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Abstract. In this paper we strengthen some results on the existence and

properties of pullback attractors for a non-autonomous 2D Navier-Stokes model
with infinite delay. Actually we prove that under suitable assumptions, and

thanks to regularity results, the attraction also happens in the H1 norm for

arbitrarily large finite intervals of time. Indeed, from comparison results of
attractors we establish that all these families of attractors are in fact the same

object. The tempered character of these families in H1 is also analyzed.

1. Introduction and statement of the problem. The appearance of delay ef-
fects in partial differential equations that model fluid flows has been intensively
treated during the last few decades. For instance, this type of effects are considered
in the constitutive equations of the “finite-linear” theory of viscoelasticity when the
movement is close to steady states, in models of simple materials with a perturbation
of the Newtonian part with a viscoelastic part given by a functional of the history of
the displacement gradient, applied to the study of polymeric liquids, K-BKZ theory
in analogy to hyperelasticity, Curtiss-Bird fluids, Jeffreys flows, etcetera (e.g. cf.
[25, 26, 13, 20, 21, 22, 23, 10, 9, 19] and the references therein).

Therefore, the long-time behaviour of these problems is a meaningful task: sta-
bility of equilibria, bifurcations, and attractors among many other questions.

Besides the above, in many physical experiments, the inclusion of measurement
devices may incorporate additional external forces to the model including also delay
effects (see e.g. [15] for a wind tunnel experiment).

In this context, we should mention a sequence of papers introduced by Caraballo
and Real (cf. [2, 3, 4]) where Navier-Stokes models including external force terms
with finite delay were treated. Namely, under suitable assumptions they obtained
existence and uniqueness of solutions, global exponential decay to the stationary
solution, and finally existence of attractors.
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We are interested in a non-autonomous Navier-Stokes model which was intro-
duced in [18] and that includes force terms that incorporate infinite-delay effects.

Our aim is to strengthen the results of that paper, studying, among other ques-
tions, the asymptotic behaviour of solutions (namely, the existence of pullback
attractors) and their regularity properties.

Let Ω ⊂ R2 be an open and bounded set with smooth enough boundary ∂Ω, and
consider the following functional Navier-Stokes problem:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f(t) + g(t, ut) in Ω× (τ,∞),

div u = 0 in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ (−∞, 0],

(1)

where we assume that ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity
field of the fluid, p is the pressure, τ ∈ R is a given initial time, f is a non-delayed
external force field, g is another external force containing some hereditary char-
acteristics, φ(x, s − τ) is the initial datum in the interval of time (−∞, τ ], and
for each t ≥ τ , we denote by ut the function defined on (−∞, 0] by the relation
ut(s) = u(t+ s), s ∈ (−∞, 0].

The structure of the paper is as follows. In the rest of this section, we establish
some functional spaces to state the problem in an abstract form, basic proper-
ties and estimates of the involved operators, and the notions of weak and strong
solutions. In Section 2 we present some existence and uniqueness results, which
improve some of the obtained previously in [18], some additional estimates on these
solutions, and continuity properties. Section 3 is devoted to recalling briefly some
abstract results on non-autonomous dynamical systems and the existence of mini-
mal pullback attractors for a given universe (a class of families of time-depending
sets with certain tempered conditions), and relations between several families of
these objects. Finally, in Section 4 we establish our main results, which, roughly
speaking, show attraction in a higher norm and prove the relationship among all
these attractors.

To start with, we consider the following usual function spaces. Let

V =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
,

and let H be the closure of V in (L2(Ω))2 with the norm | · |, and inner product
(·, ·), where for u, v ∈ (L2(Ω))2,

(u, v) =
2∑
j=1

∫
Ω

uj(x)vj(x) dx.

Also, V will be the closure of V in (H1
0 (Ω))2 with the norm ‖·‖ associated to the

inner product ((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality between V ′ and V .
We consider every element h ∈ H as an element of V ′, given by the equality
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〈h, v〉 = (h, v) for all v ∈ V. Then, it follows that V ⊂ H ⊂ V ′, where the in-
jections are dense and continuous, and, in fact, compact.

Define the operator A : V → V ′ as 〈Au, v〉 = ((u, v)) for all u, v ∈ V . Let
us denote D(A) = {u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has
D(A) = (H2(Ω))2 ∩ V , and Au = −P∆u for all u ∈ D(A) is the Stokes operator
(P is the ortho-projector from (L2(Ω))2 onto H). On D(A) we consider the norm
| · |D(A) defined by |u|D(A) = |Au|. Observe that on D(A) the norms ‖ · ‖(H2(Ω))2

and | · |D(A) are equivalent, and D(A) is compactly and densely injected in V .

Let us define

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

for all functions u, v, w : Ω → R2 for which the right-hand side is well defined.
In particular, b makes sense for all u, v, w ∈ V, and is a continuous trilinear form

on V × V × V .
Some useful properties concerning b that we will use throughout the paper are

the following (see [24] or [28]): there exists a constant C1 > 0, depending only on
Ω, such that (recall that we are in dimension two)

|b(u, v, w)| ≤ C1|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H,

and
|b(u, v, w)| ≤ C1|Au|‖v‖|w| ∀u ∈ D(A), v ∈ V, w ∈ H.

There are several phase spaces which allow us to deal with infinite delays (cf.
[11, 12]). For instance, for a given γ > 0, we may consider the space

Cγ(H) =
{
ϕ ∈ C((−∞, 0];H) : ∃ lim

s→−∞
eγsϕ(s) ∈ H

}
,

which is a Banach space with the norm

‖ϕ‖γ = sup
s∈(−∞,0]

eγs|ϕ(s)|.

We will use the above space, and for the term g, in which the delay is present, we
assume that g : R× Cγ(H) → (L2(Ω))2 satisfies
(g1) For any ξ ∈ Cγ(H), the mapping R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable.
(g2) g(·, 0) = 0.
(g3) There exists a constant Lg > 0 such that for any t ∈ R and all ξ, η ∈ Cγ(H),

|g(t, ξ)− g(t, η)| ≤ Lg‖ξ − η‖γ .

An example of an operator satisfying assumption (g3) was given in [18].

We assume that f ∈ L2
loc(R;V ′) and φ ∈ Cγ(H) with γ > 0, and we define what

we understand by a weak solution to (1).

Definition 1.1. A weak solution to (1) is a function u ∈ C((−∞, T ];H)∩L2(τ, T ;V )
for all T > τ , with uτ = φ, and such that for all v ∈ V ,

d

dt
(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = 〈f(t), v〉+ (g(t, ut), v), (2)

where the equation must be understood in the sense of D′(τ,∞).
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Remark 1. If u is a weak solution to (1), then u satisfies the energy equality

|u(t)|2+2ν
∫ t

s

‖u(r)‖2dr = |u(s)|2+2
∫ t

s

[
〈f(r), u(r)〉+(g(r, ur), u(r))

]
dr ∀ τ ≤ s ≤ t.

A notion of more regular solution is also suitable for problem (1).

Definition 1.2. A strong solution to (1) is a weak solution u to (1) such that
u ∈ L2(τ, T ;D(A)) ∩ L∞(τ, T ;V ) for all T > τ .

Remark 2. If f ∈ L2
loc(R; (L2(Ω))2), and u is a strong solution to (1), then u′ ∈

L2(τ, T ;H) for all T > τ , and so u ∈ C([τ,∞);V ). In this case the following second
energy equality holds:

‖u(t)‖2 + 2ν
∫ t

s

|Au(r)|2 dr + 2
∫ t

s

b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2
∫ t

s

(f(r) + g(r, ur), Au(r)) dr ∀ τ ≤ s ≤ t. (3)

2. Existence of solutions and related properties. In this section we generalize
some results from [18] (see also [16]). Namely, we establish existence of weak and
strong solutions for problem (1) and some related properties when uτ ∈ Cγ(H) and
additional assumptions are satisfied.

Let us denote by λ1 = minv∈V \{0} ‖v‖2/|v|2 > 0 the first eigenvalue of the Stokes
operator A.

Theorem 2.1. Assume that f ∈ L2
loc(R;V ′), γ > 0, and g : R×Cγ(H) → (L2(Ω))2

satisfying the assumptions (g1)–(g3), are given. Then, for any τ ∈ R and φ ∈
Cγ(H), there exists a unique weak solution u = u(·; τ, φ) to (1), and the following
estimates hold for all t ≥ τ , and any µ ∈ (0, ν) such that (ν − µ)λ1 ≤ γ:

‖ut‖2γ ≤ e−2((ν−µ)λ1−Lg)(t−τ)‖φ‖2γ + µ−1

∫ t

τ

e−2((ν−µ)λ1−Lg)(t−s)‖f(s)‖2∗ ds, (4)

µ

∫ t

τ

‖u(s)‖2 ds ≤ e2Lg(t−τ)‖φ‖2γ+µ−1e2Lgt−2(ν−µ)λ1τ

∫ t

τ

e2((ν−µ)λ1−Lg)s‖f(s)‖2∗ ds.

(5)
Moreover, if f ∈ L2

loc(R; (L2(Ω))2), it holds that u is a strong solution in the
sense that u ∈ C([τ + ε, T ];V )∩L2(τ + ε, T ;D(A)) for all ε > 0 and any T > τ + ε.
If besides u(τ) ∈ V , then u is properly a strong solution, i.e. u ∈ C([τ, T ];V ) ∩
L2(τ, T ;D(A)) for all T > τ .

Proof. The existence and uniqueness of weak solution was stated in [18, Theorem
5]. There, for the existence of a solution, the additional assumption 2γ > νλ1 was
made. The fact that this assumption is unnecessary can be seen as follows.

Denote by {vj} ⊂ V the Hilbert basis of H of all the normalized eigenfunctions
of the Stokes operator A.

Consider the Galerkin approximations um(t) =
∑m
j=1 αm,j(t)vj , which are the

solutions of the system
d

dt
(um(t), vj) + ν((um(t), vj)) + b(um(t), um(t), vj)

= 〈f(t), vj〉+ (g(t, umt ), vj), in D′(τ,∞), 1 ≤ j ≤ m,

um(τ + s) =
∑m
j=1(φ(s), vj)vj for s ∈ (−∞, 0].

(6)
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Multiplying the j−equation in (6) by αm,j(t), and summing from j = 1 to j = m,
one has
d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2〈f(t), um(t)〉+ 2(g(t, umt ), um(t))

≤ ν‖um(t)‖2 + ν−1‖f(t)‖2∗ + 2Lg‖umt ‖2γ , a.e. t > τ,

and therefore,

|um(t)|2 + ν

∫ t

τ

‖um(s)‖2 ds ≤ |u(τ)|2 +
∫ t

τ

(
‖f(s)‖2∗/ν + 2Lg‖ums ‖2γ

)
ds ∀ t ≥ τ.

(7)
Thus,

‖umt ‖2γ ≤ max
{

sup
θ∈(−∞,τ−t]

e2γθ|φ(t+ θ − τ)|2,

sup
θ∈[τ−t,0]

(
e2γθ|u(τ)|2 + e2γθ

∫ t+θ

τ

(
‖f(s)‖2∗/ν + 2Lg‖ums ‖2γ

)
ds

)}
≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|φ(t+ θ − τ)|2,

|u(τ)|2 +
∫ t

τ

(
‖f(s)‖2∗/ν + 2Lg‖ums ‖2γ

)
ds

}
∀ t ≥ τ, (8)

and therefore, observing that

sup
θ∈(−∞,τ−t]

eγθ|φ(t+ θ − τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)|

= e−γ(t−τ)‖φ‖γ
≤ ‖φ‖γ ,

and |u(τ)| = |φ(0)| ≤ ‖φ‖γ , we deduce from (8) that

‖umt ‖2γ ≤ ‖φ‖2γ +
∫ t

τ

(
‖f(s)‖2∗/ν + 2Lg‖ums ‖2γ

)
ds ∀ t ≥ τ.

Thus, by Gronwall’s lemma, we have

‖umt ‖2γ ≤ e2Lg(t−τ)
(
‖φ‖2γ + ν−1

∫ t

τ

‖f(s)‖2∗ ds
)

∀ t ≥ τ.

Using this inequality and (7), one also obtains that there exists a constant C,
depending on some constants of the problem (namely, ν, Lg and f), and on τ, T
and R > 0, such that

‖umt ‖2γ ≤ C(τ, T,R) ∀t ∈ [τ, T ], ‖φ‖γ ≤ R, ∀m ≥ 1,

‖um‖2L2(τ,T ;V ) ≤ C(τ, T,R) ∀m.
Now, the proof of the existence of weak solution follows as in [18].

Estimates (4) and (5) were proved in [18, Lemma 17] for the particular case
µ = ν/2. For the general case, the proof is as follows.

Take µ such that 0 < µ < ν. By the energy equality, one has
d

dt
|u(t)|2 + 2ν‖u(t)‖2 = 2〈f(t), u(t)〉+ 2(g(t, ut), u(t))

≤ 2‖f(t)‖∗‖u(t)‖+ 2Lg‖ut‖γ |u(t)|
≤ µ‖u(t)‖2 + µ−1‖f(t)‖2∗ + 2Lg‖ut‖2γ , a.e. t > τ.
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Thus,

d

dt
|u(t)|2 + 2(ν − µ)λ1|u(t)|2 + µ‖u(t)‖2 ≤ µ−1‖f(t)‖2∗ + 2Lg‖ut‖2γ , a.e. t > τ,

and therefore,

|u(t)|2 + µ

∫ t

τ

e−2(ν−µ)λ1(t−s)‖u(s)‖2 ds (9)

≤ e−2(ν−µ)λ1(t−τ)|u(τ)|2+
∫ t

τ

e−2(ν−µ)λ1(t−s)
(
‖f(s)‖2∗/µ+ 2Lg‖us‖2γ

)
ds ∀ t ≥ τ.

Consequently,

‖ut‖2γ ≤ max
{

sup
θ∈(−∞,τ−t]

e2γθ|φ(t+ θ − τ)|2,

sup
θ∈[τ−t,0]

(
e2γθ−2(ν−µ)λ1(t+θ−τ)|u(τ)|2

+e2γθ
∫ t+θ

τ

e−2(ν−µ)λ1(t+θ−s)
(
‖f(s)‖2∗/µ+ 2Lg‖us‖2γ

)
ds

)}
∀ t ≥ τ.

Let us assume that moreover µ satisfies (ν − µ)λ1 ≤ γ.
On the one hand,

sup
θ∈(−∞,τ−t]

eγθ|φ(t+ θ − τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)|

= e−γ(t−τ)‖φ‖γ
≤ e−(ν−µ)λ1(t−τ)‖φ‖γ .

On the other hand,

sup
θ∈[τ−t,0]

e2γθ−2(ν−µ)λ1(t+θ−τ)|u(τ)|2 ≤ e−2(ν−µ)λ1(t−τ)|u(τ)|2

and

sup
θ∈[τ−t,0]

e2γθ
∫ t+θ

τ

e−2(ν−µ)λ1(t+θ−s)
(
‖f(s)‖2∗/µ+ 2Lg‖us‖2γ

)
ds

≤
∫ t

τ

e−2(ν−µ)λ1(t−s)
(
‖f(s)‖2∗/µ+ 2Lg‖us‖2γ

)
ds.

Collecting these inequalities we deduce

‖ut‖2γ ≤ e−2(ν−µ)λ1(t−τ)‖φ‖2γ+
∫ t

τ

e−2(ν−µ)λ1(t−s)
(
‖f(s)‖2∗/µ+2Lg‖us‖2γ

)
ds ∀ t ≥ τ.

Then, by Gronwall’s lemma we conclude that (4) holds.
Now, from (9), (4), and Fubini’s theorem, we conclude (5).
The final part of the theorem is a consequence of well-known regularity results,

taking into account the fact that if f ∈ L2
loc(R; (L2(Ω))2), then the function f̂

defined by f̂(t) = f(t) + g(t, ut), t > τ , belongs to L2(τ, T ; (L2(Ω))2) for all T >
τ .
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Remark 3. It must be observed that estimate (4) also holds for the Galerkin
approximations um, and that, among others (see [18, Theorem 5]), the following
convergences hold for any T > τ :

um → u strongly in C([τ, T ];H),
um ⇀ u weakly in L2(τ, T ;V ),
(um)′ ⇀ u′ weakly in L2(τ, T ;V ′),
umt → ut strongly in Cγ(H) ∀ t ∈ [τ, T ].

Let us denote R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

Definition 2.2. A process U on a metric space (X, dX) is a mapping R2
d × X 3

(t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ) =IdX for all τ ∈ R, and the following
concatenation property holds: U(t, r)U(r, τ) = U(t, τ) for any τ ≤ r ≤ t.

From Theorem 2.1 we deduce that we may define a family of processes or dy-
namical systems associated to problem (1) (one of them was already introduced in
[18, Proposition 16]).

For any h ≥ 0, let us denote by

Ch,Vγ (H) =
{
ϕ ∈ Cγ(H) : ϕ|[−h,0] ∈ B([−h, 0];V )

}
, (10)

where B([−h, 0];V ) is the space of bounded functions from [−h, 0] into V . The
space Ch,Vγ (H) is a Banach space with the norm

‖ϕ‖γ,h,V = ‖ϕ‖γ + sup
θ∈[−h,0]

‖ϕ(θ)‖.

Corollary 1. Assume that f ∈ L2
loc(R;V ′), γ > 0, and g : R×Cγ(H) → (L2(Ω))2

satisfying assumptions (g1)–(g3), are given. Then, the bi-parametric family of map-
pings U(t, τ) : Cγ(H) → Cγ(H), with t ≥ τ , defined by

U(t, τ)φ = ut, (11)

where u(·; τ, φ) is the unique weak solution to (1), is a process on Cγ(H). Moreover,
U(t, τ) maps bounded sets of Cγ(H) into bounded sets of Cγ(H).

If in addition f ∈ L2
loc(R; (L2(Ω))2), then for any h ≥ 0, the family of mappings

U(t, τ)|Ch,V
γ (H), with t ≥ τ , is also a well defined process on Ch,Vγ (H).

The following result can be obtained analogously to [8, Proposition 5.1] (see also
[6]), with the natural changes in the delay norms, but the proof is included here
just for the sake of completeness.

Proposition 1. Assume that f ∈ L2
loc(R; (L2(Ω))2), γ > 0, and g : R× Cγ(H) →

(L2(Ω))2 satisfying the assumptions (g1)–(g3), are given. Then, for any bounded
set B ⊂ Cγ(H), one has:

(i) The set of weak solutions {u(·; τ, φ) : φ ∈ B} is bounded in L∞(τ + ε, T ;V )
for any ε > 0 and any T > τ + ε.

(ii) Moreover, if {φ(0) : φ ∈ B} is bounded in V , then {u(·; τ, φ) : φ ∈ B} is
bounded in L∞(τ, T ;V ) for all T > τ .

Proof. By the second energy equality, we obtain
1
2
d

dθ
‖u(θ)‖2 + ν|Au(θ)|2 + b(u(θ), u(θ), Au(θ))

= (f(θ) + g(θ, uθ), Au(θ))

≤ 2
ν

(|f(θ)|2 + |g(θ, uθ)|2) +
ν

4
|Au(θ)|2, a.e. θ > τ,
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where we have used Young’s inequality.
The trilinear term b can be estimated as

|b(u(θ), u(θ), Au(θ))| ≤ C1|u(θ)|1/2‖u(θ)‖|Au(θ)|3/2

≤ ν

4
|Au(θ)|2 + C(ν)|u(θ)|2‖u(θ)‖4,

where
C(ν) = 27C4

1 (4ν3)−1. (12)

This, combined with the above and the properties of g, gives

d

dθ
‖u(θ)‖2 + ν|Au(θ)|2 ≤ 4

ν
|f(θ)|2 + 2C(ν)|u(θ)|2‖u(θ)‖4 +

4L2
g

ν
‖uθ‖2γ , a.e. θ > τ.

(13)
Integrating, in particular we deduce that for all τ < s ≤ r

‖u(r)‖2 ≤ ‖u(s)‖2+ 4
ν

∫ r

s

|f(θ)|2 dθ+2C(ν)

∫ r

s

|u(θ)|2‖u(θ)‖4 dθ+
4L2

g

ν

∫ r

s

‖uθ‖2γ dθ.

By Gronwall’s lemma we obtain that for all τ < s ≤ r

‖u(r)‖2 ≤
(
‖u(s)‖2 +

4
ν

∫ r

s

|f(θ)|2 dθ +
4L2

g

ν

∫ r

s

‖uθ‖2γ dθ
)

×exp
(

2C(ν)

∫ r

s

|u(θ)|2‖u(θ)‖2 dθ
)
. (14)

Integrating once more with respect to s ∈ (τ, r) yields

(r − τ)‖u(r)‖2

≤
( ∫ T

τ

‖u(s)‖2 ds+
4(T − τ)

ν

∫ T

τ

|f(θ)|2 dθ +
4L2

g(T − τ)
ν

∫ T

τ

‖uθ‖2γ dθ
)

×exp
(

2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ
)

∀ τ < r ≤ T.

In particular, for τ + ε ≤ r ≤ T , it holds

‖u(r)‖2 ≤ 1
ε

( ∫ T

τ

‖u(s)‖2 ds+
4(T − τ)

ν

∫ T

τ

|f(θ)|2 dθ +
4L2

g(T − τ)
ν

∫ T

τ

‖uθ‖2γ dθ
)

×exp
(

2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ
)
.

Taking into account (4) and (5), the claim (i) is proved.

The proof of claim (ii) is simpler. If φ(0) belongs to V , then from (13) one
deduces that for all τ ≤ r ≤ T ,

‖u(r)‖2 ≤ ‖u(τ)‖2+4
ν

∫ r

τ

|f(θ)|2 dθ+2C(ν)

∫ r

τ

|u(θ)|2‖u(θ)‖4 dθ+
4L2

g

ν

∫ r

τ

‖uθ‖2γ dθ.

Therefore, one may apply directly Gronwall’s lemma and proceed analogously as
before to conclude (ii).

One ingredient in order to obtain pullback attractors below is that the dynamical
system be closed (cf. [7]). We obtain a stronger property here: the process U is
continuous in the several phase spaces that we defined above.
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Proposition 2. Assume that f ∈ L2
loc(R;V ′), γ > 0, and g : R×Cγ(H) → (L2(Ω))2

satisfying the assumptions (g1)–(g3), are given. Let us denote u = u(·; τ, φ) and
v = v(·; τ, ψ) the weak solutions for (1) corresponding to initial data φ and ψ ∈
Cγ(H). Then, the following continuity properties hold:

(i) For any τ ≤ t,

‖ut − vt‖2γ ≤
(

1 +
Lg
2γ

)
‖φ− ψ‖2γexp

( ∫ t

τ

(
3Lg +

1
4ν
‖u(s)‖2

)
ds

)
,

and in particular the mapping U(t, τ) : Cγ(H) → Cγ(H), defined by (11), is
continuous.

(ii) If f ∈ L2
loc(R; (L2(Ω))2), φ(0) ∈ V and ψ(0) ∈ V , then

‖u(s)− v(s)‖2 ≤
(
‖φ(0)− ψ(0)‖2 +

L2
g

ν

∫ t

τ

‖uθ − vθ‖2γ dθ
)

×exp
[∫ t

τ

(
2C(ν)λ−1

1 ‖u(θ)‖4+
2C2

1

ν
|v(θ)||Av(θ)|

)
dθ

]
∀τ ≤ s ≤ t,

where C(ν) is given in (12).
In particular, for all h ≥ 0 and any τ ≤ t, the mapping U(t, τ) : Ch,Vγ (H) →

Ch,Vγ (H) defined by (11), is continuous.

Proof. Claim (i) was proved in [18, Proposition 6]. Observe that the assumption
2γ > νλ1 appearing in [18] was not really used.

Claim (ii) follows analogously as in [8, Proposition 5.2] with the natural changes
in the delay norms.

3. Abstract results on minimal pullback attractors. In this section we recall
some basic definitions and main results that we will use later about properties
required of a process for a non-autonomous dynamical system in order to have a
(minimal) pullback attractor.

These results can be found in [7] and [17] (see also [1]), so here we only reproduce
the statements for the sake of completeness.

In this section, we consider fixed a metric space (X, dX).
From Proposition 2 we know that the processes for our problem are continuous

(in the sense that for any pair τ ≤ t, U(t, τ) : X → X is continuous). However,
it is worth pointing out that the theory of attractors for dynamical systems can
be developed with more relaxed assumptions. Namely, the following definition is
weaker than asking for the process to be strong-weak (also known as norm-to weak)
continuous, and of course weaker than asking U to be continuous.

Definition 3.1. A process U on X is said to be closed if for any τ ≤ t, and any
sequence {xn} ⊂ X with xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a
family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 3.2. We say that a process U on X is pullback D̂0-asymptotically
compact if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying
τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact
in X.
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Denote

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R,

where {· · · }
X

is the closure in X.
Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff

semi-distance in X between them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

Let D be a nonempty class of families parameterized in time D̂ = {D(t) : t ∈
R} ⊂ P(X). The class D will be called a universe in P(X).

Definition 3.3. A process U on X is said to be pullback D-asymptotically compact
if it is pullback D̂-asymptotically compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the
process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(D̂, t) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(D̂, t).

With the above definitions, we may establish the main result of this section (cf.
[7, Theorem 3.11]).

Theorem 3.4. Consider a closed process U : R2
d×X → X, a universe D in P(X),

and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U ,
and assume also that U is pullback D̂0-asymptotically compact.

Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃

bD∈D Λ(D̂, t)
X

, has
the following properties:
(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂

Λ(D̂0, t),
(b) AD is pullback D-attracting, i.e. limτ→−∞ distX(U(t, τ)D(τ),AD(t)) = 0 for

all D̂ ∈ D, and any t ∈ R,
(c) AD is invariant, i.e. U(t, τ)AD(τ) = AD(t) for all (t, τ) ∈ R2

d,

(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a fam-
ily of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D, lim

τ→−∞
distX(U(t, τ)D(τ),

C(t)) = 0, then AD(t) ⊂ C(t).

Remark 4. Under the assumptions of Theorem 3.4, the family AD is called the
minimal pullback D-attractor for the process U .

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies
(b)–(c).

A sufficient condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is
closed for all t ∈ R, and the family D is inclusion-closed (i.e. if D̂ ∈ D, and
D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).

We will denote by DF (X) the universe of fixed nonempty bounded subsets of X,
i.e., the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of X.
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Now, it is easy to conclude the following result (where ADF (X) is the original
pullback attractor of [5]).

Corollary 2. Under the assumptions of Theorem 3.4, if the universe D contains
the universe DF (X), then both attractors, ADF (X) and AD, exist, and ADF (X)(t) ⊂
AD(t) for all t ∈ R.

Moreover, if for some T ∈ R, the set ∪t≤TD0(t) is a bounded subset of X, then
ADF (X)(t) = AD(t) for all t ≤ T .

The following result allows us to compare two attractors for a same process in
different phase spaces under appropriate assumptions.

Theorem 3.5. Let {(Xi, dXi
)}i=1,2 be two metric spaces such that X1 ⊂ X2 with

continuous injection, and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2.
Assume that we have a map U that acts as a process in both cases, i.e., U : R2

d×Xi →
Xi for i = 1, 2 is a process.

For each t ∈ R, let us denote

Ai(t) =
⋃

bDi∈Di

Λi(D̂i, t)
Xi

i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the
dependence of the respective topology.

Then, A1(t) ⊂ A2(t) for all t ∈ R.
Suppose moreover that the two following conditions are satisfied:
(i) A1(t) is a compact subset of X1 for all t ∈ R,
(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and a

t∗
bD1
≤ t (both possibly depending on t and D̂2), such that U is pullback D̂1-

asymptotically compact, and for any s ≤ t∗
bD1

there exists a τs ≤ s such that
U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs.

Then, under all the conditions above, A1(t) = A2(t) for all t ∈ R.

Remark 5. In the preceding theorem, if instead of assumption (ii) we consider the
following condition:
(ii’) for any D̂2 ∈ D2 and any sequence τn → −∞, there exist another family

D̂1 ∈ D1 and another sequence τ ′n → −∞ with τ ′n ≥ τn for all n, such that U
is pullback D̂1-asymptotically compact, and

U(τ ′n, τn)D2(τn) ⊂ D1(τ ′n) ∀n,
then, with a similar proof, one can obtain that the equality A1(t) = A2(t) also holds
for all t ∈ R.

Observe that a sufficient condition for (ii’) is that for each t ∈ R, there exists
T = T (t) > 0 such that for any D̂2 ∈ D2, there exists a D̂1 ∈ D1 satisfying that U
is pullback D̂1-asymptotically compact, and U(τ + T, τ)D2(τ) ⊂ D1(τ + T ) for all
τ < t− T .

4. Pullback attractors for 2D Navier-Stokes equations with infinite delay
and their relation. In the context of pullback D-attractors, applications usually
involve a concrete universe. Namely, and having in mind (4), the two first of the
following families were already used as universes in [18] (the first one for µ = ν/2).
The rest of the families are related to our goal of improving the regularity of the
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attractor, and combine the Banach space Cγ(H) with the space Ch,Vγ (H) given in
(10).

Definition 4.1. For any σ > 0, we will denote by Dσ(Cγ(H)) the class of all
families of nonempty subsets D̂ = {D(t) : t ∈ R} ⊂ P(Cγ(H)) such that

lim
τ→−∞

(
eστ sup

ϕ∈D(τ)

‖ϕ‖2γ
)

= 0.

Accordingly to the notation introduced in the previous section, DF (Cγ(H)) will
denote the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty
bounded subset of Cγ(H).

For any σ > 0 and h ≥ 0, we will also denote by Dh,Vσ (Cγ(H)) the class of
families D̂ = {D(t) : t ∈ R} ∈ Dσ(Cγ(H)) such that for any t ∈ R and for any
ϕ ∈ D(t), it holds that ϕ|[−h,0] ∈ B([−h, 0];V ).

Analogously, we will denote by Dh,VF (Cγ(H)) the class of families D̂ = {D(t) =
D : t ∈ R} with D a fixed nonempty bounded subset of Cγ(H) such that for any
ϕ ∈ D, it holds that ϕ|[−h,0] ∈ B([−h, 0];V ).

Finally, we will denote by DF (Ch,Vγ (H)) the class of families D̂ = {D(t) = D :
t ∈ R} with D a fixed nonempty bounded subset of Ch,Vγ (H).

Remark 6. The chain of inclusions for the universes in the above definition is the
following:

DF (Ch,Vγ (H)) ⊂ Dh,VF (Cγ(H)) ⊂ Dh,Vσ (Cγ(H)) ⊂ Dσ(Cγ(H)),

and
DF (Ch,Vγ (H)) ⊂ Dh,VF (Cγ(H)) ⊂ DF (Cγ(H)) ⊂ Dσ(Cγ(H)),

for all σ > 0 and any h ≥ 0.
It must also be pointed out that Dσ(Cγ(H)) and Dh,Vσ (Cγ(H)) are inclusion-

closed, which will be important (cf. Remark 4).

Hereon, let us assume that

there exists 0 < µ < ν such that Lg < (ν − µ)λ1 ≤ γ (15)

and ∫ 0

−∞
eσµs‖f(s)‖2∗ ds <∞, (16)

where
σµ = 2((ν − µ)λ1 − Lg). (17)

As an immediate consequence of (4) we have the following

Proposition 3. Let γ > 0, g satisfying assumptions (g1)–(g3), and f ∈ L2
loc(R;V ′)

be given. Assume that (15) and (16) hold. Then, the family D̂0,µ = {D0,µ(t) : t ∈
R} ⊂ P(Cγ(H)), with D0,µ(t) = BCγ(H)(0, ρµ(t)), the closed ball in Cγ(H) of center
zero and radius ρµ(t), where

ρ2
µ(t) = 1 + µ−1

∫ t

−∞
e−σµ(t−s)‖f(s)‖2∗ ds,

is pullback Dσµ
(Cγ(H))-absorbing for the process U : R2

d×Cγ(H) → Cγ(H) defined
by (11). Moreover, D̂0,µ ∈ Dσµ

(Cγ(H)).

From above, we have the following slight improvement of [18, Theorem 28].
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Theorem 4.2. Under the assumptions of Proposition 3, there exist the minimal
pullback DF (Cγ(H))-attractor ADF (Cγ(H)) and the minimal pullback Dσµ(Cγ(H))-
attractor ADσµ (Cγ(H)) for the process U associated to (1), and the following relations
hold:

ADF (Cγ(H))(t) ⊂ ADσµ (Cγ(H))(t) ⊂ BCγ(H)(0, ρµ(t)) ∀ t ∈ R

and

lim
t→−∞

(
eσµt sup

v∈ADσµ (Cγ (H))(t)

‖v‖2γ
)

= 0.

Remark 7. If we also assume that f ∈ L2
loc(R; (L2(Ω))2), from the invariance of

both pullback attractors, and the regularity property stated in Theorem 2.1, it turns
out that

ADF (Cγ(H))(t) ⊂ ADσµ (Cγ(H))(t) ⊂ C((−∞, 0];V ) ∀ t ∈ R.

We establish now some results on absorbing properties of U : R2
d × Ch,Vγ (H) →

Ch,Vγ (H). The first one is a consequence of Proposition 3.

Proposition 4. Let γ > 0 and g : R × Cγ(H) → (L2(Ω))2 satisfying assumptions
(g1)–(g3) be given. Assume that f ∈ L2

loc(R; (L2(Ω))2) and that there exists 0 <
µ < ν such that Lg < (ν − µ)λ1 ≤ γ, and∫ 0

−∞
eσµs|f(s)|2 ds <∞, (18)

where σµ is given by (17).
Then, for any h ≥ 0, the family D̂0,µ,h = {D0,µ,h(t) : t ∈ R} ⊂ P(Ch,Vγ (H)),

with

D0,µ,h(t) = D0,µ(t) ∩ Ch,Vγ (H),

is a family of closed sets of Ch,Vγ (H) and is pullback Dh,Vσµ
(Cγ(H))-absorbing for

the process U : R2
d × Ch,Vγ (H) → Ch,Vγ (H). Moreover, D̂0,µ,h ∈ Dh,Vσµ

(Cγ(H)).

Lemma 4.3. Under the assumptions of Proposition 4, for any D̂ ∈ Dσµ(Cγ(H))
and any r > h, the family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r) = U(τ+r, τ)D(τ),
for any τ ∈ R, belongs to Dh,Vσµ

(Cγ(H)).

Proof. From (4), we deduce

sup
ψ∈D(r)(τ)

(eσµτ‖ψ‖2γ) ≤ e−σµr sup
φ∈D(τ)

(eσµτ‖φ‖2γ) + (µλ1)−1

∫ τ+r

τ

eσµs|f(s)|2ds,

which jointly with the regularity property in Theorem 2.1 and (18), conclude the
proof.

Now, we establish several estimates in finite intervals of time when the initial
time is sufficiently shifted in a pullback sense.

Lemma 4.4. Under the assumptions of Proposition 4, for any t ∈ R, h ≥ 0 and
D̂ ∈ Dσµ(Cγ(H)), there exists τ1(D̂, t, h) < t−h−2 and functions {ρi}4i=1 depending
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on t and h, such that for any τ ≤ τ1(D̂, t, h) and any φτ ∈ D(τ), it holds

|u(r; τ, φτ )|2 ≤ ρ1(t) ∀ r ∈ [t− h− 2, t],

‖u(r; τ, φτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− h− 1, t],

ν

∫ r

r−1

|Au(θ; τ, φτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− h, t],∫ r

r−1

|u′(θ; τ, φτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− h, t],

(19)

where

ρ1(t) = 1 + (µλ1)−1e−σµ(t−h−2)

∫ t

−∞
eσµs|f(s)|2 ds,

ρ2(t) =
{
ν−1ρ1(t)(1 + L2

g(4 + 2ν−1λ−1
1 )) + ν−1(4 + 2ν−1λ−1

1 )
∫ t

t−h−2

|f(θ)|2 dθ
}

×exp
{

2ν−1C(ν)ρ1(t)
[
ρ1(t)(1+2ν−1λ−1

1 L2
g)+2ν−1λ−1

1

∫ t

t−h−2

|f(θ)|2dθ
]}
,

ρ3(t) = ρ2(t) + 4ν−1

∫ t

t−h−1

|f(θ)|2 dθ + 2C(ν)ρ1(t)ρ2
2(t) + 4L2

gν
−1ρ1(t),

ρ4(t) = νρ2(t) + 4
∫ t

t−h−1

|f(θ)|2 dθ + 2C2
1ν
−1ρ2(t)ρ3(t) + 4L2

gρ1(t),

with σµ given by (17), and C(ν) defined in (12).

Proof. Let τ1(D̂, t, h) < t− h− 2 be such that

e−σµ(t−h−2)eσµτ‖φτ‖2γ ≤ 1 ∀ τ ≤ τ1(D̂, t, h), φτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t, h) and φτ ∈ D(τ).
The first estimate in (19) follows directly from (4), using the definition of the

norm ‖ · ‖γ and the increasing character of the exponential.
Now, for the rest of the estimates, let us consider again the Galerkin approxima-

tions already used in Theorem 2.1, and denote for short um(r) = um(r; τ, φτ ).
Multiplying each equation of (6) by αm,j(t) and summing from j = 1 to m, we

have
1
2
d

dt
|um(t)|2 + ν‖um(t)‖2 = (f(t) + g(t, umt ), um(t))

≤ 1
νλ1

(|f(t)|2+|g(t, umt )|2) +
ν

2
λ1|um(t)|2, a.e. t > τ,

where we have used Young inequality. Now, from the properties of g, we obtain
d

dt
|um(t)|2 + ν‖um(t)‖2 ≤ 2

νλ1
(|f(t)|2 + L2

g‖umt ‖2γ), a.e. t > τ.

Integrating, in particular we deduce that

ν

∫ r

r−1

‖um(θ)‖2 dθ ≤ |um(r − 1)|2 +
2
νλ1

∫ r

r−1

(|f(θ)|2 + L2
g‖umθ ‖2γ) dθ ∀ τ ≤ r − 1.

(20)
Now, observe that (4) and the estimates obtained in the proof of Proposition 1

also hold for um.
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From (14), integrating with respect to s ∈ (r − 1, r), and using (4), we obtain

‖um(r)‖2 ≤
[ ∫ r

r−1

‖um(s)‖2 ds+ 4ν−1

∫ r

r−1

|f(θ)|2 dθ

+4L2
gν
−1

∫ r

r−1

(
e−σµ(θ−τ)‖φτ‖2γ+(µλ1)−1

∫ θ

τ

e−σµ(θ−η)|f(η)|2dη
)
dθ

]
×exp

(
2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖2 dθ
)

∀ τ ≤ r − 1.

From this, jointly with (20) and the first estimate in (19), which holds exactly the
same for the approximations um, one deduces

‖um(r; τ, φτ )‖2 ≤ ρ2(t) ∀ r ∈ [t− h− 1, t]. (21)

From this inequality and Remark 3, we deduce that

um
∗
⇀ u(·; τ, φτ ) weakly-star in L∞(t− h− 1, t;V ).

So, taking inferior limit when m goes to infinity in (21), and using the fact that
u(·; τ, φτ ) ∈ C([t− h− 1, t];V ), we obtain the second estimate in (19).

On other hand, from (13), and using again (4), we also obtain

ν

∫ r

r−1

|Aum(θ)|2 dθ

≤ ‖um(r − 1)‖2 + 4ν−1

∫ r

r−1

|f(θ)|2 dθ + 2C(ν)

∫ r

r−1

|um(θ)|2‖um(θ)‖4 dθ

+4L2
gν
−1

∫ r

r−1

(
e−σµ(θ−τ)‖φτ‖2γ + (µλ1)−1

∫ θ

τ

e−σµ(θ−s)|f(s)|2 ds
)
dθ

for all τ ≤ r − 1. Therefore,

ν

∫ r

r−1

|Aum(θ; τ, φτ )|2 dθ ≤ ρ3(t) ∀ r ∈ [t− h, t]. (22)

From Remark 3, (22), and the uniqueness of solutions, we deduce that

um ⇀ u(·; τ, φτ ) weakly in L2(r − 1, r;D(A)) ∀ r ∈ [t− h, t].

Thus, taking inferior limit when m goes to infinity in (22), we obtain the third
inequality in (19).

Finally, multiplying each equation in (6) by α′m,j(t) and summing from j = 1 to
m, we obtain

|(um)′(θ)|2 +
ν

2
d

dθ
‖um(θ)‖2 + b(um(θ), um(θ), (um)′(θ))

= (f(θ), (um)′(θ)) + (g(θ, umθ ), (um)′(θ)), a.e. θ > τ.

Since

|(f(θ), (um)′(θ))| ≤ 1
8
|(um)′(θ)|2 + 2|f(θ)|2,

|(g(θ, umθ ), (um)′(θ))| ≤ 1
8
|(um)′(θ)|2 + 2|g(θ, umθ )|2,

|b(um(θ), um(θ), (um)′(θ))| ≤ C1|Aum(θ)|‖um(θ)‖|(um)′(θ)|

≤ 1
4
|(um)′(θ)|2 + C2

1 |Aum(θ)|2‖um(θ)‖2,
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we obtain that

|(um)′(θ)|2 + ν
d

dθ
‖um(θ)‖2 ≤ 4|f(θ)|2 + 4|g(θ, umθ )|2 + 2C2

1 |Aum(θ)|2‖um(θ)‖2

a.e. θ > τ. From the properties of g, (4), and integrating above, we conclude∫ r

r−1

|(um)′(θ)|2 dθ

≤ ν‖um(r − 1)‖2 + 4
∫ r

r−1

|f(θ)|2 dθ + 2C2
1

∫ r

r−1

|Aum(θ)|2‖um(θ)‖2 dθ

+4L2
g

∫ r

r−1

(
e−σµ(θ−τ)‖φτ‖2γ + (µλ1)−1

∫ θ

τ

e−σµ(θ−s)|f(s)|2 ds
)
dθ ∀ τ ≤ r − 1.

From (21) and (22) we deduce that∫ r

r−1

|(um)′(θ; τ, φτ )|2 dθ ≤ ρ4(t) ∀ r ∈ [t− h, t]. (23)

From Remark 3, (23), and the uniqueness of solutions, we deduce that

(um)′ ⇀ u′(·; τ, φτ ) weakly in L2(r − 1, r;H) ∀ r ∈ [t− h, t].

Thus, taking inferior limit when m goes to infinity in (23), we obtain the fourth
inequality in (19).

Now, we can prove the asymptotic compactness of the process U restricted to the
space Ch,Vγ (H). The proof relies on an energy method with continuous functions,
and is similar to that in [18] but using the energy equality (3) (see also [7, Lemma
4.13]); we reproduce it here just for the sake of completeness.

Lemma 4.5. Under the assumptions of Proposition 4, and for any h ≥ 0, the
process U : R2

d × Ch,Vγ (H) → Ch,Vγ (H) is pullback Dh,Vσµ
(Cγ(H))-asymptotically

compact.

Proof. Since the asymptotic compactness in the norm of Cγ(H) was already es-
tablished in Theorem 4.2, we only must care about the sup norm in B([−h, 0];V ).
So, let us fix t ∈ R, a family D̂ = {D(t) : t ∈ R} ∈ Dh,Vσµ

(Cγ(H)), a sequence
{τn} ⊂ (−∞, t] with τn → −∞, and a sequence {φτn} ⊂ Ch,Vγ (H), with φτn ∈ D(τn)
for all n.

For short, let us denote un(·) = u(·; τn, φτn). It is enough to prove that the
sequence {un(t+ ·)} is relatively compact in C([−h, 0];V ).

By the asymptotic compactness in the norm of Cγ(H), we may assume without
loss of generality that there exists ξ ∈ Cγ(H) such that

unt → ξ strongly in Cγ(H). (24)

Denote u(t+ r) = ξ(r) for all r ∈ (−∞, 0].
From Lemma 4.4 we know that there exists a value τ1(D̂, t, h) < t − h − 2 such

that the subsequence {un : τn ≤ τ1(D̂, t, h)} is bounded in L∞(t − h − 1, t;V ) ∩
L2(t− h− 1, t;D(A)) with {(un)′} bounded in L2(t− h− 1, t;H).

Using the Aubin-Lions compactness lemma (e.g. cf. [14]), and taking into ac-
count (24), we may ensure that u ∈ L∞(t−h− 1, t;V )∩L2(t−h− 1, t;D(A)) with
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u′ ∈ L2(t − h − 1, t;H), and for a subsequence (relabelled the same) the following
convergences hold:

un
∗
⇀ u weakly-star in L∞(t− h− 1, t;V ),

un ⇀ u weakly in L2(t− h− 1, t;D(A)),
(un)′ ⇀ u′ weakly in L2(t− h− 1, t;H),
un → u strongly in L2(t− h− 1, t;V ),
un(s) → u(s) strongly in V, a.e. s ∈ (t− h− 1, t).

(25)

Indeed, u ∈ C([t − h − 1, t];V ) satisfies, thanks to (24) and (25), the equation (2)
in (t− h− 1, t).

From the boundedness of {un} in C([t−h−1, t];V ), we have that for any sequence
{sn} ⊂ [t− h− 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V, (26)

where we have used (24) to identify the weak limit. We will prove that

un → u strongly in C([t− h, t];V ), (27)

using an energy method for continuous functions analogous to that employed, for
instance, in [18, 7].

Indeed, if (27) is false, there exist ε > 0, a sequence {tn} ⊂ [t−h, t], without loss
of generality converging to some t∗, and such that

‖un(tn)− u(t∗)‖ ≥ ε ∀n ≥ 1. (28)

Recall that by (26) we have

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (29)

On the other hand, using the energy equality (3) for u and all un, and reasoning as
for the obtention of (13), we have that for all t− h− 1 ≤ s1 ≤ s2 ≤ t,

‖un(s2)‖2 + ν

∫ s2

s1

|Aun(r)|2 dr

≤ ‖un(s1)‖2+2C(ν)

∫ s2

s1

|un(r)|2‖un(r)‖4 dr+ 4
ν

∫ s2

s1

|f(r)|2 dr+
4L2

g

ν

∫ s2

s1

‖unr ‖2γ dr,

and

‖u(s2)‖2 + ν

∫ s2

s1

|Au(r)|2 dr

≤ ‖u(s1)‖2+2C(ν)

∫ s2

s1

|u(r)|2‖u(r)‖4 dr+ 4
ν

∫ s2

s1

|f(r)|2 dr+
4L2

g

ν

∫ s2

s1

‖ur‖2γ dr.

In particular, we can define the functions

Jn(s) = ‖un(s)‖2 − 2C(ν)

∫ s

t−h−1

|un(r)|2‖un(r)‖4 dr − 4
ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

‖unr ‖2γ dr,

J(s) = ‖u(s)‖2 − 2C(ν)

∫ s

t−h−1

|u(r)|2‖u(r)‖4 dr − 4
ν

∫ s

t−h−1

|f(r)|2 dr

−
4L2

g

ν

∫ s

t−h−1

‖ur‖2γ dr.
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These are continuous functions on [t − h − 1, t], and from the above inequalities,
both Jn and J are non-increasing. Moreover, by (24) and (25), we have

Jn(s) → J(s) a.e. s ∈ (t− h− 1, t).

Thus, there exists a sequence {t̃k} ⊂ (t−h−1, t∗) such that t̃k → t∗, when k →∞,
and

lim
n→∞

Jn(t̃k) = J(t̃k) ∀ k.

Fix an arbitrary value δ > 0. From the continuity of J, there exists kδ such that

|J(t̃k)− J(t∗)| < δ/2 ∀ k ≥ kδ.

Now consider n(kδ) such that for all n ≥ n(kδ) it holds

tn ≥ t̃kδ
and |Jn(t̃kδ

)− J(t̃kδ
)| < δ/2.

Then, since all Jn are non-increasing, we deduce that for all n ≥ n(kδ)

Jn(tn)− J(t∗) ≤ Jn(t̃kδ
)− J(t∗)

≤ |Jn(t̃kδ
)− J(t∗)|

≤ |Jn(t̃kδ
)− J(t̃kδ

)|+ |J(t̃kδ
)− J(t∗)| < δ.

This yields that
lim sup
n→∞

Jn(tn) ≤ J(t∗),

and therefore, by (24) and (25),

lim sup
n→∞

‖un(tn)‖ ≤ ‖u(t∗)‖,

which joined to (29) and (26) implies that un(tn) → u(t∗) strongly in V, in contra-
diction with (28). Thus, (27) is proved as desired.

Now, we can establish our main result.

Theorem 4.6. Let γ > 0 and g satisfying assumptions (g1)–(g3) be given. Assume
that there exists 0 < µ < ν such that Lg < (ν−µ)λ1 ≤ γ, and f ∈ L2

loc(R; (L2(Ω))2)
satisfies (18). Then, for any h ≥ 0, the process U on Ch,Vγ (H) defined by (11)
possesses a minimal pullback Dh,Vσµ

(Cγ(H))-attractor ADh,V
σµ (Cγ(H)), a minimal pull-

back Dh,VF (Cγ(H))-attractor ADh,V
F (Cγ(H)), and a minimal pullback DF (Ch,Vγ (H))-

attractor ADF (Ch,V
γ (H)). Moreover, the following relations hold:

ADF (Ch,V
γ (H))(t) ⊂ ADh,V

F (Cγ(H))(t)

⊂ ADF (Cγ(H))(t)

⊂ ADh,V
σµ (Cγ(H))(t) = ADσµ (Cγ(H))(t)

⊂ C((−∞, 0];V ) ∀ t ∈ R, (30)

and for any family D̂ ∈ Dσµ(Cγ(H)),

lim
τ→−∞

distCh,V
γ (H)(U(t, τ)D(τ),ADσµ (Cγ(H))(t)) = 0 ∀ t ∈ R. (31)

Finally, if in addition f satisfies

sup
s≤0

(
e−σµs

∫ s

−∞
eσµθ|f(θ)|2 dθ

)
<∞, (32)
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then all attractors in (30) coincide, ADσµ (Cγ(H)) ∈ Dh,Vσµ
(Cγ(H)) and it is tempered

in Ch,Vγ (H), in the sense that

lim
t→−∞

(
eσµt sup

v∈ADσµ (Cγ (H))(t)

‖v‖2γ,h,V
)

= 0. (33)

Proof. Let us fix h ≥ 0. The existence of ADh,V
σµ (Cγ(H)) is a consequence of Theo-

rem 3.4, since the process U on Ch,Vγ (H) is continuous (cf. Proposition 2 (ii)) and
therefore closed, the existence of a pullback absorbing family was given by Propo-
sition 4, and in Lemma 4.5 we have proved the pullback Dh,Vσµ

(Cγ(H))-asymptotic
compactness.

The existence of the pullback attractors ADh,V
F (Cγ(H)) and ADF (Ch,V

γ (H)) fol-

lows from the above facts, and the inclusions DF (Ch,Vγ (H)) ⊂ Dh,VF (Cγ(H)) ⊂
Dh,Vσµ

(Cγ(H)).
In (30), the chain of inclusions follows from Corollary 2, Theorem 3.5, and Re-

mark 6. The equality is a consequence of Theorem 3.5 and Remark 5, by using
Lemma 4.3 with T = r = h+ 1. The last inclusion was observed in Remark 7.

The property (31) is a consequence of Lemma 4.3, since for any D̂ ∈ Dσµ
(Cγ(H))

and any τ < t− h− 1,

distCh,V
γ (H)(U(t, τ)D(τ),ADσµ (Cγ(H))(t))

= distCh,V
γ (H)(U(t, τ + h+ 1)(U(τ + h+ 1, τ)D(τ)),ADσµ (Cγ(H))(t))

= distCh,V
γ (H)(U(t, τ + h+ 1)D(h+1)(τ),ADh,V

σµ (Cγ(H))(t)).

The coincidence of all attractors in (30) under the additional assumption (32)
holds by applying once more Theorem 3.5, Proposition 3, and the second estimate
in (19), since (32) is equivalent to

sup
s≤0

∫ s

s−1

|f(θ)|2 dθ <∞. (34)

The fact that ADσµ (Cγ(H)) ∈ Dh,Vσµ
(Cγ(H)) is a consequence of Theorem 3.4 and

remarks 4 and 6.
The tempered condition (33) of the attractor comes from (32) (and therefore

(34)) and the expressions of ρµ(t) and ρ2(t).

Remark 8. Observe that, under the assumptions of Theorem 4.6, one has that
ADh1,V

σµ (Cγ(H))
≡ ADh2,V

σµ (Cγ(H))
for any h1, h2 ≥ 0, i.e., the pullback attractor

ADh,V
σµ (Cγ(H)) is independent of h ≥ 0.
Actually, if f also satisfies (32), then ADF (Ch,V

γ (H)) ≡ ADh,V
F (Cγ(H)) is indepen-

dent of h.
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