sharing. This problem was first introduced by Claus and Kleitman (1973). Bird, in 1976, suggested

a game theoretic approach to the problem and proposed a cost allocation scheme that consists of assigning

to each player (node) the cost of the edge incident upon the node on the unique path from the source to the

mentioned node in a minimum cost spanning tree. Since there can be more than one minimum cost

spanning tree for a graph, this way of dividing the costs need not lead to a unique cost allocation. Later on,

Granot and Huberman (1981) showed that the allocations arising from Bird�s cost allocation scheme are
always in the core of the mcst-game (see Curiel, 1997).

Situations in which the cost associated to an edge is a vector instead of a single number yields to multi-

criteria minimum cost spanning tree games that we analyze in this paper.

The paper is organized as follows. Section 2 is devoted to define the Pareto-minimum cost spanning tree

game as a set-valued transferable utility (TU) game. We include the necessary concepts about Graph

Theory. In Section 3 we analyze two core concepts for set-valued TU-games. We prove that the extension of

Bird�s cost allocation rule provides dominance core elements in this game. We also give a family of core

solutions that are different from the previous one.
 P
NCORRECTED2. The game

In general, a set-valued TU-game is a pair (N ; V ), where N ¼ f1; 2; . . . ; ng is the set of players and V is a

function which assigns to each coalition S � N a compact subset V ðSÞ of Rk, the characteristic set of co-

alition S, such that V ð;Þ ¼ 0.

Vectors in V ðSÞ represent the worth that the members of coalition S can guarantee by themselves. Notice
that the characteristic function in these games are set-to-set maps instead of the usual set-to-point maps.

Consider a set of N users of some good that is supplied by a common supplier 0 ðN0 ¼ N [ f0gÞ. There is
a multi-criteria cost associated to the distribution system that has to be divided among the users. This

situation can be formulated as a set-valued game with N players and a characteristic function that asso-

ciates to each coalition S a set V ðSÞ that represent the Pareto-minimum cost of constructing a distribution

system among the users in S from the source 0.

Let G ¼ ðN0;EÞ be the complete graph with set of nodes N0 and set of edges (links) denoted by E. There is
a vector of costs associated with the use of each link. Let eij ¼ eji ¼ ðeij1 ; e

ij
2 ; . . . ; e

ij
k Þ denote the vector-valued

cost of using the link fi; jg 2 E. A tree is a connected graph which contains no cycles. A spanning tree for a

given connected graph is a tree, with set of nodes equal to the set of nodes of the given graph, and set of

edges a subset of the set of edges of the given graph connected and without cycles. A Pareto-minimum cost

spanning tree for a given connected graph, with costs on the edges, is a spanning tree which has Pareto-

minimum costs among all spanning trees (see Ehrgott, 2000).

Definition 2.1. A Pareto-minimum cost spanning tree game, associated to the complete graph G ¼ ðN0;EÞ,
is a pair ðN ; V Þ where N is the set of player and V is the characteristic function defined by:

1. V ð;Þ ¼ f0g,
2. For each non-empty coalition S � N ,

V ðSÞ ¼ v
min
TS0 : spanning tree

X
fi;jg2ETS0

eij;
U
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1 where ETS0
is the set of edges of the spanning tree, TS0 , that contains S0 ¼ S [ f0g; and v
min stands for

2 Pareto-minimization.

Remark that the resulting spanning tree TS0 must contain S0 but it may also contain some additional

nodes.

Example 2.1. Consider the complete graph below.

The bi-criteria Pareto-minimum cost spanning tree game associated to the graph is:

Note that V ðf3gÞ is (1,5)t because the Pareto-minimum spanning tree that contains the nodes 0 and 3 is the

subgraph induced by the edges {0,2} and {2,3}.

There are two Pareto-minimum cost spanning trees in the complete graph G for the grand coalition N .

The first one correspond to ð2; 6Þt 2 V ðNÞ and the second one correspond to ð4; 5Þt 2 V ðNÞ:

The interesting question that arises when a multi-criteria mcst-game, or in general a set-valued TU-game,

is played is how to allocate fairly an achievable vector zN 2 V ðNÞ among the players.

S {1} {2} {3}{2,3} {1,2} {1,3} N

V ðSÞ 1

3

� �� �
1

2

� �� �
1

5

� �� �
2

3

� �� �
3

5

� �
;

2

6

� �� �
2

6

� �
;

4

5

� �� �
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For set-valued TU-games an allocation consists of a matrix X 2 Rk�n whose rows are allocations of the
criteria. The ith column, X i ¼ ðxi1; xi2; . . . ; xikÞ

t
represents the payoffs of ith player for each criteria and the jth

row, Xj ¼ ðx1j ; x2j ; . . . ; xnj Þ is an allocation among the players of the total amount obtained with respect to

criterion j. The sum XS ¼
P

i2S X
i is the overall payoff obtained by coalition S.

The matrix X is an allocation of the game (N ; V ) if XN ¼
P

i2N X i 2 V ðNÞ. The set of all the allocations
of the game is denoted by I�ðN ; V Þ.
NCORRECTED
PROOF3. Core concepts

Apart from efficiency and using the individual and collective rationality principles, in what follows we

are going to establish core concepts for multi-criteria mcst-games.

3.1. Preference core

It is reasonable to think that coalitions only accept allocations if they pay less than any of the worths

given by the characteristic set. To simplify the presentation, by XS
6 V ðSÞ we will be denoted that XS

j 6 zSj ,
8j ¼ 1; 2; . . . ; k, 8zS 2 V ðSÞ.

This assumption leads us to introduce the concept of preference core.

Definition 3.1. The preference core of a game ðN ; V Þ is the set of allocations, X 2 I�ðN ; V Þ, such that

XS
6 V ðSÞ 8S � N . We will denote this set as CðN ; v; 6 Þ.

In order to characterize the non-emptiness of the preference core, consider a vector �zz 2 Rk, not neces-

sarily in V ðNÞ, and the following k scalar games:

Definition 3.2. The scalar l-component minimum cost spanning tree game ðl ¼ 1; 2; . . . ; kÞ associated to �zz is
a pair ðN ; v�zzlÞ where N is the set of player and v�zzl is the characteristic function defined by:

1. v�zzlð;Þ ¼ 0.

2. For each non-empty coalition S � N ,

v�zzlðSÞ ¼ min
TS0 : spanning tree

X
fi;jg2ETS0

eijl ;

0 where ETS0
is the set of edges of the spanning tree, TS0 , that contains the set of nodes S0 ¼ S [ f0g.

3. v�zzlðNÞ ¼ �zzl.For each non-empty coalition, S � N , v�zzlðSÞ is the solution of the problem:

min zSl ;
s:t: : zS 2 V ðSÞ ;

where zSl , l ¼ 1; 2; . . . ; k, is the lth component of vector zS.
Notice that for a fixed coalition S, if an allocation X of the mcst-game, (N ; V Þ, verifies XS

6 V ðSÞ then
XS

6 z�ðSÞ, where z�ðSÞ ¼ ðv�zz1ðSÞ; v�zz2ðSÞ; . . . ; v�zzkðSÞÞ denote the k-dimensional vector whose components are,

respectively, the solutions of the above problems. Conversely, if XS
6 z�ðSÞ then XS

6 V ðSÞ.
A necessary and sufficient condition for the non-emptiness of the preference core is given in the next

result. This condition is based on the balancedness concept of standard scalar cooperative games. For a

definition of balanced games the reader is referred to Owen (1995).
U
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Theorem 3.1. The preference core is non-empty if and only if there exists at least one zN 2 V ðNÞ such that all
the scalar l-component games ðN ; vz

N

l Þ are balanced.

Proof. If every scalar l-component game ðN ; vz
N

l Þ is balanced, consider any allocation, Xl, in the core of

ðN ; vz
N

l Þ, l ¼ 1; 2; . . . ; k. Then, the k � n-matrix X whose rows are Xl, l ¼ 1; 2; . . . ; k, is an allocation asso-

ciated with zN . Moreover, for each S � N , XS
6 z�ðSÞ and XS

6 V ðSÞ.
Conversely, let X be an allocation in the preference core such that XN ¼ zN 2 V ðNÞ. Then XS

6 V ðSÞ,
8S � N and XS

l 6 vz
N

l ðSÞ, 8S � N , 8l ¼ 1; 2; . . . ; k. Therefore, Xl is an allocation in the core of the game
ðN ; vz

N

l Þ. �

In scalar mcst-game there exists a simple rule to allocate costs among the users in the game. This al-

location, called Bird rule (Bird, 1976), is given by:

‘‘Each player supports the cost of the edge incident upon it on the unique path between 0 and the player�s
node, in the corresponding minimum spanning tree.’’

This rule can be extended to the multi-criteria msct-game by allocating to each player the cost vector of

the edge incident upon it on the unique path between 0 and the player�s node, in the corresponding Pareto-
minimum spanning tree.

Example 2.1 (Continued). In the example above, we can allocate (2,6)t 2 V ðNÞ by the matrix
1 1 0

1 2 3

� �
that is in the preference core. This allocation has been obtained applying Bird�s rule to the Pareto-minimum

tree given in the following figure.

Nevertheless we can not divide among the players the vector zN ¼ ð4; 5Þt 2 V ðNÞ by an allocation in the

preference core because the game ðN ; vz
N

1 Þ given by:

is not balanced.

Unfortunately extended Bird�s cost allocation scheme is not, in general, a way to obtain allocations in

the preference core as we show in the following example.

S {1} {2} {3}{2,3} {1,2} {1,3} N

vz
N

1 ðSÞ 1 1 1 2 2 4
U
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Example 3.1. Consider the complete graph below.

The bi-criteria minimum cost spanning tree game associated with the graph is:

Consider zN ¼ ð1; 8Þt 2 V ðNÞ. Applying Definition 3.2 we obtain that the scalar component games ðN ; vz
N

l Þ,
l ¼ 1; 2 are given by:

Notice that both games are balanced (Owen, 1995). Therefore the vector (1,8)t can be divided among the

three players by allocations in the preference core. For instance, X ¼ 1 0 0

2 3 3

� �
2 CðN ; V ; 6 Þ. However

Bird�s tree allocation, X ¼ 1 0 0

3 3 2

� �
associated with the following Pareto-minimum spanning tree

is not in the preference core because the coalition {1,2} obtains X f1;2g ¼ ð1; 6Þt and X f1;2g
6 V ðf1; 2gÞ does

not hold.

S {1} {2} {3}{1,3} {1,2} {2,3} N

V ðSÞ 1

3

� �� �
1

4

� �� �
1

5

� �� �
2

7

� �
;

3

5

� �
;

1

8

� �� �
1

7

� �� �
3

7

� �
;

1

8

� �� �

S {1} {2} {3} {1,2} {1,3} {2,3} N

vz
N

1 ðSÞ 1 1 1 2 1 1 1

vz
N

2 ðSÞ 3 4 5 5 5 7 8
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3.2. Dominance core

To impose that coalitions only accept allocations in which they pay less than any of the worths given by

the characteristic set is too strong. Now suppose that each coalition S will not accept to pay a total cost

greater than any of the guaranteed costs in V ðSÞ. This will be denoted in the following by XSjV ðSÞ and
means XSjzS 8zS 2 V ðSÞ, that is, there does not exist zS 2 V ðSÞ such that XS

j P zSj 8j ¼ 1; 2; . . . ; k,
XS 6¼ zS .

Definition 3.3. The dominance core of (N ; V ) is the set of allocations, X 2 I�ðN ; V Þ, such that

XSjV ðSÞ 8 S � N . We will denote this set as CðN ; V ;jÞ.

Bird�s cost allocation scheme leads always to an element in the scalar core. In the following result we

prove that any vectorial Bird�s cost allocation belongs to the dominance core.

Theorem 3.2. Let TN be a Pareto-minimum cost spanning tree of a complete graph with associated cost vector
zN 2 V ðNÞ. Then the corresponding vectorial Bird’s cost allocation is in the dominance core.

Proof. Let X be the vectorial Bird�s allocation of the Pareto-minimum cost spanning tree TN . It is clear that
XN ¼ zN 2 V ðNÞ and therefore X 2 I�ðN ; V Þ. For a non-empty coalition S � N let TS be a Pareto-minimum

cost spanning tree on the graph G that contains S [ f0g. Construct a spanning tree bTTN for N0 as follows.

Add all the nodes in N n S to TS and for each i 2 N n S add the edge incident upon i on the unique path from

0 to i in TN . Then bTTN , constructed in this way is a spanning tree for N0. So, if zSðTSÞ 2 V ðSÞ is the vector of
costs associated to TS, zðbTTNÞ ¼ zSðTSÞ þ XNnS is the vector of costs associated to the spanning tree bTTN . Then

zNjzðbTTN Þ, indeed, zN ¼ XN ¼ XS þ XNnSjzSðTSÞ þ XNnS . Then XSjzSðTSÞ. As TS is any minimum cost
spanning tree on G for S0, we can conclude that XSjV ðSÞ. �

Example 2.1 (Continued). In this example, we show that vector ð4; 5Þt 2 V ðNÞ can not be allocated among

the players by an allocation in the preference core. Nevertheless, as we have seen above, it can be allocated

by Bird�s cost allocation that is an element of the dominance core:
1 1 2

1 2 2

� �
2 CðN ; V ;jÞ.

Apart from Bird�s cost allocations, there are many other allocations in the dominance core. The question
that arises is whether we can provide a method to obtain, easily, some of them and whether all the vectors

of costs in V ðNÞ can be allocated with this method.

A way to deal with this problems is using topological orders in Rk. As was shown in Ehrgott (2000),

every Pareto optimal spanning tree of a graph is the conventional mcst using the appropriate topological

order. Unfortunately, any topological order may not result in a Pareto optimal tree. Nevertheless, re-

stricting to topological orders induced by an increasing linear utility function, the mcst obtained from the

weighted graph is a Pareto optimal tree.

In what follows we are going to consider only topological orders defined by an strictly increasing linear
utility function u : Rk ! R. In this situation a player or coalition prefers a vector of cost a to another vector

b if uðaÞ6 uðbÞ.
In order to find a condition that permits to divide among the players a total cost zN 2 V ðNÞ accordingly

with a given strictly increasing linear utility function, u, we will define the following scalar game ðN ; vuÞ:
Nvuð;Þ ¼ 0; vuðSÞ ¼ min
zS2V ðSÞ

uðzSÞ; 8S � N ; S 6¼ ;: ð1Þ
UUsing Bird�s rule in the scalar game ðN ; vuÞ, we can construct dominance core allocations for some

zN 2 V ðNÞ.
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Let x ¼ ðx1; . . . ; xnÞ be the Bird�s allocation of the game ðN ; vuÞ. This vector allows us to give a pro-
portional allocation of zN 2 V ðNÞ defined by
X ¼ ðX 1; . . . ;XnÞ; where X i ¼ xi

uðzN Þ z
N 8i 2 N : ð2Þ
OOFThe following theorem states a condition ensuring that these allocations belong to the dominance core.

Theorem 3.3. If vuðNÞ ¼ uðzN Þ, zN 2 V ðNÞ then the proportional allocation X defined in (2) belongs to the
dominance core of (N ; V ).

Proof. As u is a linear function, ðN ; vuÞ is the mcst-game associated to the graph G with scalar cost on his

edges, uðeijÞ. Let x be the allocation of uðzNÞ obtained by Bird�s rule applied in ðN ; vuÞ. Then x is a core

allocation for the scalar game. Let X 2 Rk�n be the proportional allocation defined in (2). It is straight-
forward that XN ¼

Pn
i¼1

xi

uðzN Þ z
N ¼ zN and then X 2 I�ðN ; V Þ. Moreover, if we assume that X 62 CðN ; V ;jÞ

then, there exists a coalition S � N and a vector wS 2 V ðSÞ such that XS PwS , XS 6¼ wS . Then, as u is linear

strictly increasing utility function and as x belongs to the core of the game ðN ; vuÞ,
PR
min

zS2V ðSÞ
uðzSÞ6 uðwSÞ < uðXSÞ ¼

X
i2S

uðX iÞ ¼
P

i2S x
i

uðzN Þ uðzN Þ ¼ xS 6 vuðSÞ ¼ min
zS2V ðSÞ

uðzSÞ:
UNCORRECTEDThis is a contradiction. �

Example 2.1 (Continued). Suppose that the strictly increasing linear utility function, u, used to compare the

worth of the coalitions consist of giving triple importance to the second criterion, that is, the utility of

vector a is uðaÞ ¼ a1 þ 3a2. Then, the scalar game ðN ; vuÞ is:

In this case, vuðNÞ ¼ uðð4; 5ÞtÞ, the mcst for the weighted graph is the Pareto-optimal tree associated to
zN ¼ ð4; 5Þt and ðN ; vuÞ is the mcst-game associated to the weighted graph.

Therefore Bird�s cost allocation x ¼ ð4; 7; 8Þ is in the core of ðN ; vuÞ. Then the proportional allocation

X ¼
16
19

28
19

32
19

20
19

35
19

40
19

� �
2 CðN ; V ;jÞ.

S {1} {2} {3} {1,2} {1,3} {2,3} N

vuðSÞ 10 7 6 11 18 16 19
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Notice that the allocations obtained with this method are different from those obtained applying the

vectorial Bird�s rule to the corresponding Pareto> mcst-game.

Unfortunately is not always possible to find a topological order, defined through an increasing linear

utility function, for every zN 2 V ðNÞ.

Example 3.2. Consider the complete graph where all the links fi; jg not drawn below have costs ð5; 5Þt:

Three Pareto-minimum cost spanning trees for this graph are
CTT1 ¼ ff0; 1g; f0; 2g; f0; 3g; f0; 4g; with associated cost ð3; 5Þt;

T2 ¼ ff0; 1g; f2; 4g; f0; 3g; f5:5; 3gg; with associated cost ð5:5; 3Þt;

T3 ¼ ff0; 1g; f2; 4g; f0; 3g; f3; 4gg; with associated cost ð4:5; 4Þt:
EThen zN ¼ ð4:5; 4Þt is a solution of minzN2V ðNÞ uðzN Þ for no increasing linear utility function u.
NCORR

4. Final remarks

This paper contains the methodological developments of the multi-criteria mcst-games through the

analysis of their dominance and preference cores. However, there is enough room for further research. An
interesting avenue of research should aim to construct new core concepts being consistent with the pref-

erence structure of the decision-maker. In particular, this scheme would lead to construct interactive

procedures, which could be used by the decision-maker in decision support systems when the original core

sets do not reduce to a singleton.

Another issue that deserves future research is the application of this model to real problems. There are

challenging economical models in the new Europe that clearly fall into this category: design and operation

of a common oil pipeline network, operation of existing inter-Europe electrical distribution network, . . .
These topics are currently under research and will be considered in a follow up paper.
U
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