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Abstract. We establish the existence of pullback attractors for the dynamical
system associated to a globally modified model of the Navier-Stokes equations

containing delay operators with infinite delay in a suitable weighted space.

Actually, we are able to prove the existence of attractors in different classes of
universes, one is the classical of fixed bounded sets, and the other is given by

a tempered condition. Relationship between these two kind of objects is also

analyzed.

1. Introduction. Let Ω ⊂ R3 be an open bounded set with regular boundary Γ,
and let N ∈ (0,+∞) be fixed. Let us define FN : [0,+∞)→ (0, 1] by

FN (r) := min

{
1,
N

r

}
, r ∈ [0,+∞),

and consider the following system of globally modified Navier-Stokes equations
(GMNSE for short) on Ω, with infinite delays and homogeneous Dirichlet boundary
condition

∂u

∂t
− ν∆u+ FN (‖u‖) [(u · ∇)u] +∇p = f(t) + g(t, ut) in (τ,+∞)× Ω,

∇ · u = 0 in (τ,+∞)× Ω,

u = 0 on (τ,+∞)× Γ,

u(τ + s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ Ω,
(1)

where ν > 0 is the kinematic viscosity, u the velocity field of the fluid, p the pressure,
τ ∈ R an initial time, f(t) a given external force field, g is another external force
field containing some hereditary characteristic, φ is a given function defined in the
interval (−∞, 0], and we denote by ut the function defined on (−∞, 0] by the relation
ut(s) = u(t+ s), s ∈ (−∞, 0].
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The GMNSE (1), with or without delays, are indeed global modifications of
the Navier-Stokes equations – the modifying factor FN (‖u‖) depends on the norm
‖u‖ = ‖∇u‖(L2(Ω))3×3 , which in turn depends on ∇u over the whole domain Ω and
not just at or near the point x ∈ Ω under consideration. Essentially, it prevents
large gradients dominating the dynamics and leading to explosions. It violates the
basic laws of mechanics, but mathematically the GMNSE (1) are a well defined
system of equations, just like the modified versions of the NSE of Leray and oth-
ers with other mollifications of the nonlinear term, see the review paper [12]. It
is worth mentioning that a global cut off function involving the D(A1/4) norm for
the two dimensional stochastic Navier-Stokes equations is used in [13], and a cut-off
function similar to the one we will use here was considered in [32].

The globally modified Navier-Stokes equations, in the case without delays, were
introduced and studied in [1] (see also [3, 2, 19, 20, 21, 7, 24] and the review paper
[18]). This modified model of the three-dimensional Navier-Stokes equations has
some good properties: global existence, uniqueness, regularity, contrary to the orig-
inal Navier-Sokes model, where the analysis of the asymptotic behaviour of solutions
needs to be carried out in some non-standard way, e.g. cf. [28] and the references
therein. These results are interesting in their own right, but also GMNSE are useful
in obtaining new results about the three-dimensional Navier-Stokes equations, e.g.,
they were used in [1] to establish the existence of bounded entire weak solutions
for them. Also, in [21], GMNSE were used to show that the attainability set of
the weak solutions of the three-dimensional Navier-Stokes equations satisfying an
energy inequality are weakly compact and weakly connected. For convergence re-
sults of solutions of GMNSE to solutions of the three-dimensional Navier-Stokes
equations, see [1, 24].

However, there are situations in which the model is better described if some terms
containing delays appear in the equations. These delays may appear, for instance,
when one wants to control the system by applying a force which takes into account
not only the present state but the complete history of the solutions.

To our knowledge, the references [8, 9, 10] are the first papers devoted to con-
sider existence of solutions for the Navier-Stokes equations with delays and to study
their asymptotic behaviour (see also [15, 25] for the same task in some unbounded
domains). However, all these papers deal with finite delays, while the case of in-
finite delays has been treated more recently for autonomous and non-autonomous
dynamical systems (e.g. cf. [6, 27]).

In this paper we are interested in the case of a GMNSE model in which terms con-
taining infinite delays appear (see [7] for the case with finite delays). The problem
(1) was studied in [23], where existence and uniqueness of solution, and convergence
to stationary solutions were obtained.

Our goal in this paper is to prove more general results on the asymptotic be-
haviour of problem (1) than those shown in [23]. Namely, we will establish for a
suitable process related to problem (1) that we can assure the existence of minimal
pullback attractors under less restrictive assumptions than those in Theorem 3 and
Theorem 4 in [23]. In fact, we will obtain two minimal pullback attractors for the
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process associated to problem (1). The first one is the minimal pullback attractor
of fixed bounded sets of Cγ(H), which is the most usual in the literature. The
second one, is the pullback attractor in the framework of a universe of families of
time dependent sets with a tempered growth condition, following the ideas of [4, 26].

The structure of the paper is the following. In Section 2 we recall the basic results
on existence of solution for the GMNSE problem with infinite delays. Indeed, an
improvement on the conditions imposed for the existence is done. In Section 3 we
state some well-known results on the theory for the existence of minimal pullback
attractors, in a unified approach for an abstract given universe. This will be applied
to two cases, one the classical case of fixed bounded sets, and the other is a universe
defined by a tempered condition. Finally, in Section 4 we apply the above results to
problem (1) obtaining two different kind of families of minimal pullback attractors.
The main key is an asymptotic compactness result, whose proof relies on an energy
method that makes the most of the continuity properties of the solutions and the
corresponding non-increasing energy functions. Relationship between these objects
is also analyzed.

2. Existence of solutions. To set our problem in the abstract framework, we
consider the following usual abstract spaces (e.g. cf. [22] and [30, 31]):

V =
{
u ∈ (C∞0 (Ω))

3
: div u = 0

}
,

H = the closure of V in (L2(Ω))3 with inner product (·, ·) and associate norm |·| ,
where for u, v ∈ (L2(Ω))3,

(u, v) =

3∑
j=1

∫
Ω

uj(x)vj(x) dx,

V = the closure of V in (H1
0 (Ω))3 with scalar product ((·, ·)) and associate norm

‖·‖ , where for u, v ∈ (H1
0 (Ω))3,

((u, v)) =

3∑
i,j=1

∫
Ω

∂uj
∂xi

∂vj
∂xi

dx.

We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing between V ′ and
V. Finally, we will identify every u ∈ H with the element fu ∈ V ′ given by

〈fu, v〉 = (u, v) for all v ∈ V .

It follows that V ⊂ H ⊂ V ′, where the injections are dense and compact.
We consider the linear continuous operator A : V → V ′ defined by

〈Au, v〉 = ((u, v)) for all u, v ∈ V .

Denoting D(A) = {u ∈ V : Au ∈ H}, with inner product (u, v)D(A) = (Au,Av),

then, by the regularity of Γ, D(A) = (H2(Ω))3 ∩ V, and Au = −P∆u, for all
u ∈ D(A), is the Stokes operator (P is the ortho-projector from (L2(Ω))3 onto H).

Let us denote

λ1 = inf
v∈V \{0}

‖v‖2

|v|2
> 0,

the first eigenvalue of the Stokes operator.
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Now we define

b(u, v, w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

for all measurable functions u, v, w defined on Ω with values in R3 for which the
integrals in the right-hand member of the above equality are finite.

In particular, b is a trilinear continuous form on V × V × V , i.e., there exists a

constant C1 > 0 only dependent on Ω (namely, C1 = (2λ
1/4
1 )−1) such that

|b(u, v, w)| ≤ C1 ‖u‖‖v‖‖w‖, for all u, v, w ∈ V ,

and b(u, v, v) = 0, for all u, v ∈ V.
We denote

bN (u, v, w) = FN (‖v‖)b(u, v, w).

The form bN is linear in u and w, but it is nonlinear in v.
By the definition of FN , if we denote

〈BN (u, v), w〉 = bN (u, v, w), for all u, v, w ∈ V ,

we have

‖BN (u, v)‖∗ ≤ NC1 ‖u‖, for all u, v ∈ V . (2)

We recall (cf. [30]) that there exists a constant C2 > 0 depending only on Ω such
that

|b(u, v, w)| ≤ C2‖u‖1/2|Au|1/2‖v‖|w|, (3)

for all u ∈ D(A), v ∈ V,w ∈ H, and

|b(u, v, w)| ≤ C2‖u‖‖v‖|w|1/2‖w‖1/2, (4)

for all u, v, w ∈ V. (See [29] for the proof of (4)).

Let γ > 0 be fixed. One possibility to deal with infinite delays, and which we
will use here (cf. [27, 16, 17]), is to consider the space

Cγ(H) =

{
ϕ ∈ C((−∞, 0];H) : ∃ lim

s→−∞
eγsϕ(s) ∈ H

}
,

which is a Banach space with the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.

We will assume that f ∈ L2
loc(R; (L2(Ω))3). For the term g, in which the delay is

present, we assume that g : R× Cγ(H)→ (L2(Ω))3 satisfies

(g1) For any ξ ∈ Cγ(H) the mapping R 3 t 7→ g(t, ξ) is measurable,
(g2) g(t, 0) = 0 for all t ∈ R,
(g3) there exists a constant Lg > 0 such that for any t ∈ R and all ξ, η ∈ Cγ(H),

|g(t, ξ)− g(t, η)| ≤ Lg‖ξ − η‖γ .

An example of an operator satisfying assumptions (g1)-(g3) is given in [23].
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Definition 1. A weak solution of (1) is a function u ∈ C((−∞, T ];H)∩L2(τ, T ;V )
for all T > τ , such that for all v ∈ V,

d

dt
(u(t), v) + ν((u(t), v)) + bN (u(t), u(t), v) = (f(t), v) + (g(t, ut), v),

in the sense of D′(τ,+∞), and uτ = φ.

Remark 1. If u is a weak solution of (1), then u satisfies the energy equality,

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2dr

= |u(s)|2 + 2

∫ t

s

[(f(r), u(r)) + (g(r, ur), u(r))] dr for all s, t ∈ [τ,+∞).

We have the following existence and uniqueness result:

Theorem 1. Suppose that f ∈ L2
loc(R; (L2(Ω))3), γ > 0, and g : R × Cγ(H) →

(L2(Ω))3 satisfying the assumptions (g1)–(g3), are given. Then, for any τ ∈ R and
φ ∈ Cγ(H), there exists a unique weak solution u = u(·; τ, φ) of (1), which in fact
is a strong solution in the sense that

u ∈ C((τ, T ];V ) ∩ L2(τ + ε, T ;D(A)),

for all ε > 0 and any T > τ + ε.
Moreover, if φ(0) ∈ V, then u satisfies

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)),

for all T > τ.

Proof. The proof can be seen in [23]. There, the additional assumption 2γ > νλ1

was made. That this assumption is unnecessary can be seen as follows.
For the Galerkin approximations um defined by (8) on page 661 of [23], one has

d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2(f(t), um(t)) + 2(g(t, umt ), um(t))

≤ ν‖um(t)‖2 +
1

νλ1
|f(t)|2 + 2Lg‖umt ‖2γ ,

and therefore,

|um(t)|2 + ν

∫ t

τ

‖um(s)‖2ds ≤ |u(τ)|2 +

∫ t

τ

(|f(s)|2/(νλ1) + 2Lg‖ums ‖2γ)ds, (5)

for all t ≥ τ.
Using (5) instead of inequality (9) of [23], one obtains

‖umt ‖2γ ≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|φ(θ + t− τ)|2,

sup
θ∈[τ−t,0]

(e2γθ|u(τ)|2 + e2γθ

∫ t+θ

τ

(|f(s)|2/(νλ1) + 2Lg‖ums ‖2γ)ds)

}
≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|φ(θ + t− τ)|2,

|u(τ)|2 +

∫ t

τ

(|f(s)|2/(νλ1) + 2Lg‖ums ‖2γ)ds

}
, (6)
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and therefore, observing that

sup
θ∈(−∞,τ−t]

eγθ|φ(θ + t− τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)|

= e−γ(t−τ)‖φ‖γ
≤ ‖φ‖γ ,

and |u(τ)| = |φ(0)| ≤ ‖φ‖γ , we deduce from (6) that

‖umt ‖2γ ≤ ‖φ‖2γ +

∫ t

τ

(|f(s)|2/(νλ1) + 2Lg‖ums ‖2γ)ds

for all t ≥ τ.
Thus, by the Gronwall lemma, we have

‖umt ‖2γ ≤ e2Lg(t−τ)‖φ‖2γ + (νλ1)−1

∫ t

τ

e2Lg(t−s)|f(s)|2ds,

for all t ≥ τ.
Using this inequality and (5), one also obtains (10) and (12) in [23]. Now, the

proof of the theorem follows as in that paper.

The following continuous dependence result was also proved in [23, Prop.1].

Proposition 1 (Continuity of solutions with respect to initial data). Under the
assumptions of Theorem 1, for any τ ∈ R the solutions obtained for (1) are con-
tinuous with respect to the initial condition φ, and more exactly, there exists a
constant C3 > 0, only dependent on ν and the constant C2 appearing in (4), such
that if ui = ui(·; τ, φi), for i = 1, 2, are the corresponding solutions to initial data
φi ∈ Cγ(H), i = 1, 2, the following estimate holds:

max
r∈[τ,t]

|u1(r)− u2(r)|2 ≤
(
|φ1(0)− φ2(0)|2 +

Lg
2γ
‖φ1 − φ2‖2γ

)
×e(3Lg+2C3N

4)(t−τ),

for all t ≥ τ.

3. Abstract results on attractors theory. Existence of minimal pullback
attractors. In this section we recall some abstract results on pullback attractors
theory. We present a summary of some results on the existence of minimal pullback
attractors obtained in [14] (see also [26, 4, 5]). In particular, we consider the process
U being closed (see Definition 2 below).

Consider given a metric space (X, dX), and let us denote R2
d = {(t, τ) ∈ R2 : τ ≤

t}.
A process on X is a mapping U such that R2

d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X
with U(τ, τ)x = x for any (τ, x) ∈ R×X, and U(t, r)(U(r, τ)x) = U(t, τ)x for any
τ ≤ r ≤ t and all x ∈ X.

Definition 2. Let U be a process on X.
a) U is said to be continuous if for any pair τ ≤ t, the mapping U(t, τ) : X → X

is continuous.
b) U is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X, if

xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Remark 2. It is clear that every continuous process is closed. More generally, every
strong-weak continuous process (see [26] for the definition) is a closed process.
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Let us denote P(X) the family of all nonempty subsets of X, and consider a

family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X) [observe that we do not
require any additional condition on these sets as compactness or boundedness].

Definition 3. We say that a process U onX is pullback D̂0-asymptotically compact
if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying
τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is relatively compact
in X.

Let be given D a nonempty class of families parameterized in time D̂ = {D(t) :
t ∈ R} ⊂ P(X). The class D will be called a universe in P(X).

Definition 4. It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullbackD−absorbing

for the process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t
such that

U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(t, D̂).

Observe that in the definition above D̂0 does not belong necessarily to the class
D.

Definition 5. Given a family parameterized in time, D̂ = {D(t) : t ∈ R} ⊂ P(X),

it is said that a process U on X is D̂−asymptotically compact if for any t ∈ R and
any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D(τn)
for all n, the sequence {U(t, τn)xn} is relatively compact in X.

Definition 6. A process U on X is said to be pullback D−asymptotically compact

if it is D̂-asymptotically compact for any D̂ ∈ D.

Denote

Λ(D̂0, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X

for all t ∈ R,

where {· · · }
X

is the closure in X.
Finally, we denote by distX(O1,O2) the Hausdorff semi-distance in X between

two sets O1 and O2, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y) for O1, O2 ⊂ X.

We have the following result on existence of minimal pullback attractors (cf.
[14]).

Theorem 2. Consider a closed process U : R2
d ×X → X, a universe D in P(X),

and a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D−absorbing for U,

and assume also that U is pullback D̂0−asymptotically compact.
Then, the family AD = {AD(t) : t ∈ R} defined by

AD(t) =
⋃
D̂∈D

Λ(D̂, t)
X

t ∈ R,

has the following properties:
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(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X, and

AD(t) ⊂ Λ(D̂0, t),

(b) AD is pullback D−attracting, i.e.,

lim
τ→−∞

distX(U(t, τ)D(τ),AD(t)) = 0 for all D̂ ∈ D, t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all τ ≤ t,
(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)

X
, for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a

family of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D,

lim
τ→−∞

distX(U(t, τ)D(τ), C(t)) = 0,

then AD(t) ⊂ C(t).

Remark 3. Under the assumptions of Theorem 2, the family AD is called the
minimal pullback D−attractor for the process U.

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies
(b)–(c).

A sufficient condition for AD ∈ D is to have that D̂0 ∈ D, the set D0(t) is

closed for all t ∈ R, and the family D is inclusion-closed (i.e., if D̂ ∈ D, and

D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D).

We will denote by DF (X) the universe of fixed nonempty bounded subsets of X,

i.e., the class of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of X. In the particular case of the universe DF (X), the
corresponding minimal pullback DF (X)−attractor for the process U is the pullback
attractor defined by Crauel, Debussche, and Flandoli, [11, Th.1.1, p.311], and will
be denoted by ADF (X).

Now, it is easy to conclude the following result.

Corollary 1. [cf. [25, Cor.20]] Under the assumptions of Theorem 2, if the universe
D contains the universe DF (X), then both attractors, ADF (X) and AD, exist, and
the following relation holds:

ADF (X)(t) ⊂ AD(t) for all t ∈ R.

Remark 4. It can be proved (see [26]) that, under the assumptions of the preceding

corollary, if, moreover, D̂0 ∈ D, and for some T ∈ R the set ∪t≤TD0(t) is a bounded
subset of X, then

ADF (X)(t) = AD(t) for all t ≤ T.

4. Existence of pullback attractors for the process associated to (1). Now,
by the previous results, we are able to define correctly a process U on Cγ(H)
associated to (1), and to obtain the existence of minimal pullback attractors.

Proposition 2. Assume that f ∈ L2
loc(R; (L2(Ω))3), γ > 0, and g : R× Cγ(H)→

(L2(Ω))3 satisfying the assumptions (g1)–(g3), are given. Then, the bi-parametric
family of maps U(t, τ) : Cγ(H)→ Cγ(H), with τ ≤ t, given by

U(t, τ)φ = ut, (7)
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where u = u(·; τ, φ) is the unique weak solution of (1), defines a continuous process
on Cγ(H).

Proof. It is a consequence of Theorem 1 and Proposition 1.

Lemma 1. Under the assumptions of Proposition 2, let µ be such that

0 < µ < ν and (ν − µ)λ1 ≤ γ. (8)

Then, the following estimates hold for the solution to (1) for all t ≥ τ :

‖ut‖2γ ≤ e−2((ν−µ)λ1−Lg)(t−τ)‖φ‖2γ

+(µλ1)−1

∫ t

τ

e−2((ν−µ)λ1−Lg)(t−s)|f(s)|2ds, (9)

µ

∫ t

τ

‖u(s)‖2ds ≤ e2(ν−µ)λ1(t−τ)|u(τ)|2 + e2Lg(t−τ)‖φ‖2γ

+(µλ1)−1e−2(ν−µ)λ1τ

∫ t

τ

e2(ν−µ)λ1s|f(s)|2ds

+(µλ1)−1e2Lgt−2(ν−µ)λ1τ

∫ t

τ

e2((ν−µ)λ1−Lg)s|f(s)|2ds.(10)

Proof. Take a µ such that 0 < µ < ν. By the energy equality (see Remark 1), one
has

d

dt
|u(t)|2 + 2ν‖u(t)‖2 = 2(f(t), u(t)) + 2(g(t, ut), u(t))

≤ 2λ
−1/2
1 |f(t)|‖u(t)‖+ 2Lg‖ut‖γ |u(t)|

≤ µ‖u(t)‖2 +
1

µλ1
|f(t)|2 + 2Lg‖ut‖2γ , a.e. t > τ.

Thus,

d

dt
|u(t)|2 + 2(ν − µ)λ1|u(t)|2 + µ‖u(t)‖2 ≤ d

dt
|u(t)|2 + 2(ν − µ)‖u(t)‖2 + µ‖u(t)‖2

≤ 1

µλ1
|f(t)|2 + 2Lg‖ut‖2γ , a.e. t > τ,

and therefore,

|u(t)|2 + µ

∫ t

τ

e−2(ν−µ)λ1(t−s)‖u(s)‖2ds (11)

≤ e−2(ν−µ)λ1(t−τ)|u(τ)|2 +

∫ t

τ

e−2(ν−µ)λ1(t−s)(|f(s)|2/(µλ1) + 2Lg‖us‖2γ)ds,

for all t ≥ τ.
Consequently

‖ut‖2γ ≤ max

{
sup

θ∈(−∞,τ−t]
e2γθ|φ(θ + t− τ)|2,

sup
θ∈[τ−t,0]

(e2γθ−2(ν−µ)λ1(t−τ+θ)|u(τ)|2

+e2γθ

∫ t+θ

τ

e−2(ν−µ)λ1(t+θ−s)(|f(s)|2/(µλ1) + 2Lg‖us‖2γ)ds)

}
.
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Since µ satisfies (8), we have that on the one hand

sup
θ∈(−∞,τ−t]

eγθ|φ(θ + t− τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)|

= e−γ(t−τ)‖φ‖γ
≤ e−(ν−µ)λ1(t−τ)‖φ‖γ .

On the other hand,

sup
θ∈[τ−t,0]

e2γθ−2(ν−µ)λ1(t−τ+θ)|u(τ)|2 ≤ e−2(ν−µ)λ1(t−τ)|u(τ)|2

and

sup
θ∈[τ−t,0]

e2γθ

∫ t+θ

τ

e−2(ν−µ)λ1(t+θ−s)(|f(s)|2/(µλ1) + 2Lg‖us‖2γ)ds

≤
∫ t

τ

e−2(ν−µ)λ1(t−s)(|f(s)|2/(µλ1) + 2Lg‖us‖2γ)ds.

Collecting these inequalities we deduce

‖ut‖2γ ≤ e−2(ν−µ)λ1(t−τ)‖φ‖2γ +

∫ t

τ

e−2(ν−µ)λ1(t−s)(|f(s)|2/(µλ1) + 2Lg‖us‖2γ)ds,

for all t ≥ τ .
Then, by the Gronwall lemma we conclude that (9) holds.
Now, from (11), (9), and Fubini’s theorem, we conclude (10).

From now on we will assume that

there exists 0 < µ < ν such that Lg < (ν − µ)λ1 ≤ γ, (12)

and ∫ 0

−∞
e2((ν−µ)λ1−Lg)s|f(s)|2ds < +∞. (13)

Remark 5. Condition (12) is equivalent to

Lg < min(γ, νλ1). (14)

Indeed, it is clear that (12) implies (14).
Assume now that Lg satisfies (14). Then there are two possibilities:
If νλ1 ≤ γ, then as Lg < νλ1, it is evident that there exists a µ such that (12) is

satisfied.
If νλ1 > γ, let us take µ = λ−1

1 (νλ1 − γ). Evidently, 0 < µ < ν, and Lg < γ =
(ν − µ)λ1.

Remark 6. If we assume that f ∈ L2
loc(R; (L2(Ω))3), assumption (13) is equivalent

to ∫ t

−∞
e−2((ν−µ)λ1−Lg)(t−s)|f(s)|2ds < +∞, for all t ∈ R.

From now on, for brevity we will denote

σ = 2((ν − µ)λ1 − Lg). (15)
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Definition 7. We will denote by Dσ(Cγ(H)) the class of all families of nonempty

subsets D̂ = {D(t) : t ∈ R} ⊂ P(Cγ(H)) such that

lim
τ→−∞

(
eστ sup

v∈D(τ)

‖v‖2γ

)
= 0.

Accordingly to the notation introduced in the previous subsection, DF (Cγ(H))

will denote the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty
bounded subset of Cγ(H).

Remark 7. Observe that DF (Cγ(H)) ⊂ Dσ(Cγ(H)), and that both are inclusion-
closed.

Corollary 2. Under the assumptions of Proposition 2, if moreover conditions (12)

and (13) are satisfied, then the family D̂0 = {D0(t) : t ∈ R}, with D0(t) =
BCγ(H)(0, ρ(t)), the closed ball in Cγ(H) of center zero and radius ρ(t), where

ρ2(t) = 1 + (µλ1)−1

∫ t

−∞
e−σ(t−s)|f(s)|2ds, (16)

is pullback Dσ(Cγ(H))-absorbing for the process U defined by (7). Moreover, D̂0 ∈
Dσ(Cγ(H)).

Proof. This follows immediately from Lemma 1.

Proposition 3. Under the assumptions of Corollary 2, the process U defined by

(7) is D̂0-asymptotically compact.

Proof. Let us fix t0 ∈ R. Let un = un(·; τn, φn) be a sequence of weak solutions of
(1), defined in their respective intervals [τn,+∞), with initial data φn ∈ D0(τn) =
BCγ(H)(0, ρ(τn)), where τn → −∞ as n→ +∞. Without loss of generality, we may
assume that τn < t0 for all n. Consider the sequence ξn = unt0 . Then we will prove
that this sequence is relatively compact in Cγ(H). To do this, we will proceed in
two steps.

Step 1: We will prove that from {ξn} we may extract a subsequence, relabelled
the same, and a continuous function ψ : (−∞, 0] → H, such that ξn → ψ in
C([−T , 0];H) for every T > 0.

Consider two arbitrary values 0 < T < T.
It follows from (9) and (13) that there exists n0(t0, T ) such that τn < t0 − T for

n ≥ n0(t0, T ), and

‖unt ‖2γ ≤ R(t0, T ) < +∞ for all t ∈ [t0 − T, t0], and any n ≥ n0(t0, T ), (17)

where

R(t0, T ) = 1 + (µλ1)−1e−σ(t0−T )

∫ t0

−∞
eσs|f(s)|2ds,

so that, in particular,

|un(t)|2 ≤ R(t0, T ), for all t ∈ [t0 − T, t0], and any n ≥ n0(t0, T ). (18)

Let

yn(t) = un(t+ t0 − T ), for all t ∈ [0, T ].

In particular, by (18), the sequence {yn}n≥n0(t0,T ) is bounded in L∞(0, T ;H).
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On the other hand, for each n ≥ n0(t0, T ), the function yn is a solution on [0, T ]
of a problem similar to (1), namely with f and g replaced by

f̃(t) = f(t+ t0 − T ) and g̃(t, ·) = g(t+ t0 − T, ·), for all t ∈ [0, T ], (19)

respectively, and with yn0 = unt0−T , ynT = unt0 = ξn. By (17), ‖yn0 ‖2γ ≤ R(t0, T ) for
all n ≥ n0(t0, T ). From (10) we have

‖yn‖2L2(0,T ;V ) ≤ K(t0, T ), for all n ≥ n0(t0, T ). (20)

Hence, the sequence {yn}n≥n0(t0,T ) is also bounded in L2(0, T ;V ), and by (2), the

sequence of time derivatives {(yn)′}n≥n0(t0,T ) is bounded in L2(0, T ;V ′). Thus, up
to a subsequence (relabelled the same), for some function y we have that

yn
∗
⇀ y weakly star in L∞(0, T ;H),

yn ⇀ y weakly in L2(0, T ;V ),
(yn)′ ⇀ y′ weakly in L2(0, T ;V ′),
yn → y strongly in L2(0, T ;H),
yn(t)→ y(t) strongly in H, a.e. t ∈ (0, T ).

Observe also that for every sequence {tn} ⊂ [0, T ] with tn → t∗, one has

yn(tn) ⇀ y(t∗) weakly in H. (21)

This follows from the boundedness of the sequence {yn}n≥n0(t0,T ) in L∞(0, T ;H),

the boundedness of the sequence {(yn)′}n≥n0(t0,T ) in L2(0, T ;V ′), and the compact-
ness of the injection of H into V ′ (see [23] for a similar argument).

In order to find the equation satisfied by y, we have the trouble that the weak
convergence in L2(0, T ;V ) is not enough to ensure that

‖yn(t)‖ → ‖y(t)‖,

or at least

FN (‖yn(t)‖)→ FN (‖y(t)‖) for a.a. t,

which is needed to manage the nonlinear term BN (yn, yn).

Now, we are going to obtain a stronger estimate. From now on, we assume that
n ≥ n0(t0, T ). As yn satisfies a problem similar to (1) on [0, T ], with f̃ and g̃ defined
by (19), in place of f and g, taking the inner product with Ayn, we obtain

1

2

d

dt
‖yn(t)‖2 + ν|Ayn(t)|2 + bN (yn(t), yn(t), Ayn(t))

= (f̃(t), Ayn(t)) + (g̃(t, ynt ), Ayn(t)). (22)

Obviously,

(f̃(t), Ayn(t)) ≤ |f̃(t)||Ayn(t)| ≤ ν

8
|Ayn(t)|+ 2

ν
|f̃(t)|2

and

|(g̃(t, ynt ), Ayn(t))| ≤ ν

8
|Ayn(t)|2 +

2

ν
|g̃(t, ynt )|2.
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From the definition of FN (·), (3), and Young’s inequality, it follows

|bN (yn(t), yn(t), Ayn(t))| ≤ N

‖yn(t)‖
C2‖yn(t)‖3/2|Ayn(t)|3/2

= NC2‖yn(t)‖1/2|Ayn(t)|3/2

≤ ν

4
|Ayn(t)|2 + CN‖yn(t)‖2,

with CN =
27(NC2)4

4ν3
.

These inequalities combined with (22) lead to

d

dt
‖yn(t)‖2 + ν|Ayn(t)|2 ≤ 4

ν
|f̃(t)|2 +

4

ν
|g̃(t, ynt )|2 + 2CN‖yn(t)‖2.

Integrating between s and t with 0 ≤ s ≤ t ≤ T, we deduce that

‖yn(t)‖2 + ν

∫ t

s

|Ayn(r)|2dr ≤ ‖yn(s)‖2 +
4

ν

∫ T

0

(|f̃(r)|2 + |g̃(r, ynr )|2)dr

+2CN

∫ T

0

‖yn(r)‖2dr, for all 0 ≤ s ≤ t ≤ T.(23)

Now, integrating once more between 0 and t we obtain

t‖yn(t)‖2 ≤ 4T

ν

∫ T

0

(|f̃(r)|2 + |g̃(r, ynr )|2)dr

+(1 + 2CNT )

∫ T

0

‖yn(r)‖2dr, for all 0 ≤ s ≤ t ≤ T. (24)

By the assumptions on f and g, from (17), (20), (23) and (24) we deduce that
the sequence {yn}n≥n0(t0,T ) is bounded in L∞(ε, T ;V ) ∩ L2(ε, T ;D(A)), for all
0 < ε < T. Thus, as D(A) ⊂ V with compact injection, by [22, Ch.1, Th.5.1],
and using a sequence of positive values εn ↓ 0 and a diagonal argument, eventually
extracting a subsequence, in particular, we deduce that

‖yn(t)‖ → ‖y(t)‖ a.e. in (0, T ),

and therefore
FN (‖yn(t)‖)→ F (‖y(t)‖) a.e. in (0, T ).

Also, by (g3) and (17) we obtain∫ t

0

|g̃(s, yns )|2ds ≤ Ct,

where C > 0 does not depend neither on n nor t ∈ [0, T ]. Thus, eventually extract-
ing a subsequence, there exists ξ ∈ L2(0, T ; (L2(Ω))3) such that

g̃(·, yn· ) ⇀ ξ weakly in L2(0, T ; (L2(Ω))3),

and therefore ∫ t

s

|g̃(r, ynr )|2dr ≤ C(t− s),∫ t

s

|ξ(s)|2ds ≤ lim inf
n→+∞

∫ t

s

|g̃(r, ynr )|2dr ≤ C(t− s),
(25)

for all 0 ≤ s ≤ t ≤ T.
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Then, in a standard way, one can prove that y(·) is the unique weak solution to
the problem

ut − ν∆u+ FN (‖u‖) [(u · ∇)u] = −∇p+ f̃(t) + ξ(t), in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ,

u(0, x) = y(0, x), x ∈ Ω.

By the energy equality and (25), combined with Young’s inequality, we obtain
that

|z(t)|2 + ν

∫ t

s

‖z(r)‖2dr ≤ |z(s)|2 + 2

∫ t

s

〈f̃(r), z(r)〉dr+
C

νλ1
(t− s), 0 ≤ s ≤ t ≤ T,

where z = yn or z = y. Then the maps Jn, J : [0, T ]→ R defined by

J(t) = |y(t)|2 − 2

∫ t

0

〈f̃(r), y(r)〉dr − C

νλ1
t,

Jn(t) = |yn(t)|2 − 2

∫ t

0

〈f̃(r), yn(r)〉dr − C

νλ1
t,

are non-increasing and continuous, and satisfy

Jn(t)→ J(t) a.e. t ∈ [0, T ]. (26)

We can use the functionals Jn and J to deduce that yn → y in C([δ, T ];H),
for any 0 < δ < T. If this is not true, then there exist 0 < δ∗ < T, ε∗ > 0, and
subsequences {ym} ⊂ {yn}n≥n0(t0,T ) and {tm} ⊂ [δ∗, T ], with tm → t∗, such that

|ym(tm)− y(t∗)| ≥ ε∗, for all m. (27)

Let us fix ε > 0. Observe that t∗ ∈ [δ∗, T ], and therefore, by (26) and the
continuity and non-increasing character of J , there exists 0 ≤ t̂ε < t∗ such that

lim
m→+∞

Jm(t̂ε) = J(t̂ε), (28)

and

0 ≤ J(t̂ε)− J(t∗) ≤ ε. (29)

As tm → t∗, there exists an mε such that t̂ε < tm for all m ≥ mε. Then, by (29),

Jm(tm)− J(t∗) ≤ Jm(t̂ε)− J(t∗)

≤ |Jm(t̂ε)− J(t̂ε)|+ |J(t̂ε)− J(t∗)|
≤ |Jm(t̂ε)− J(t̂ε)|+ ε

for all m ≥ mε, and consequently, by (28),

lim sup
m→+∞

Jm(tm) ≤ J(t∗) + ε.

Thus, as ε > 0 is arbitrary, we deduce that

lim sup
m→+∞

Jm(tm) ≤ J(t∗). (30)

Taking into account that tm → t∗, and∫ tm

0

(f̃(r), ym(r))dr →
∫ t∗

0

(f̃(r), y(r))dr,
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from (30) we deduce that

lim sup
m→+∞

|ym(tm)| ≤ |y(t∗)|.

This last inequality and (21), imply that

ym(tm)→ y(t∗) strongly in H,

which is in contradiction with (27).
We have thus proved that yn → y in C([δ, T ];H), for any 0 < δ < T. As T > T ,

we obtain in particular that ξn|[−T ,0] → ψ in C([−T , 0];H), where ψ(s) = y(s+T ),

for s ∈ [−T , 0].
Repeating the same procedure for 2T , 3T , etc. for a diagonal subsequence

(relabelled the same) we can obtain a function ψ ∈ C((−∞, 0];H) such that
ξn|[−T ,0] → ψ in C([−T , 0];H) on every interval [−T , 0].

Moreover, by the estimate (18), it is clear that we also have

|ψ(s)|2 ≤ 1 +MeσT for all s ∈ [−T, 0], for any T > 0, (31)

where

M = (µλ1)−1e−σt0
∫ t0

−∞
eσs|f(s)|2ds.

Step 2: We now prove that in fact ξn converges to ψ in Cγ(H).
Indeed, we have to see that for every ε > 0 there exists nε such that

sup
s∈(−∞,0]

e2γs|ξn(s)− ψ(s)|2 ≤ ε for all n ≥ nε. (32)

Fix Tε > 0 such that max{e−2γTε ,Meσe(σ−2γ)Tε} ≤ ε/8, and take nε ≥ n0(t0, Tε)
such that e2γs|ξn(s)−ψ(s)|2 ≤ ε for all s ∈ [−Tε, 0], and τn ≤ t0−Tε, for all n ≥ nε.
This last choice is possible thanks to the Step 1.

So, in order to prove (32) we only have to check that

sup
s∈(−∞,−Tε]

|ξn(s)− ψ(s)|2e2γs ≤ ε for all n ≥ nε.

By (31) and the choice of Tε, and since σ − 2γ ≤ 0, for all k ≥ 0 we have that for
all s ∈ [−(Tε + k + 1),−(Tε + k)] it holds

e2γs|ψ(s)|2 ≤ e−2γ(Tε+k)(1 +Meσ(Tε+k+1))

= e−2γTεe−2γk +Meσe(σ−2γ)Tεek(σ−2γ)

≤ ε/8 + ε/8

= ε/4.

So, to finish, it suffices to prove that

sup
s∈(−∞,−Tε]

e2γs|ξn(s)|2 ≤ ε/4 for all n ≥ nε.

We remind that

ξn(s) =

{
φn(s+ t0 − τn), if s ∈ (−∞, τn − t0),
un(s+ t0), if s ∈ [τn − t0, 0].

Thus, the proof is finished if we prove that

max

{
sup

s∈(−∞,τn−t0)

e2γs|φn(s+ t0 − τn)|2, sup
s∈[τn−t0,−Tε]

e2γs|un(s+ t0)|2
}
≤ ε/4.
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But observe that

sup
s≤τn−t0

e2γs|φn(s+ t0 − τn)|2 = sup
s≤τn−t0

e2γ(s+t0−τn)e2γ(τn−t0)|φn(s+ t0 − τn)|2

= e2γ(τn−t0)‖φn‖2γ
≤ e2γ(τn−t0)ρ2(τn)

≤ e2γ(τn−t0) +Me(2γ−σ)(τn−t0) ≤ ε/4,
thanks to the choice of nε.

Finally, by (17) with T = Tε, we also have

sup
s∈[τn−t0,−Tε]

e2γs|un(s+ t0)|2 = sup
θ∈[τn−t0+Tε,0]

e2γ(θ−Tε)|un(t0 − Tε + θ)|2

≤ e−2γTε‖unt0−Tε‖
2
γ

≤ e−2γTεR(t0, Tε)

= e−2γTε +Me(σ−2γ)Tε

≤ ε/4.

The proof is completed.

Joining all the above statements we obtain the existence of minimal pullback
attractors for the process U on Cγ(H) associated to problem (1).

Theorem 3. Assume that f ∈ L2
loc(R; (L2(Ω))3), γ > 0, and g : R × Cγ(H) →

(L2(Ω))3 satisfying the assumptions (g1)–(g3), (12) and (13), are given. Then,
there exist the minimal pullback DF (Cγ(H))-attractor

ADF (Cγ(H)) = {ADF (Cγ(H))(t) : t ∈ R}
and the minimal pullback Dσ((Cγ(H)))-attractor

ADσ(Cγ(H)) = {ADσ(Cγ(H))(t) : t ∈ R},
for the process U defined by (7). The family ADσ(Cγ(H)) belongs to Dσ(Cγ(H)), and
the following relation holds:

ADF (Cγ(H))(t) ⊂ ADσ(Cγ(H))(t) ⊂ BCγ(H)(0, ρ(t)) for all t ∈ R,

where ρ(t) is the expression given in (16).

Proof. The result is a direct consequence of Theorem 2, Remark 3, Corollary 1,
Proposition 2, Corollary 2, and Proposition 3.

As a consequence of Theorem 3, we have the following result, which just discusses
about the existence of a bigger tempered universe and bigger corresponding pullback
attractor, if condition (12) is not optimized.

Corollary 3. Under the assumptions of Theorem 3, if µ ∈ (0, ν) satisfies (ν −
µ)λ1 < γ, then there exists µ̃ ∈ (0, µ) such that it still fulfills (ν − µ̃)λ1 ≤ γ, and
therefore there exists the minimal pullback Dσ̃((Cγ(H)))-attractor

ADσ̃(Cγ(H)) = {ADσ̃(Cγ(H))(t) : t ∈ R},
for the process U defined by (7), where σ̃ = 2((ν − µ̃)λ1 − Lg), and the universe
Dσ̃(Cγ(H)) is defined analogously as in Definition 7, but with parameter σ̃.

The family ADσ̃(Cγ(H)) belongs to Dσ̃(Cγ(H)), and the following relation holds:

ADσ(Cγ(H))(t) ⊂ ADσ̃(Cγ(H))(t) ⊂ BCγ(H)(0, ρ̃(t)) for all t ∈ R, (33)
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where

ρ̃2(t) = 1 + (µ̃λ1)−1

∫ t

−∞
e−σ̃(t−s)|f(s)|2ds.

Proof. The result is a consequence of Theorem 3, provided that f and µ satisfying
(12) and (13) imply that f and µ̃ also satisfy the analogous conditions.

Moreover, observe that in this case any family of Dσ(Cγ(H)) also belongs to
Dσ̃(Cγ(H)), whence the first inclusion in (33) follows. The second inclusion is
again a consequence of Theorem 3 with parameter µ̃.

Remark 8.
i) Under the assumptions of Corollary 3, i.e., with µ satisfying (ν − µ)λ1 < γ,

there are two possibilities.
a) If νλ1 > γ, the optimal value (cf. Remark 5) in order to obtain the

maximal family of minimal pullback attractor in the biggest universe is
µ̃ = ν − γλ−1

1 ∈ (0, ν).
b) If νλ1 ≤ γ, then for any arbitrarily small value µ̃ the conditions (12)and

(13) with such a value are satisfied. Accordingly to Corollary 3, this means
that increasing families of minimal pullback attractors and of tempered
universes exist when µ̃ ↓ 0+.

ii) Under the assumptions of Theorem 3, if additionally, we assume that

sup
r≤0

∫ r

−∞
e−σ(r−s)|f(s)|2ds < +∞, (34)

where σ is given by (15), then, taking into account Remark 4 and Corollary
2, we conclude that

ADF (Cγ(H))(t) = ADσ(Cγ(H))(t), for all t ∈ R. (35)

In fact, under the assumptions of Corollary 3, then (34) also implies the
analogous condition for parameter σ̃ associated to µ̃, i.e.,

sup
r≤0

∫ r

−∞
e−σ̃(r−s)|f(s)|2ds < +∞.

Thus, in this case we conclude that (35) also holds with σ replaced by σ̃.
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[26] P. Maŕın-Rubio and J. Real, On the relation between two different concepts of pullback

attractors for non-autonomous dynamical systems, Nonlinear Anal. 71 (2009), 3956–3963.
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