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Abstract

In this paper we analyze the existence of solutions for a reaction-diffusion problem with hereditary

effects and a time-dependent force term with values in H−1. The main novelty is that the delay term may

be driven by a function under very minimal assumptions, namely, just measurability. This is due to the fact

that we only deal with a phase-space of functions continuous in time, allowing this general setting, which

might be more useful when less regularity is known in the hereditary mechanism.

After that, we obtain uniform estimates and asymptotic compactness properties (via an energy method)

that allow us to ensure the existence of pullback attractors for the associated process to the problem.

Actually, we obtain two different families of minimal pullback attractors, namely, those of fixed bounded

sets but also for a class of time-dependent families (universe) given by a tempered condition. Finally,

from comparison results, we establish relations among them, and under suitable additional assumptions we

conclude that these families of attractors are in fact the same object.

Keywords: reaction-diffusion equations; delay; pullback attractors.

1 Introduction and statement of the problem

Reaction-diffusion equations have been intensively developed during the last decades because of their applica-

tions in Chemistry, Biology, etcetera. Even just in the last few years it is possible to find many related results

and features of such models in the literature, as epidemic systems, cellular neural networks, or problems within

random environments (e.g. cf. [5, 15, 22, 25] and the references therein among many others).

Apart of the analysis in finite-time intervals, it has also been deeply studied the asymptotic behaviour of

solutions for such kind of problems. Jointly with stability questions, the theory of attractors for the associated
∗Corresponding author. Phone number: (+34) 95 455 99 09. Fax number: (+34) 95 455 28 98.
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dynamical systems has also experimented significant improvements. Namely, examples of such advances are

the internal structure of the global attractor for Chaffee-Infante equations (for autonomous systems), finite-

dimensionality reduction, and trajectory and pullback attractors for non-autonomous dynamical systems (e.g.

cf. some results in the monographs [21, 13, 6], the recent study [1], or the papers [12, 20, 26, 18, 23, 19, 24, 17,

2, 16, 3, 4, 14]).

Our aim in this paper is to present an improvement on the conditions for dealing with time-dependent

delayed reaction-diffusion problems. Namely, we may consider a reaction-diffusion problem only under measur-

ability conditions on the driving delay terms appearing in the equation and we are able to establish existence

results and to study the long-time behaviour of such solutions as well. Before continuing with the description

of our results, let us state our problem properly.

Let Ω ⊂ RN be a bounded domain. We consider the following non-autonomous reaction-diffusion problem

with delay effects and homogeneous Dirichlet boundary condition
∂u

∂t
−∆u = f(u) + g(t, ut) + k(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),

u(x, τ + s) = φ(x, s) x ∈ Ω, s ∈ [−h, 0],

(1)

where τ ∈ R, f ∈ C(R), g is an operator acting on the solution containing some hereditary characteris-

tics (assumptions on g are given below), the time-dependent force term is k ∈ L2
loc(R;H−1(Ω)), and φ ∈

C([−h, 0];L2(Ω)) is the initial datum, being h > 0 the length of the delay effect, and where for each t ≥ τ, we

denote by ut the function defined in [−h, 0] by ut(s) = u(t+ s), s ∈ [−h, 0].

Before describing the assumptions on the function f and the operator g, we introduce some notation that

will be used in the paper.

We will denote by (·, ·) and | · | the scalar product and norm in L2(Ω) respectively; the norm in Lp(Ω) will be

written as ‖ · ‖Lp(Ω); in H1
0 (Ω) we will use as (equivalent) scalar product ((·, ·)) = (∇·,∇·), with corresponding

norm ‖ · ‖. We will denote by CL2 the Banach space C([−h, 0];L2(Ω)), equipped with the sup-norm. For an

element u ∈ CL2 , its norm will be written as |u|CL2 = maxt∈[−h,0] |u(t)|. The duality between Lp(Ω) and its

dual Lq(Ω), where q = p/(p − 1) (when 1 < p < ∞), will be also denoted by (·, ·); and the duality between

H1
0 (Ω) and its dual H−1(Ω) will be written as 〈·, ·〉. Finally, we will use ‖ · ‖∗ for the norm in H−1(Ω).

Concerning the function f and the operator g, we make the following assumptions.

There exist positive constants α1, α2, κ, l, and p > 2 such that

−κ− α1|s|p ≤ f(s)s ≤ κ− α2|s|p ∀ s ∈ R, (2)

(f(s)− f(r))(s− r) ≤ l(s− r)2 ∀ r, s ∈ R. (3)

From (2) we deduce that there exists c > 0 such that

|f(s)| ≤ c(|s|p−1 + 1) ∀ s ∈ R. (4)

It is well-known that any polynomial of odd degree f(s) =
∑2m+1
j=0 cjs

j with c2m+1 < 0 satisfies the above

assumptions (a typical example is the function f(s) = −s3 + λs, that in reaction-diffusion leads to Chaffee-
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Infante equations, and more in particular, when λ = 1, gives rise to the double-potential, for instance, in

phase-field models).

Since it will be used below, let us denote

F(s) :=
∫ s

0

f(r)dr.

From (2), there exist positive constants α̃1, α̃2, and κ̃ such that

−κ̃− α̃1|s|p ≤ F(s) ≤ κ̃− α̃2|s|p ∀ s ∈ R. (5)

For the operator g we will assume that it is well-defined as g : R× CL2 → L2(Ω), and it satisfies

(I) for all ξ ∈ CL2 , the function R 3 t 7→ g(t, ξ) ∈ L2(Ω) is measurable,

(II) g(t, 0) = 0 for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R and ξ, η ∈ CL2 , it holds

|g(t, ξ)− g(t, η)| ≤ Lg|ξ − η|CL2 .

Observe that the assumption (II) does not represent any restriction, since we may consider new functions g̃

and k̃ defined for each t ∈ R and ξ ∈ CL2 by g̃(t, ξ) = g(t, ξ)− g(t, 0) and k̃(t) = k(t) + g(t, 0). Now, g̃ satisfies

(I)–(III) provided that g satisfied (I) and (III); and k̃ ∈ L2
loc(R;H−1(Ω)) if g(·, 0) ∈ L2

loc(R;L2(Ω)).

When comparing with similar non-autonomous delayed problems in the literature (for instance, with variable

time delay), one may check that the assumptions on the delay operator in order to deal with phase-spaces square

integrable in time include more restrictions than our hypotheses, as C1 regularity for the function driving the

delay time and control of square norms in time of the delay operators by the original arguments in an augmented

time interval. We do not require such additional conditions, since our phase-space is composed by functions

continuous in time, which in this framework does not really seem a restriction.

Indeed, we emphasize that the assumptions on g (introduced in [8]) and the fact that we are dealing just

with CL2 terms allow us to include driving delay terms under the only assumption of measurability. Namely,

suppose that ρ : R → [0, h] measurable and G : L2(Ω) → L2(Ω) globally Lipschitz with G(0) = 0 are given.

Then, g : R × CL2 → L2(Ω) defined by R × CL2 3 (t, ξ) 7→ g(t, ξ) := G(ξ(−ρ(t))) satisfies the assumptions

(I)–(III) given above. Moreover, examples with multiple delays can also be included (cf. [8, Remark 2.1]).

The structure of the paper is the following. In Section 2 we establish existence and uniqueness of solution

for the problem under the above conditions. Continuity with respect to initial data of the solution operator

is also studied. Then, in Section 3, after a very brief survey of some abstract results of pullback attractors

theory, we consider the natural (non-autonomous) dynamical system associated to the problem through the

previous result and we analyze conditions in order to obtain pullback attractors for it. An energy method

that relies strongly on the continuity of the solutions is involved. Actually, we obtain two different families of

minimal pullback attractors, namely, those of fixed bounded sets but also for a class of time-dependent families

(universe) given by a tempered condition. Finally, from comparison results, we establish relations among them,

and under suitable additional assumptions we conclude that these families of attractors are in fact the same

object.
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2 Existence and uniqueness of solution

In this paragraph we analyze the existence and uniqueness of solution to problem (1).

Definition 1 A weak solution to (1) is a function u ∈ C([τ − h,∞);L2(Ω)) such that u ∈ L2(τ, T ;H1
0 (Ω)) ∩

Lp(τ, T ;Lp(Ω)) for all T > τ, with u(t) = φ(t−τ) for all t ∈ [τ−h, τ ], and such that for all v ∈ H1
0 (Ω)∩Lp(Ω),

it satisfies
d

dt
(u(t), v) + ((u(t), v)) = (f(u(t)), v) + (g(t, ut), v) + 〈k(t), v〉 in D′(τ,∞).

Remark 2 Observe that if u is a weak solution to (1), then it satisfies the energy equality

|u(t)|2 + 2
∫ t

s

‖u(r)‖2dr = |u(s)|2 + 2
∫ t

s

[(f(u(r)), u(r)) + (g(r, ur), u(r)) + 〈k(r), u(r)〉]dr

for all τ ≤ s ≤ t.

The main result of this section is the following

Theorem 3 Consider f and g satisfying (2) and (3), and (I)–(III) respectively, k ∈ L2
loc(R;H−1(Ω)), τ ∈ R,

and φ ∈ CL2 given. Then, there exists a unique weak solution u(·) = u(·; τ, φ) to (1).

Proof. Uniqueness. Suppose that u and v are two weak solutions to (1), and denote w = u− v, which solves

the equation
∂w

∂t
−∆w = f(u)− f(v) + g(t, ut)− g(t, vt)

with wτ = 0 as initial datum, and homogeneous Dirichlet boundary condition.

Then, from the energy equality (cf. Remark 2) we have

|w(t)|2 + 2
∫ t

τ

‖w(s)‖2ds = 2
∫ t

τ

[(f(u(s))− f(v(s)), w(s)) + (g(s, us)− g(s, vs), w(s))]ds

for all t ≥ τ.

Using (3), (III), and Cauchy-Schwarz inequality, we deduce that

|w(t)|2 + 2
∫ t

τ

‖w(s)‖2ds ≤ 2l
∫ t

τ

|w(s)|2ds+ 2Lg
∫ t

τ

|ws|2CL2
ds

for all t ≥ τ.

In particular, and since wτ = 0, we conclude that

|wt|2CL2
≤ 2(l + Lg)

∫ t

τ

|ws|2CL2
ds ∀ t ≥ τ,

whence uniqueness follows by Gronwall’s inequality.

Existence. We split the proof in three steps, proving an intermediate result. Consider {wj}j≥1 ⊂ H1
0 (Ω)∩

Lp(Ω) a Hilbert basis of L2(Ω) such that span{wj}j≥1 is dense in H1
0 (Ω) ∩ Lp(Ω).

Claim. Consider k ∈ L2
loc(R;L2(Ω)), n ∈ N fixed, and φ ∈ C([−h, 0]; span{wj}nj=1) (in particular, observe

that φ(0) ∈ H1
0 (Ω) ∩ Lp(Ω)). Then, there exists a (unique) weak solution ũ to (1).

The uniqueness has been proved in the previous argument. In order to establish the existence, we state

the following approximate system for any m ≥ n. We seek ũm(t, x) =
∑m
j=1 γmj(t)wj(x) (observe that we use
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an upper script to avoid misleading with the delay terminology, but no brackets are used since no possible

confusion arises in this sense) that solves
d

dt
(ũm(t), wj) + ((ũm(t), wj)) = (f(ũm(t)), wj) + (g(t, ũmt ), wj) + (k(t), wj), a.e. t > τ, 1 ≤ j ≤ m,

ũmτ = φ.

It is well-known that the above finite-dimensional delayed system is well-posed (e.g. cf. [9]), at least locally.

We will provide a priori estimates that show that these solutions are well-defined in every interval [τ − h, T ]

for any T > τ.

Step 1: First a priori estimates. Multiplying each equation in the above system by γmj(t) respectively

and summing from j = 1 to m, we obtain

1
2
d

dt
|ũm(t)|2 + ‖ũm(t)‖2 = (f(ũm(t)), ũm(t)) + (g(t, ũmt ), ũm(t)) + (k(t), ũm(t))

≤ κ|Ω| − α2‖ũm(t)‖pLp(Ω) + Lg|ũmt |CL2 |ũm(t)|+ 1
2
‖k(t)‖2∗ +

1
2
‖ũm(t)‖2, a.e. t > τ,

where we have used (2), (II), (III), and Cauchy-Schwarz and Young inequalities.

Therefore, we arrive at

d

dt
|ũm(t)|2 + ‖ũm(t)‖2 + 2α2‖ũm(t)‖pLp(Ω) ≤ 2κ|Ω|+ 2Lg|ũmt |2CL2

+ ‖k(t)‖2∗, a.e. t > τ.

Integrating in [τ, t] we obtain

|ũm(t)|2 +
∫ t

τ

‖ũm(s)‖2ds+ 2α2

∫ t

τ

‖ũm(s)‖pLp(Ω)ds

≤ |ũm(τ)|2 + 2Lg
∫ t

τ

|ũms |2CL2
ds+

∫ t

τ

‖k(s)‖2∗ds+ 2κ|Ω|(t− τ) (6)

for all t ≥ τ.

In particular, putting t+ θ instead of t, with θ ∈ [−h, 0], we deduce that

|ũmt |2CL2
≤ |φ|2CL2

+ 2Lg
∫ t

τ

|ũms |2CL2
ds+

∫ t

τ

‖k(s)‖2∗ds+ 2κ|Ω|(t− τ) ∀ t ≥ τ,

and by Gronwall’s inequality, it yields

|ũmt |2CL2
≤
(
|φ|2CL2

+
∫ t

τ

‖k(s)‖2∗ds+ 2κ|Ω|(t− τ)
)
e2Lg(t−τ) ∀ t ≥ τ, m ≥ n. (7)

So, from this and (6), we obtain that

{ũm}m≥n is bounded in L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)) ∩ C([τ, T ];L2(Ω))

for all T > τ.

Now, using (4), we have that {f(ũm)}m≥n is bounded in Lq(τ, T ;Lq(Ω)) for all T > τ.

So, there exist functions ũ ∈ L∞(τ, T ;L2(Ω)) ∩ Lp(τ, T ;Lp(Ω)) ∩ L2(τ, T ;H1
0 (Ω)) and χ̃ ∈ Lq(τ, T ;Lq(Ω))

for all T > τ, and a subsequence (relabelled the same) such that
ũm

∗
⇀ ũ weakly-star in L∞(τ, T ;L2(Ω)),

ũm ⇀ ũ weakly in Lp(τ, T ;Lp(Ω)),

ũm ⇀ ũ weakly in L2(τ, T ;H1
0 (Ω)),

f(ũm) ⇀ χ̃ weakly in Lq(τ, T ;Lq(Ω))

(8)
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for all T > τ.

Step 2: Uniform estimates for the time-derivatives. Now, we proceed to obtain a second set of

estimates that will provide the convergence of a subsequence in CL2 .

Multiplying each equation of the approximate system by γ′mj(t) and summing from j = 1 to m, we obtain

|(ũm)′(t)|2 +
1
2
d

dt
‖ũm(t)‖2 = (f(ũm(t)), (ũm)′(t)) + (g(t, ũmt ) + k(t), (ũm)′(t))

≤ d

dt

∫
Ω

F(ũm(t, x))dx+ |g(t, ũmt )|2 + |k(t)|2 +
1
2
|(ũm)′(t)|2, a.e. t > τ.

Integrating between τ and t, from (II), (III), and by (5), we have∫ t

τ

|(ũm)′(s)|2ds+ ‖ũm(t)‖2 + 2α̃2‖ũm(t)‖pLp(Ω)

≤ 4κ̃|Ω|+ 2α̃1‖ũm(τ)‖pLp(Ω) + ‖ũm(τ)‖2 + 2L2
g

∫ t

τ

|ũms |2CL2
ds+ 2

∫ t

τ

|k(s)|2ds

for all t ≥ τ and any m ≥ n.

Since ũmτ = φ for all m ≥ n and in particular ũm(τ) = φ(0) ∈ H1
0 (Ω) ∩ Lp(Ω), by (7), we deduce that

{ũm}m≥n is bounded in L∞(τ, T ;H1
0 (Ω) ∩ Lp(Ω))

for all T > τ and

{(ũm)′}m≥n is bounded in L2(τ, T ;L2(Ω)) (9)

for all T > τ. Then, we improve the regularity of ũ obtained in Step 1. Actually, ũ ∈ L∞(τ, T ;H1
0 (Ω)∩Lp(Ω))

with ũ′ ∈ L2(τ, T ;L2(Ω)) for all T > τ.

Fixing (an arbitrary value) T > τ, since

|ũm(t2)− ũm(t1)|2 =
∣∣∣∣∫ t2

t1

(ũm)′(s)ds
∣∣∣∣2 ≤ ‖(ũm)′‖2L2(τ,T ;L2(Ω))|t2 − t1| ∀ t1, t2 ∈ [τ, T ],

from (9), the compactness of the embedding of H1
0 (Ω) into L2(Ω), by the Ascoli-Arzelà Theorem, and taking

into account the initial data for all the sequence, we deduce that there exists a subsequence (relabelled the

same) such that

ũm → ũ in C([τ − h, T ];L2(Ω)) (10)

for all T > τ and a.e. in Ω× (τ,∞).

Since f ∈ C(R), we conclude that f(ũm)→ f(ũ) a.e. in Ω× (τ,∞). So, from (8) and [10, Lemma 1.3, page

12] we may identify χ̃ = f(ũ).

Thus, from (8) and (10) we may pass to the limit in the equations satisfied by {ũm} and, thanks to the

fact that span{wj}j≥1 is dense in H1
0 (Ω) ∩ Lp(Ω), we conclude that ũ is a weak solution to (1). The claim is

proved.

Step 3: Proof of the general statement by density. For each n ∈ N, define φn(s) =
∑n
j=1(φ(s), wj)wj ,

s ∈ [−h, 0]. [Due to the fact that {wj}j≥1 is a Hilbert basis of L2(Ω), it is not difficult to check by contradiction

that φn → φ in CL2 .]

Let also consider a sequence {kn} ⊂ L2
loc(R;L2(Ω)) converging to k in L2

loc(R;H−1(Ω)).
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Denote by un the corresponding solution to (1) with k replaced by kn and initial data unτ = φn (according

to the claim proved in steps 1 and 2).

From the energy equality for each un, we have

|un(t)|2 + 2
∫ t

τ

‖un(s)‖2ds = |un(τ)|2 + 2
∫ t

τ

(f(un(s)), un(s))ds+ 2
∫ t

τ

(g(s, uns ) + kn(s), un(s))ds ∀ t ≥ τ.

Reasoning analogously to Step 1, we conclude that

{un} is bounded in L2(τ, T ;H1
0 (Ω)) ∩ Lp(τ, T ;Lp(Ω)) ∩ C([τ − h, T ];L2(Ω))

for all T > τ.

Now, using (4), we have that {f(un)} is bounded in Lq(τ, T ;Lq(Ω)) for all T > τ.

So, there exist functions u ∈ L∞(τ−h, T ;L2(Ω))∩Lp(τ, T ;Lp(Ω))∩L2(τ, T ;H1
0 (Ω)) and χ ∈ Lq(τ, T ;Lq(Ω))

for all T > τ, and a subsequence (relabelled the same) such that
un

∗
⇀ u weakly-star in L∞(τ − h, T ;L2(Ω)),

un ⇀ u weakly in Lp(τ, T ;Lp(Ω)),

un ⇀ u weakly in L2(τ, T ;H1
0 (Ω)),

f(un) ⇀ χ weakly in Lq(τ, T ;Lq(Ω))

(11)

for all T > τ.

Actually, we may improve some of the above convergences. Reasoning as in the proof of the uniqueness of

solution, i.e. taking into account the difference of the equations satisfied by un and um, and writing the energy

equality for un − um, we have

|um(t)− un(t)|2 +
∫ t

τ

‖um(s)− un(s)‖2ds

≤ |um(τ)−un(τ)|2+2l
∫ t

τ

|um(s)− un(s)|2ds+2Lg
∫ t

τ

|ums − uns |2CL2
ds+

∫ t

τ

‖km(s)− kn(s)‖2∗ds (12)

for all t ≥ τ, and so, in particular,

|umt − unt |2CL2
≤ |φm − φn|2CL2

+ 2(l + Lg)
∫ t

τ

|ums − uns |2CL2
ds+

∫ t

τ

‖km(s)− kn(s)‖2∗ds ∀ t ≥ τ.

From Gronwall’s inequality and (12), we have

{un} is a Cauchy sequence in L2(τ, T ;H1
0 (Ω)) ∩ C([τ − h, T ];L2(Ω))

for all T > τ.

So, up to a subsequence (still relabelled the same), we have un → u a.e. in Ω× (τ,∞).

Thus, as before, from (11) and [10, Lemma 1.3, page 12] we may identify χ = f(u); and from (11) we may

pass to the limit in the equations satisfied by {un} and we conclude that u is a weak solution to (1).

Although the following regularity result is not important for the goal of this paper (but of a forthcoming

one), it is worth to present it here since is a simple generalization of the intermediate claim proved above.
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Corollary 4 Consider f and g satisfying (2) and (3), and (I)–(III) respectively, k ∈ L2
loc(R;L2(Ω)), φ ∈

CL2 with φ(0) ∈ H1
0 (Ω) ∩ Lp(Ω), and suppose that there exist a family {wj}j≥1 ⊂ H1

0 (Ω) ∩ Lp(Ω) dense in

H1
0 (Ω) ∩ Lp(Ω) and {φn} ⊂ CL2 with each φn ∈ C([−h, 0]; span{wi}ni=1), φn → φ in CL2 and φn(0)→ φ(0) in

H1
0 (Ω) ∩ Lp(Ω). Then, there exists a unique weak solution u to (1), which also satisfies u ∈ L∞(τ, T ;H1

0 (Ω) ∩

Lp(Ω)) and u′ ∈ L2(τ, T ;L2(Ω)) for all T > τ.

Proof. It is analogous to steps 1 and 2 in the proof of Theorem 3, with the natural modification in the initial

data in the Galerkin scheme, taking into account that, without loss of generality, we may assume that the

functions {wj}j≥1 are linearly independent.

Remark 5 Given a family {wj}j≥1 ⊂ H1
0 (Ω)∩Lp(Ω) dense in H1

0 (Ω)∩Lp(Ω) (and therefore dense in L2(Ω)),

it is always possible to assume that {wj}j≥1 is a Hilbert basis in L2(Ω) –by a Gram-Schmidt ortho-normalization

process–, and then Pnφ :=
∑n
j=1(φ,wj)wj → φ in CL2 . However, it might not occur at the same time that

Pnφ(0)→ φ(0) in H1
0 (Ω) ∩ Lp(Ω), which motivates this requirement in the statement given above.

Nevertheless, it is really the case in some situations, as for instance if N ≤ 2p/(p − 2) (without extra

conditions on Ω) or with Ω ⊂ RN a bounded Ck domain with k ≥ 2 and k ≥ N(p − 2)/(2p), since then,

a special basis formed by eigenfunctions of −∆ with homogeneous Dirichlet boundary conditions satisfies all

the requirements (namely in the first case H1
0 (Ω) is continuously embedded in Lp(Ω); and in the second case

span{wj}j≥1 is dense in Hk(Ω) ∩H1
0 (Ω), which is continuously embedded in Lp(Ω)).

Concerning the solutions to (1), we have the following result, which shows continuity with respect to initial

data.

Proposition 6 Consider f and g satisfying (2) and (3), and (I)–(III) respectively, and k ∈ L2
loc(R;H−1(Ω))

given. Then, for any τ ∈ R, and φ, ψ ∈ CL2 , the solutions u = u(·; τ, φ) and v = v(·; τ, ψ) to (1) with respective

initial data φ and ψ satisfy

|ut − vt|2CL2
≤ |φ− ψ|2CL2

e2(l+Lg)(t−τ) ∀ t ≥ τ. (13)

Proof. Denote by w = u − v, which solves the problem ∂w/∂t −∆w = f(u) − f(v) + g(t, ut) − g(t, vt), with

wτ = φ− ψ and homogeneous Dirichlet boundary condition. Then, from the energy equality we have

1
2
d

dt
|w(t)|2 + ‖w(t)‖2 = (f(u(t))− f(v(t)), w(t)) + (g(t, ut)− g(t, vt), w(t)), a.e. t > τ.

Using (3) and (III), and integrating in time, we may deduce that

|w(t)|2 + 2
∫ t

τ

‖w(s)‖2ds ≤ |w(τ)|2 + 2(l + Lg)
∫ t

τ

|ws|2CL2
ds ∀ t ≥ τ,

whence in particular

|wt|2CL2
≤ |wτ |2CL2

+ 2(l + Lg)
∫ t

τ

|ws|2CL2
ds ∀ t ≥ τ.

Now, by applying Gronwall’s inequality, it yields to (13).
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3 Pullback attractors

The goal of this section is to ensure, under certain conditions, the existence of pullback attractors for a suitable

dynamical system associated to problem (1). In order to proceed, let us first introduce some definitions and

abstract results that will be applied later.

Consider given a metric space (X, dX), and let us denote R2
d = {(t, τ) ∈ R2 : τ ≤ t}.

A process U on X is a mapping R2
d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ)x = x for any

(τ, x) ∈ R×X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

Definition 7 A process U on X is said to be continuous if for any τ ≤ t, the map U(t, τ) : X → X is

continuous.

The process U is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X with xn → x ∈ X and

U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

If a process is continuous, then it is closed. Therefore, it is more general (and can be more useful for applications)

to establish a theory within the concept of closed process.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a family of nonempty sets

D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 8 We say that a process U on X is pullback D̂0-asymptotically compact if for any t ∈ R and

any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, the sequence

{U(t, τn)xn} is relatively compact in X.

Denote

ΛX(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R,

where {· · · }
X

is the closure in X.

Given two subsets of X, O1 and O2, we denote by distX(O1,O2) the Hausdorff semi-distance in X between

them, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y).

Let be given D a nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X). The class

D will be called a universe in P(X).

Definition 9 A process U on X is called pullback D-asymptotically compact if it is pullback D̂-asymptotically

compact for any D̂ ∈ D.

It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the process U on X if for any

t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(t, D̂).

With the above definitions, we may establish the following result (cf. [7, Theorem 3.11]).

Theorem 10 Consider a closed process U : R2
d ×X → X, a universe D in P(X), and a family D̂0 = {D0(t) :

t ∈ R} ⊂ P(X) which is pullback D-absorbing for U, and assume also that U is pullback D̂0-asymptotically

compact. Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =
⋃
D̂∈D ΛX(D̂, t)

X

, satisfies

9



(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂ ΛX(D̂0, t),

(b) AD is pullback D-attracting, i.e., lim
τ→−∞

distX(U(t, τ)D(τ),AD(t)) = 0 for all D̂ ∈ D, and any t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all τ ≤ t,

(d) if D̂0 ∈ D, then AD(t) = ΛX(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of closed sets such that

for any D̂ = {D(t) : t ∈ R} ∈ D, limτ→−∞ distX(U(t, τ)D(τ), C(t)) = 0, then AD(t) ⊂ C(t).

Remark 11 Under the assumptions of Theorem 10, the family AD is called the minimal pullback D-attractor

for the process U.

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies (b)–(c).

A sufficient condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is closed for all t ∈ R, and the

family D is inclusion-closed (i.e., if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then

D̂′ ∈ D).

We will denote by DF (X) the universe of fixed nonempty bounded subsets of X, i.e., the class of all families

D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of X.

Now, it is easy to conclude the following result (cf. [7, 11]).

Corollary 12 Under the assumptions of Theorem 10, if the universe D contains the universe DF (X), then

both attractors, ADF (X) and AD, exist, and ADF (X)(t) ⊂ AD(t) for all t ∈ R.

Moreover, if for some T ∈ R, the set ∪t≤TD0(t) is a bounded subset of X, then ADF (X)(t) = AD(t) for all

t ≤ T.

After the above briefly recall of basic concepts on non-autonomous dynamical systems and pullback attrac-

tors, we apply them to problem (1).

Proposition 13 Consider f and g satisfying (2) and (3), and (I)–(III) respectively, and k ∈ L2
loc(R;H−1(Ω))

given. Then, the bi-parametric family of maps U(t, τ) : CL2 → CL2 , with τ ≤ t, given by

U(t, τ)φ = ut, (14)

where u = u(·; τ, φ) is the unique weak solution to (1), defines a continuous process on CL2 .

Proof. The well-possedness of U follows from Theorem 3, and the continuity of this process is a consequence

of Proposition 6.

The following result will be useful to have asymptotic estimates for the process defined above. To state it,

let us denote

0 < λ1 = min
v∈H1

0 (Ω)\{0}

‖v‖2

|v|2
.
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Lemma 14 Under the assumptions of Proposition 13, there exist positive constants δ1 and δ2 such that for

any τ ∈ R and φ ∈ CL2 , the solution u(·; τ, φ) to (1) satisfies

|ut|2CL2
≤ eλ1h−(λ1−δ−1

1 L2
ge
λ1h)(t−τ)|uτ |2CL2

+ eλ1h

∫ t

τ

e−(λ1−δ−1
1 L2

ge
λ1h)(t−s)(2κ|Ω|+ δ−1

2 ‖k(s)‖2∗)ds, (15)∫ t

τ

(‖u(s)‖2 + 2α2‖u(s)‖pLp(Ω))ds ≤ |u(τ)|2 +
∫ t

τ

(2κ|Ω|+ δ−1
1 L2

g|us|2CL2
+ δ−1

2 ‖k(s)‖2∗)ds (16)

for all t ≥ τ.

Proof. Analogously as done in the proof of existence in Theorem 3, we have that the energy equality for the

solution u, jointly with assumptions (2), (II), (III), and a sharper use of Young inequality, leads to

d

dt
|u(t)|2 + ‖u(t)‖2 + 2α2‖u(t)‖pLp(Ω) ≤ 2κ|Ω|+ δ−1

1 L2
g|ut|2CL2

+ δ−1
2 ‖k(t)‖2∗, a.e. t > τ, (17)

where we have chosen 0 < δ1, δ2 such that δ2 + δ1λ
−1
1 = 1.

In particular, introducing the exponential eλ1t, and integrating, we deduce that

eλ1t|u(t)|2 ≤ eλ1τ |u(τ)|2 +
∫ t

τ

eλ1s(2κ|Ω|+ δ−1
1 L2

g|us|2CL2
+ δ−1

2 ‖k(s)‖2∗)ds ∀ t ≥ τ.

Now, this yields

eλ1t|ut|2CL2
≤ eλ1(h+τ)|uτ |2CL2

+ eλ1h

∫ t

τ

eλ1s(2κ|Ω|+ δ−1
1 L2

g|us|2CL2
+ δ−1

2 ‖k(s)‖2∗)ds ∀ t ≥ τ.

Therefore, (15) follows from Gronwall’s inequality. Finally, (16) is a direct consequence of (17).

Here on we will assume that

0 < λ1 − Lgeλ1h/2, (18)∫ 0

−∞
e(λ1−Lgeλ1h/2)s‖k(s)‖2∗ds <∞. (19)

Observe that if we assume that k ∈ L2
loc(R;H−1(Ω)), then (19) is equivalent to have∫ t

−∞
e(λ1−Lgeλ1h/2)s‖k(s)‖2∗ds <∞ ∀ t ∈ R.

Remark 15 It is clear that a combination of the estimate (15) for a particular choice of δ1 and δ2 and

assumption (18) will play an essential role in the study of asymptotic estimates. Nevertheless, it should be

pointed out that other dissipativity conditions (again by using a generalized Young inequality) would be possible.

These conditions would depend on the delay parameters, h and Lg, and on λ1, and its benefit is related to each

particular situation but not general. Therefore, we keep in the sequel with λ1 − Lgeλ1h/2 just for the sake of

clarity in the exposition.

Definition 16 For any σ > 0, we will denote by Dσ(CL2) the class of all families of nonempty subsets D̂ =

{D(t) : t ∈ R} ⊂ P(CL2) such that

lim
τ→−∞

(
eστ sup

v∈D(τ)

|v|2CL2

)
= 0.
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As in the abstract setting introduced above, we will denote by DF (CL2) the class of families D̂ = {D(t) = D :

t ∈ R} with D a fixed nonempty bounded set of CL2 .

Remark 17 Observe that for any σ > 0, DF (CL2) ⊂ Dσ(CL2) and that Dσ(CL2) is inclusion-closed.

For short, we will denote from now on

σ̂ = λ1 − Lgeλ1h/2.

Corollary 18 Under the assumptions of Proposition 13, if moreover (18) and (19) are satisfied, then, the

family D̂0 = {D0(t) : t ∈ R} with D0(t) = BCL2 (0, ρ(t)), the closed ball in CL2 of center zero and radius ρ(t),

where

ρ2(t) = 1 + eλ1hσ̂−1

(
2κ|Ω|+ λ1

∫ t

−∞
e−σ̂(t−s)‖k(s)‖2∗ds

)
, (20)

is pullback Dσ̂(CL2)-absorbing for the process U defined by (14). Moreover, D̂0 ∈ Dσ̂(CL2).

Proof. It is an immediate application of Lemma 14, taking δ1 = Lge
λ1h/2 > 0 and δ2 = 1− δ1λ−1

1 > 0.

The final key in order to establish the existence of minimal pullback attractors for the process U is the

following

Proposition 19 Under the assumptions of Corollary 18, the process U defined by (14) is pullback Dσ̂(CL2)-

asymptotically compact.

Proof. Consider fixed t0 ∈ R, D̂ = {D(t) : t ∈ R} ∈ Dσ̂(CL2), {τn} ⊂ R with τn < t0 for all n ≥ 1, and

limn τn = −∞, and {ϕn} ⊂ CL2 with ϕn ∈ D(τn) for all n.

We have to check that the set {unt0} ⊂ CL2 is relatively compact, where un = u(·; τn, ϕn) is the weak solution

to (1) with unτn = ϕn.

Fix a value T > h. From Corollary 18 we have that there exists n0 = n0(t0, T ) such that τn < t0− T for all

n ≥ n0, and

|unt |2CL2
≤ R(t0, T ) ∀ t ∈ [t0 − T, t0], n ≥ n0, (21)

where

R(t0, T ) = 1 + eλ1hσ̂−1

(
2κ|Ω|+ λ1e

σ̂T

∫ t0

−∞
e−σ̂(t0−s)‖k(s)‖2∗ds

)
.

In particular, |un(t)|2 ≤ R(t0, T ) for all t ∈ [t0 − T, t0] and n ≥ n0. If we denote yn(t) = un(t+ t0 − T ) for all

t ∈ [0, T ], we have that {yn}n≥n0 is bounded in L∞(0, T ;L2(Ω)).

Moreover, for each n ≥ n0, y
n is a weak solution on [0, T ] to an analogous problem to (1), namely with k

and g replaced respectively by

k̃(t) = k(t+ t0 − T ) and g̃(t, ·) = g(t+ t0 − T, ·), t ∈ (0, T ),

and with yn0 = unt0−T and ynT = unt0 .

We also have from (21) that |yn0 |2CL2
≤ R(t0, T ) for all n ≥ n0, whence, using (16) with values δ1 and δ2 as

in the proof of Corollary 18, it yields

‖yn‖2L2(0,T ;H1
0 (Ω)) + 2α2‖yn‖pLp(0,T ;Lp(Ω)) ≤ K(t0, T ) ∀n ≥ n0,
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where

K(t0, T ) = R(t0, T ) + 2κ|Ω|T + Lge
−λ1h/2R(t0, T )T + λ1σ̂

−1

∫ t0

t0−T
‖k(s)‖2∗ds.

Therefore, {yn}n≥n0 is bounded in L2(0, T ;H1
0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) (in particular, also in L2(0, T ;H1

0 (Ω) ∩

Lp(Ω))). Then, {f(yn)}n≥n0 is bounded in Lq(0, T ;Lq(Ω)) and {(yn)′}n≥n0 is bounded in L2(0, T ;H−1(Ω)) +

Lq(0, T ;Lq(Ω)) (in particular, in Lq(0, T ;H−1(Ω) + Lq(Ω))), thanks to (21), (II), (III), and the fact that −∆

defines an isometric isomorphism from H1
0 (Ω) into H−1(Ω).

So, from compactness results (e.g. cf. [10, 6]) we conclude that there exist y ∈ L2(0, T ;H1
0 (Ω)) ∩

Lp(0, T ;Lp(Ω)) ∩ C([0, T ];L2(Ω)) with y′ ∈ L2(0, T ;H−1(Ω)) +Lq(0, T ;Lq(Ω)), and χ ∈ Lq(0, T ;Lq(Ω)) such

that a subsequence of {yn}n≥n0 (relabelled the same) converges to y weakly-star in L∞(0, T ;L2(Ω)), weakly in

L2(0, T ;H1
0 (Ω)) and in Lp(0, T ;Lp(Ω)), strongly in L2(0, T ;L2(Ω)) and a.e. in Ω×(0, T ), with (yn)′ converging

to y′ weakly in L2(0, T ;H−1(Ω)) +Lq(0, T ;Lq(Ω)), and with f(yn) converging to χ weakly in Lq(0, T ;Lq(Ω)).

In particular, from above and by [10, Lemma 1.3, page 12], we may identify χ = f(y).

From the boundedness of {yn}n≥n0 and {(yn)′}n≥n0 in L∞(0, T ;L2(Ω)) and Lq(0, T ;H−1(Ω) + Lq(Ω))

respectively, and the compactness of the injection of L2(Ω) in H−1(Ω), and therefore in H−1(Ω) + Lq(Ω), we

deduce (by applying Ascoli-Arzelà Theorem) that for any sequence {sn} ⊂ [0, T ] with sn → s∗, one has

yn(sn) ⇀ y(s∗) weakly in L2(Ω). (22)

On the other hand, from (II), (III), and (21) we have∫ t

s

|g̃(r, ynr )|2dr ≤ C(t− s) ∀ 0 ≤ s ≤ t ≤ T, n ≥ n0, (23)

where C > 0 is independent of n. This implies (up to another subsequence) that there exists ξ ∈ L2(0, T ;L2(Ω))

such that

g̃(·, yn· ) ⇀ ξ weakly in L2(0, T ;L2(Ω)),

and therefore, ∫ t

s

|ξ(r)|2dr ≤ C(t− s) ∀ 0 ≤ s ≤ t ≤ T. (24)

Thus, from all the above convergences we may conclude that y is the unique weak solution to the equation

∂u

∂t
−∆u = f(u) + ξ(t) + k̃(t)

fulfilled with homogeneous Dirichlet boundary condition and u(0) = y(0).

From the energy equality, (2), (23), (24), and Young inequality, we obtain that

1
2
|z(t)|2 ≤ 1

2
|z(s)|2 +

∫ t

s

〈k̃(r), z(r)〉dr +
(
C

4λ1
+ κ|Ω|

)
(t− s) ∀ 0 ≤ s ≤ t ≤ T,

where z = yn or z = y. Then, the maps Jn and J : [0, T ]→ R defined by

Jn(t) =
1
2
|yn(t)|2 −

∫ t

0

〈k̃(r), yn(r)〉dr −
(
C

4λ1
+ κ|Ω|

)
t,

J(t) =
1
2
|y(t)|2 −

∫ t

0

〈k̃(r), y(r)〉dr −
(
C

4λ1
+ κ|Ω|

)
t,
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are non-increasing, continuous, and satisfy

Jn(t)→ J(t) a.e. t ∈ (0, T ). (25)

We may use this to prove that yn → y in C([δ, T ];L2(Ω)) for any 0 < δ < T. Indeed, if this is not true, there

exist 0 < δ∗ < T, ε∗ > 0, and subsequences {ym} ⊂ {yn}n≥n0 and {tm} ⊂ [δ∗, T ] with tm → t∗ ∈ [δ∗, T ] such

that

|ym(tm)− y(t∗)| ≥ ε∗ ∀m. (26)

Fix ε > 0. On the one hand, from (25) and since J is continuous and non-increasing, there exists 0 < tε < t∗

such that

lim
m
Jm(tε) = J(tε) and 0 ≤ J(tε)− J(t∗) ≤ ε.

On the other hand, as tm → t∗, there exists mε such that tε < tm for all m ≥ mε. Then, from above we have

Jm(tm)− J(t∗) ≤ Jm(tε)− J(t∗)

≤ |Jm(tε)− J(tε)|+ |J(tε)− J(t∗)|

≤ |Jm(tε)− J(tε)|+ ε

for all m ≥ mε, which implies that lim supm Jm(tm) ≤ J(t∗) + ε. But, since ε > 0 is arbitrary, we conclude that

lim sup
m

Jm(tm) ≤ J(t∗).

As long as for tm → t∗ we have ∫ tm

0

〈k̃(r), ym(r)〉dr →
∫ t∗

0

〈k̃(r), y(r)〉dr,

we deduce that lim supm |ym(tm)| ≤ |y(t∗)|. From this inequality and (22), we have that ym(tm) → y(t∗)

strongly in L2(Ω), which is a contradiction with (26).

Thus, we have that yn → y in C([δ, T ];L2(Ω)) for any 0 < δ < T. As we chose T > h, we conclude in

particular that unt0 → yT in CL2 .

We may now establish the main result of the paper.

Theorem 20 Consider f and g satisfying (2) and (3), and (I)–(III) respectively, and k ∈ L2
loc(R;H−1(Ω))

given. Suppose moreover that conditions (18) and (19) are satisfied. Then, there exist the minimal pullback

DF (CL2)-attractor ADF (CL2 ) and the minimal pullback Dσ̂(CL2)-attractor ADσ̂(CL2 ) for the process U defined

by (14). The family ADσ̂(CL2 ) belongs to Dσ̂(CL2), and it holds that

ADF (CL2 )(t) ⊂ ADσ̂(CL2 )(t) ⊂ BCL2 (0, ρ(t)) ∀ t ∈ R. (27)

Proof. The existence of ADσ̂(CL2 ) is a consequence of Theorem 10, since U is continuous (cf. Proposition 13)

and therefore closed, the existence of a pullback absorbing family was given by Corollary 18, and in Proposition

19 we have proved the pullback Dσ̂(CL2)-asymptotic compactness.

By Remark 17 and Corollary 12, the case of fixed bounded sets follows immediately. Then, we also deduce

the first inclusion in (27).
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Finally, Theorem 10 also implies the last inclusion in (27) and the fact that ADσ̂(CL2 ) ∈ Dσ̂(CL2), since the

sufficient conditions in Remark 11 hold. Namely, Dσ̂(CL2) is inclusion-closed, by construction D0(t) is closed

in CL2 for all t ∈ R, and D̂0 ∈ Dσ̂(CL2) (cf. Corollary 18).

Remark 21 If, additionally, it holds that

sup
r≤0

∫ r

−∞
e−σ̂(r−s)‖k(s)‖2∗ds <∞,

then ρ(·), given by (20), is uniformly bounded. We may apply then Corollary 12 to deduce that

ADF (CL2 )(t) = ADσ̂(CL2 )(t) ∀ t ∈ R.
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[8] J. Garćıa-Luengo, P. Maŕın-Rubio, and J. Real, Pullback attractors for 2D Navier-Stokes equations with

delays and their regularity, Adv. Non. Stud. To appear.

[9] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag,

New York, 1993.
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‘
ega, A note on well-posedness of semilinear reaction-diffusion problem with

singular initial data, J. Math. Anal. Appl. 385 (2012), 105–110.

[15] W.-J. Sheng, W.-T. Li, and Z.-C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion

equations with time-periodic nonlinearity, J. Differential Equations 252 (2012), 2388–2424.

[16] H. Song, Pullback attractors of non-autonomous reaction-diffusion equations in H1
0 , J. Differential Equa-

tions 249 (2010), 2357–2376.

[17] H. Song, S. Ma, and C. Zhong, Attractors of non-autonomous reaction-diffusion equations, Nonlinearity

22 (2009), 667–681.

[18] H. Song and H. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math. Anal.

Appl. 325 (2007), 1200–1215.

[19] H. Song and C. Zhong, Attractors of non-autonomous reaction-diffusion equations in Lp, Nonlinear Anal.

68 (2008), 1890–1897.

[20] C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives

in unbounded domains, Nonlinear Anal. 63 (2005), 49–65.

[21] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.

[22] Y. Wang, P. Lin, and L. Wang, Exponential stability of reaction-diffusion high-order Markovian jump

Hopfield neural networks with time-varying delays, Nonlinear Anal. Real World Appl. 13 (2012), 1353–

1361.

[23] Y. Wang, L. Wang, and W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equations in

unbounded domains, J. Math. Anal. Appl. 336 (2007), 330–347.

[24] Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion

equations, Dyn. Syst. 23 (2008), 1–16.

[25] Y. Zhang, Asymptotic stability of impulsive reaction-diffusion cellular neural networks with time-varying

delays, J. Appl. Math. 2012 (2012), Art. ID 501891, 17 pp.

[26] C.-K. Zhong, M.-H. Yang, and C.-Y. Sun, The existence of global attractors for the norm-to-weak con-

tinuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations

223 (2006), 367–399.

16


