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Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

The existence and uniqueness of a variational solution satisfying energy equality is
proved for a semilinear heat equation in a non-cylindrical domain with homogeneous
Dirichlet boundary condition, under the assumption that the spatial domains are
bounded and increase with time. In addition, the non-autonomous dynamical system
generated by this class of solutions is shown to have a global pullback attractor.
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1 Introduction

The theory of infinite dimensional dynamical systems and their attractors
has been extensively developed over the past decades, especially for systems
generated by parabolic partial differential equations. Both bounded and un-
bounded spatial domains have been considered as well as autonomous and
non-autonomous attractors. During this same time period evolution equations
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on non-cylindrical domains have also been investigated, that is with a spatial
domain which varies in time so its cartesian product with the time variable
is a non-cylindrical set. Much of the progress here has been for nested spatial
domains which expand in time. Moreover, the results focus mainly on for-
mulation of the problems and existence and uniqueness theory. As far as we
know, attractors of such systems have not yet been considered. This is not
really surprising since such systems are intrinsically non-autonomous even if
the equations themselves contain no time dependent terms and require the
concept of a non-autonomous attractor, which has only been introduced in
recent years.

In this paper we consider semilinear heat equations of the reaction-diffusion
type on bounded spatial domains which are expanding in time. First we show
how initial boundary value problems for these equations can be formulated as
a variational problem with appropriate function spaces, and then we estab-
lish existence and uniqueness over a finite time interval of variational solu-
tions satisfying an energy inequality. In the second part of the paper we show
that the process or two-parameter semigroup generated by such solutions is
dissipative under certain assumptions on the nonlinear term and thus has a
non-autonomous pullback attractor, even when the external forcing term is
independent of time.

2 Equations and notation

Let {Ot}t∈R be a family of nonempty bounded open subsets of RN such that

s < t ⇒ Os ⊂ Ot, (1)

and

Qτ,T :=
⋃

t∈(τ,T )

Ot × {t} is an open subset of RN+1 for any T > τ. (2)

In addition, denote

Qτ :=
⋃

t∈(τ,+∞)

Ot × {t}, ∀ τ ∈ R,

Στ,T :=
⋃

t∈(τ,T )

∂Ot × {t}, Στ :=
⋃

t∈(τ,+∞)

∂Ot × {t}, ∀ τ < T.

We consider the following initial boundary value problem for a semilinear heat
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equation with homogeneous Dirichlet boundary condition,

∂u

∂t
−∆u + g(u) = f(t) in Qτ ,

u = 0 on Στ ,

u(τ, x) = uτ (x), x ∈ Oτ ,

(3)

and, for each T > τ , the auxiliary problem

∂u

∂t
−∆u + g(u) = f(t) in Qτ,T ,

u = 0 on Στ,T ,

u(τ, x) = uτ (x), x ∈ Oτ ,

(4)

where τ ∈ R, uτ : Oτ → R and f : Qτ → R are given and g ∈ C1(R) is also
a given function for which there exist nonnegative constants α1, α2, β and l,
and p ≥ 2 such that

−β + α1|s|p ≤ g(s)s ≤ β + α2|s|p ∀ s ∈ R (5)

and
g′(s) ≥ −l ∀ s ∈ R. (6)

For later observe that, by (5), there then exist nonnegative constants α̃1, α̃2,
β̃ such that

−β̃ + α̃1|s|p ≤ G(s) ≤ β̃ + α̃2|s|p ∀ s ∈ R, (7)

where
G(s) :=

∫ s

0
g(r) dr.

There are many papers devoted to the study of linear and nonlinear parabolic
equations in non-cylindrical domains, most of which deal with the formulation
of the problems and existence of solutions (see for example [2,13,16,17,19] and
the bibliography therein). In contrast, the aim of the present paper is to study
the asymptotic behavior of the solutions of (3), and more exactly to estab-
lish the existence of a global attractor for a class of solutions of (3). Since
the open sets Ot change with time, the problem (3) is non-autonomous even
when the external forcing f is independent of t. The appropriate concept of
a non-autonomous attractor is provided by the theory of pullback attractor
[3–7,9–12,14,15,20]. The main difficulty is to obtain an energy equality for the
solutions of (3). For this we will adapt to the nonlinear parabolic problem
(3) the method used in [1] to obtain the existence and uniqueness of a so-
lution satisfying an energy equality for a linear Schrödinger-type equation in
a non-cylindrical domain of the form (1). The new results here are thus the
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existence and uniqueness of solutions of (3) satisfying an energy equality and
the existence of a pullback attractor for this class of solutions.

The structure of the paper is the following: after some preliminar results in
Section 3, we proceed by a penalty method to solve approximated problems in
Section 4. Then, Section 5 is devoted to the proof of existence of solution to the
problems (3) and (4) satisfying an energy equality. A uniform estimate for the
solutions is then obtained after an additional assumption in Section 6. This
will lead to the proof of existence of attractor in an appropriate framework in
Section 7.

3 Preliminary results

Define Hr := L2(Or) and Vr := H1
0 (Or) for each r ∈ R and denote by (·, ·)r

and | · |r the usual inner product and associated norm in Hr and by ((·, ·))r

and ‖ · ‖r the usual gradient inner product and associated norm in Vr. For
each s < t consider Vs as a closed subspace of Vt with the functions belonging
to Vs being trivially extended by zero. It follows from by (1) that {Vt}t∈[τ,T ]

can be considered as a family of closed subspaces of VT for each T > τ with

s < t ⇒ Vs ⊂ Vt. (8)

Note that (·, ·)r will also be used to denote the duality product between
Lp/p−1(Or) and Lp(Or). In addition, Hr will be identified with its topolog-
ical dual Hr

∗ by means of the Riesz theorem and Vr will be considered as a
subspace of Hr

∗ with v ∈ Vr identified with the element fv ∈ Hr
∗ defined by

fv(h) = (v, h)r, h ∈ Hr.

The duality product between V ∗
r and Vr will be denoted by 〈·, ·〉r.

Finally, for each T > τ , denote

Uτ,T := {φ ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) : φ′ ∈ L2(τ, T ; HT ),

φ(τ) = φ(T ) = 0, φ(t) ∈ Vt a.e. in (τ, T )},

where
Q̃τ,T := OT × (τ, T ),

and suppose that uτ ∈ L2(Oτ ) and f ∈ L2(Qτ,T ), with trivial extensions by
zero of uτ and f being used where appropriate.
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Definition 1 A variational solution of (4) is a function u such that

C1) u ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ),

C2) for all φ ∈ Uτ,T ,

∫ T

τ
[−(u(t), φ′(t))T + ((u(t), φ(t)))T + (g(u(t)), φ(t))T ] dt =

∫ T

τ
(f(t), φ(t))T dt,

C3) u(t) ∈ Vt a.e. in (τ, T ),

C4) lim
t↓τ

(t− τ)−1
∫ t

τ
|u(r)− uτ |2T dr = 0.

The form of condition C4) is due to the fact that it is not known a priori if u
belongs to C([τ, T ]; HT ) or to C([τ, T ]; V ∗

T ). It implies that

lim
t↓τ

(t− τ)−1
∫ t

τ
|u(r)|2T dr = |uτ |2T .

Note that a variational solution u of (4) satisfies the equation in (4) in the
sense of distributions in Qτ,T , i.e.,∫

Qτ,T

(−u∂tϕ +∇xu · ∇xϕ + g(u)ϕ) dxdt =
∫

Qτ,T

fϕ dxdt,

for all ϕ ∈ C∞
0 (Qτ,T ). Moreover, u(·, t) ∈ H1

0 (Ot) a.e. t ∈ (τ, T ).

Remark 2 If T2 > T1 > τ and u is a variational solution of (4) with T = T2,
then the restriction of u to Q̃τ,T1 is a variational solution of (4) with T = T1.

Define

Q̃τ :=
⋃

T>τ

Q̃τ,T .

Definition 3 A variational solution of (3) is a function u : Q̃τ → R such
that for each T > τ its restriction to Q̃τ,T is a variational solution of (4).

The following two results are similar to Lemmas 3.1 and 3.2 in [1].

Lemma 4 Assume that v ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) and there exist ξ ∈
L2(τ, T ; V ∗

T ) and η ∈ Lp/p−1(Q̃τ,T ) such that

∫ T

τ
(v(t), φ′(t))T dt = −

∫ T

τ
〈ξ(t), φ(t)〉T dt−

∫ T

τ
(η(t), φ(t))T dt (9)

for every function φ ∈ Uτ,T .
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For each 0 < h < T − τ, define vh by

vh(t) :=


h−1(v(t + h)− v(t)) a.e. in (τ, T − h);

0 a.e. in (T − h, T ).

Then

lim
h↓0

∫ T

τ
(vh(t), w(t))T dt =

∫ T

τ
〈ξ(t), w(t)〉T dt +

∫ T

τ
(η(t), w(t))T dt (10)

for every function w ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) such that w(t) ∈ Vt a.e. in
(τ, T ).

Proof. Let be 0 < ε < (T − τ)/2 and w ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) with w(t)
∈ Vt a.e. in (τ, T ) such that w(t) = 0 a.e. in (τ, τ + ε) ∪ (T − ε, T ). For each
0 < h < ε define

φh(t) :=


h−1

∫ t

t−h
w(s) ds if τ + h ≤ t ≤ T ,

0 otherwise.

(11)

Since both VT and Lp(OT ) are contained in L2(OT ) with continuous injection,
the integral appearing in (11) can be understood indifferently as in VT or in
Lp(OT ). Then, it is not difficult to see that φh ∈ Uτ,T (note that φh(t) ∈ Vt by
(1)), the mapping [τ, T ] 3 t 7→ φh(t) ∈ VT ∩ Lp(OT ) is continuous, and φ′h(t)
= h−1(w(t)− w(t− h))χ(τ+h,T )(t). Moreover,

‖φh‖L2(τ,T ;VT ) ≤ ‖w‖L2(τ,T ;VT ), ‖φh‖Lp(Q̃τ,T )
≤ ‖w‖

Lp(Q̃τ,T )
, (12)

and lim
h↓0

φh = w in L2(τ, T ; VT )∩Lp(Q̃τ,T ) (see, e.g., Proposition 1.4.29 in [8]).

Now

∫ T

τ
(vh(t), w(t))T dt =

∫ T−h

τ
(vh(t), w(t))T dt

= h−1

(∫ T

τ+h
(v(t), w(t− h))T dt−

∫ T−h

τ
(v(t), w(t))T dt

)

= h−1
∫ T

τ+h
(v(t), w(t− h)− w(t))T dt

=−
∫ T

τ
(v(t), φ′h(t))T dt

=
∫ T

τ
〈ξ(t), φh(t)〉T dt +

∫ T

τ
(η(t), φh(t))T dt, (13)

and thus (10) follows for this w on passing to the limit as h ↓ 0.
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Moreover, from (12) and (13), it holds

∣∣∣∣∣
∫ T

τ
(vh(t), w(t))T dt

∣∣∣∣∣ ≤ ‖ξ‖L2(τ,T ;V ∗T )‖w‖L2(τ,T ;VT ) + ‖η‖
Lp/p−1(Q̃τ,T )

‖w‖
Lp(Q̃τ,T )

(14)
for this particular w.

Now consider an arbitrary w ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) with w(t) ∈ Vt a.e. in
(τ, T ). A density argument will be used to prove (10) for this w. The sequence
of functions wn(t) = w(t)χ(τ+1/n,T−1/n)(t), for integers n > 2/(T − τ), satisfies

wn → w in L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) as n → +∞. (15)

Then, by (14) applied to the function wn − wm,

∣∣∣∣∣
∫ T

τ
(vh(t), wn(t)− wm(t))T dt

∣∣∣∣∣
≤‖ξ‖L2(τ,T ;V ∗T )‖wn − wm‖L2(τ,T ;VT ) + ‖η‖

Lp/p−1(Q̃τ,T )
‖wn − wm‖Lp(Q̃τ,T )

,

for all n, m > 2/(T − τ). Hence, letting m → +∞ and taking into account
(15), it follows that

∣∣∣∣∣
∫ T

τ
(vh(t), wn(t)− w(t))T dt

∣∣∣∣∣
≤‖ξ‖L2(τ,T ;V ∗T )‖wn − w‖L2(τ,T ;VT )

+‖η‖
Lp/p−1(Q̃τ,T )

‖wn − w‖
Lp(Q̃τ,T )

, ∀n > 2/(T − τ). (16)

Now let ε > 0 be fixed, but otherwise arbitrary. By (15) and (16) there exists
an nε > 2/(T − τ) such that

∣∣∣∣∣
∫ T

τ
(vh(t), w(t)− wnε(t))T dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

τ
〈ξ(t), wnε(t)− w(t)〉T dt +

∫ T

τ
(η(t), wnε(t)− w(t))T dt

∣∣∣∣∣ ≤ ε

for all 0 < h < T − τ. Then,
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∣∣∣∣∣
∫ T

τ
(vh(t), w(t))T dt−

∫ T

τ
〈ξ(t), w(t)〉T dt−

∫ T

τ
(η(t), w(t))T dt

∣∣∣∣∣
≤ ε +

∣∣∣∣∣
∫ T

τ
(vh(t), wnε(t))T dt−

∫ T

τ
〈ξ(t), wnε(t)〉T dt−

∫ T

τ
(η(t), wnε(t))T dt

∣∣∣∣∣
for all 0 < h < T − τ and, hence,

lim sup
h↓0

∣∣∣∣∣
∫ T

τ
(vh(t), w(t))T dt−

∫ T

τ
〈ξ(t), w(t)〉T dt−

∫ T

τ
(η(t), w(t))T dt

∣∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, (10) then follows for this general w.

Remark 5 If τ < T ′ < T and φ ∈ L2(τ, T ′; VT ) ∩ Lp(OT × (τ, T ′)), with
φ′ ∈ L2(τ, T ′; HT ) satisfies φ(τ) = φ(T ′) = 0 and φ(t) ∈ Vt a.e. in (τ, T ′), then
the trivial extension φ̃ of φ satisfies φ̃ ∈ Uτ,T , with (φ̃)′ = φ̃′. Using the open
sets Ôt := Ot+T−T ′, τ ≤ t ≤ T ′, it is easy to see that under the conditions of
Lemma 4, one also has

lim
h↓0

∫ T ′−h

τ
(vh(t), w(t))T dt =

∫ T ′

τ
〈ξ(t), w(t)〉T dt +

∫ T ′

τ
(η(t), w(t))T dt,

for every τ < T ′ < T and every function w ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) such
that w(t) ∈ Vt a.e. in (τ, T ).

Lemma 6 Let vi ∈ L2(τ, T ; VT )∩Lp(Q̃τ,T ), i = 1, 2, be two functions such that
vi(t) ∈ Vt a.e. in (τ, T ) for i = 1, 2. Assume that there exist ξi ∈ L2(τ, T ; V ∗

T ),
ηi ∈ Lp/p−1(Q̃τ,T ), i = 1, 2, such that

∫ T

τ
(vi(t), φ

′(t))T dt = −
∫ T

τ
〈ξi(t), φ(t)〉T dt−

∫ T

τ
(ηi(t), φ(t))T dt i = 1, 2,

(17)
for every function φ ∈ Uτ,T .

Then, for every pair τ ≤ s < t ≤ T of Lebesgue points of the inner product
function (v1, v2)T it holds

(v1(t), v2(t))T − (v1(s), v2(s))T

=
∫ t

s
〈ξ1(r), v2(r)〉T dr +

∫ t

s
〈ξ2(r), v1(r)〉T dr

+
∫ t

s
(η1(r), v2(r))T dr +

∫ t

s
(η2(r), v1(r))T dr

+ lim
h↓0

h−1
∫ t−h

s
(v1(r + h)− v1(r), v2(r + h)− v2(r))T dr. (18)

Proof. It is immediate that
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(v1(r + h)− v1(r), v2(r))T + (v2(r + h)− v2(r), v1(r))T

= (v1(r + h), v2(r + h))T − (v1(r), v2(r))T

−(v1(r + h)− v1(r), v2(r + h)− v2(r))T . (19)

Since for any 0 < 2h < t− s

∫ t−h

s
(v1(r + h), v2(r + h))T dr −

∫ t−h

s
(v1(r), v2(r))T dr

=
∫ t

s+h
(v1(r), v2(r))T dr −

∫ t−h

s
(v1(r), v2(r))T dr

=
∫ t

t−h
(v1(r), v2(r))T dr −

∫ s+h

s
(v1(r), v2(r))T dr,

it follows from (19) that

h−1
∫ t

t−h
(v1(r), v2(r))T dr − h−1

∫ s+h

s
(v1(r), v2(r))T dr

= h−1
∫ t−h

s
(v1(r + h)− v1(r), v2(r))T dr

+h−1
∫ t−h

s
(v2(r + h)− v2(r), v1(r))T dr

+h−1
∫ t−h

s
(v1(r + h)− v1(r), v2(r + h)− v2(r))T dr. (20)

Finally, (18) is an easy consequence of (20) and Remark 5.

Observe that if u is a variational solution of (4), then τ is a Lebesgue point of
|u|2T since C4) is satisfied. The next corollary gives an obvious consequence of
(20).

Corollary 7 If u is a variational solution of (4), then for every Lebesgue
point t ∈ (τ, T ) of |u|2T it holds

|u(t)|2T + 2
∫ t

τ
‖u(r)‖2

T dr + 2
∫ t

τ
(g(u(r)), u(r))T dr

= |uτ |2T + 2
∫ t

τ
(f(r), u(r))T dr + lim

h↓0
h−1

∫ t−h

τ
|u(r + h)− u(r)|2T dr. (21)

Our aim is to obtain a variational solution u of (4) such that

|u(t)|2T + 2
∫ t

τ
‖u(r)‖2

T dr + 2
∫ t

τ
(g(u(r)), u(r))T dr

= |uτ |2T + 2
∫ t

τ
(f(r), u(r))T dr a.e. t ∈ (τ, T ). (22)
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In this case we will say that u satisfies the energy equality a.e. in (τ, T ).
Analogously, if u is a variational solution of (3), we will say that u satisfies
the energy equality a.e. in (τ, +∞) if for each T > τ the restriction of u to
Q̃τ,T satisfies the energy equality (22) a.e. in (τ, T ).

Remark 8 If u is a variational solution of (4) satisfying the energy equality
a.e. in (τ, T ), then u ∈ L∞(τ, T ; H).

For any function v ∈ L2(τ, T ; HT ) and any t ∈ (τ, T ] define

ηv,T (t) := lim sup
h↓0

h−1
∫ t−h

τ
|v(r + h)− v(r)|2T dr.

Remark 9 ηv,T is a nondecreasing function. Consequently, by Corollary 7,
a variational solution u of (4) satisfies the energy equality a.e. in (τ, T ) if
and only if ηu,T (t) = 0 for all t ∈ (τ, T ). In fact, using the continuity of the
mapping

t ∈ [τ, T ] 7→ |uτ |2T + 2
∫ t

τ

[
(f(r), u(r))T − ‖u(r)‖2

T − (g(u(r)), u(r))T

]
dr ∈ R,

one can see that a variational solution u of (4) satisfies the energy equality
a.e. in (τ, T ) if and only if ηu,T (T ) = 0.

The next lemma provides a sufficient condition for u to satisfy the energy
equality a.e. in (τ, T ).

Lemma 10 Let u be a variational solution of (4) and suppose that there exists
a sequence {tn} ⊂ (τ, T ) of Lebesgue points of |u|2T such that tn → T and

lim sup
n↑∞

|u(tn)|2T ≤ |uτ |2T +2
∫ T

τ

[
(f(r), u(r))T − ‖u(r)‖2

T − (g(u(r)), u(r))T

]
dr.

(23)
Then, u satisfies the energy equality a.e. in (τ, T ).

Proof. By Remark 9 it suffices to prove that ηu,T (t) = 0 for all t ∈ (τ, T ).
Since tn → T and ηu,T is nondecreasing, by Corollary 7

ηu,T (t) ≤ lim sup
n↑∞

ηu,T (tn)

= lim sup
n↑∞

(
|u(tn)|2T − |uτ |2T − 2

∫ tn

τ

[
(f(r), u(r))T − ‖u(r)‖2

T − (g(u(r)), u(r))T

]
dr
)

≤ lim sup
n↑∞

|u(tn)|2T − |uτ |2T − 2
∫ T

τ

[
(f(r), u(r))T − ‖u(r)‖2

T − (g(u(r)), u(r))T

]
dr

≤ 0

for any t ∈ (τ, T ).
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Proposition 11 Let u, u be two variational solutions of (4) corresponding to
the initial data uτ , uτ ∈ L2(Oτ ), respectively, which satisfy the energy equality
a.e. in (τ, T ). Then,

|u(t)− u(t)|2T + 2
∫ t

τ
‖u(r)− u(r)‖2

T dr ≤ e2l(t−τ)|uτ − uτ |2T (24)

a.e. t ∈ (τ, T ).

Proof. From the identity, |u(t) − u(t)|2T = |u(t)|2T + |u(t)|2T − 2(u(t), u(t))T ,
Lemma 6, Corollary 7 and the energy equality a.e. it follows that

ηu,T (t) = ηu,T (t) = 0 for all t ∈ (τ, T ), (25)

and

|u(t)− u(t)|2T + 2
∫ t

τ
‖u(r)− u(r)‖2

T dr

+2
∫ t

τ
(g(u(r))− g(u(r)), u(r)− u(r))T dr

= |uτ − uτ |2T − 2 lim
h↓0

h−1
∫ t−h

τ
(u(r + h)− u(r), u(r + h)− u(r))T dr (26)

a.e. t ∈ (τ, T ). Now

∣∣∣∣∣h−1
∫ t−h

τ
(u(r + h)− u(r), u(r + h)− u(r))T dr

∣∣∣∣∣
≤
(
h−1

∫ t−h

τ
|u(r + h)− u(r)|2T dr

)1/2 (
h−1

∫ t−h

τ
|u(r + h)− u(r)|2T dr

)1/2

,

so by (25)

lim
h↓0

h−1
∫ t−h

τ
(u(r + h)− u(r), u(r + h)− u(r))T dr = 0 for all t ∈ (τ, T ).

Using this and (6) in (26) one deduces

|u(t)− u(t)|2T + 2
∫ t

τ
‖u(r)− u(r)‖2

T dr ≤ |uτ − uτ |2T + 2l
∫ t

τ
|u(r)− u(r)|2T dr,

a.e. t ∈ (τ, T ). Finally, (24) then follows by an application of Gronwall’s
inequality.

An immediate consequence is the following uniqueness result.

Corollary 12 For a given uτ ∈ L2(Oτ ) there exists at most one variational
solution of (4) satisfying the energy equality a.e. in (τ, T ).
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4 Penalty method

The method of penalization due to J.L. Lions (see [17]) will now be used to
prove existence and uniqueness of a solution to problem (4) satisfying the en-
ergy equality a.e. in (τ, T ) and, as a consequence, the existence and uniqueness
of a solution to problem (3) satisfying the energy equality a.e. in (τ, +∞). To
begin, fix T > τ and for each t ∈ [τ, T ] denote by

V ⊥
t := {v ∈ VT : ((v, w))T = 0 ∀w ∈ Vt}

the orthogonal subspace of Vt with respect the inner product in VT and by
P (t) ∈ L(VT ) the orthogonal projection operator from VT onto V ⊥

t , which is
defined as

P (t)v ∈ V ⊥
t , v − P (t)v ∈ Vt,

for each v ∈ VT . Finally, define P (t) = P (T ) for all t > T and observe that
P (T ) is the zero of L(VT ).

We will now approximate P (t) by operators which are more regular in time.
Consider the family p(t; ·, ·) of symmetric bilinear forms on VT defined by

p(t; v, w) := ((P (t)v, w))T ∀ v, w ∈ VT , ∀ t ≥ τ.

In view of (8), it can be proved (see [1]) that the mapping [τ, +∞) 3 t
7→ p(t; v, w) ∈ R is measurable for all v, w ∈ VT . Moreover, |p(t; v, w)| ≤
‖v‖T‖w‖T . For each integer k ≥ 1 and each t ≥ τ define

pk(t; v, w) := k
∫ 1/k

0
p(t + r; v, w) dr ∀ v, w ∈ VT , ∀ t ≥ τ,

and denote by Pk(t) ∈ L(VT ) the associated operator defined by

((Pk(t)v, w))T := pk(t; v, w) ∀ v, w ∈ V, ∀ t ≥ τ. (27)

The following lemma can be proved (see [1]) on account of (8).

Lemma 13 For any integers 1 ≤ h ≤ k, any t ≥ τ, and every v, w ∈ VT

pk(t; v, w) = pk(t; w, v), (28)

0 ≤ ph(t; v, v) ≤ pk(t; v, v) ≤ p(t; v, v) = ‖P (t)v‖2
T ≤ ‖v‖2

T , (29)

p′k(t; v, v) :=
d

dt
pk(t; v, v) = k(p(t + 1/k; v, v)− p(t; v, v)) ≤ 0, (30)

((Pk(t)v, z))T = 0 ∀ z ∈ Vt. (31)

Moreover, for every sequence vk ∈ L2(τ, T ; VT ) weakly convergent to v in
L2(τ, T ; VT )

lim inf
k→+∞

∫ T

τ
pk(t; vk(t), vk(t)) dt ≥

∫ T

τ
p(t; v(t), v(t)) dt. (32)

12



Let J : VT → V ∗
T be the Riesz isomorphism defined by

〈Jv, w〉T := ((v, w))T ∀ v, w ∈ VT ,

and for each integer k ≥ 1 and each t ∈ [τ, T ] denote

Ak(t) := −∆ + kJPk(t). (33)

Obviously, Ak(t) ∈ L(VT , V ∗
T ), t ∈ [τ, T ], is a family of symmetric linear oper-

ators such that the mapping t ∈ [τ, T ] 7→ A(t) ∈ L(VT , V ∗
T ) is measurable and

bounded, and satisfies

〈Ak(t)v, v〉T ≥ ‖v‖2
T ∀ v ∈ VT ∀ t ∈ [τ, T ]. (34)

Let uτ ∈ HT be given and for each k ≥ 1 consider the problem

(uk(t), v)T +
∫ t

τ
〈Ak(r)uk(r), v〉T dr +

∫ t

τ
(g(uk(r)), v)T dr

= (uτ , v)T +
∫ t

τ
(f(r), v)T dr ∀ t ∈ [τ, T ], ∀ v ∈ VT ∩ Lp(OT ). (35)

Theorem 14 Suppose that (1), (2), (5) and (6) hold. Then, for each k ≥ 1,
f ∈ L2(τ, T ; HT ) and uτ ∈ HT there exists a unique solution uk ∈ L2(τ, T ; VT )∩
Lp(Q̃τ,T ) of (35). Moreover, uk ∈ C([τ, T ]; HT ). In addition, if uτ ∈ VT ∩
Lp(OT ), then uk also satisfies

uk ∈ L∞(τ, T ; VT ) ∩ L∞(τ, T ; Lp(OT )), u′k ∈ L2(τ, T ; HT ), (36)

and

∫ T

τ
|u′k(t)|2T dt + ‖uk‖2

L∞(τ,T ;VT )

+k
∫ T

τ
((Pk(t)uk(t), uk(t)))T dt + 2α̃1‖uk‖p

L∞(τ,T ;Lp(OT ))

≤ (3 + T − τ)

[
‖uτ‖2

T + k((Pk(τ)uτ , uτ ))T

+2α̃2‖uτ‖p
Lp(OT ) + 4β̃|OT |+

∫ T

τ
|f(r)|2T dr

]
, (37)

where α̃2 and β̃ are given in (7).

Proof. It is well known (see [17]) by the monotonicity of the involved oper-
ators, that problem (35) has a unique solution uk ∈ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T )
and that uk ∈ C([τ, T ]; HT ). This solution can be obtained by the Galerkin
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method. More exactly, one can take an orthonormal Hilbert basis {ej} of HT

formed by elements of VT ∩ Lp(OT ) such that the vector space generated by
{ej} is dense in VT and in Lp(OT ). Then, one takes a sequence uτm converg-
ing to uτ in HT , with uτm in the vector space spanned by the m first ej. For
each integer m ≥ 1 one considers the approximation ukm(t) =

∑m
j=1 γkm,j(t)ej,

defined as the unique solution of

(ukm(t), ej) +
∫ t

τ
〈Ak(r)ukm(r), ej〉T dr +

∫ t

τ
(g(ukm(r)), ej)T dr

= (uτm , ej)T +
∫ t

τ
(f(r), ej)T dr, ∀ t ∈ [τ, T ], ∀1 ≤ j ≤ m. (38)

Moreover, the solution ukm satisfies the energy equality

|ukm(t)|2T + 2
∫ t

τ
〈Ak(r)ukm(r), ukm(r)〉T dr + 2

∫ t

τ
(g(ukm(r)), ukm(r))T dr

= |uτm|2T + 2
∫ t

τ
(f(r), ukm(r))T dr ∀ t ∈ [τ, T ]

and it follows by (5) and (34) that

|ukm(t)|2T + 2
∫ t

τ
‖ukm(r)‖2

T dr + 2α1

∫ t

τ
‖ukm(r)‖p

Lp(OT ) dr

≤ |uτm|2T +
∫ t

τ
|f(r)|2T dr +

∫ t

τ
|ukm(r)|2T dr + 2β(t− τ)|OT | (39)

for all t ∈ [τ, T ]. Then, from (39) and the Gronwall inequality it follows that
the sequence {ukm} is bounded in L2(τ, T ; VT )∩Lp(Q̃τ,T ) and in L∞(τ, T ; HT ).
Finally, it is well known that one can also prove that the sequence {ukm}
converges weakly in L2(τ, T ; VT )∩Lp(Q̃τ,T ) and weak-star in L∞(τ, T ; HT ) to
the unique solution uk of (35).

Suppose now that uτ ∈ VT ∩ Lp(OT ). Multiply by γ′km,j(t) the equation

(u′km
(t), ej)T +〈Ak(t)ukm(t), ej〉T +(g(ukm(t)), ej)T = (f(t), ej)T , a.e. t ∈ (τ, T ),

and sum from j = 1 to m to obtain

|u′km
(t)|2T +((ukm(t), u′km

(t)))T +k((Pk(t)ukm(t), u′km
(t)))T +(g(ukm(t)), u′km

(t))T

= (f(t), u′km
(t))T , a.e. t ∈ (τ, T ).

Hence

14



|u′km
(t)|2T +

d

dt
‖ukm(t)‖2

T + 2k((Pk(t)ukm(t), u′km
(t)))T + 2

d

dt

∫
OT

G(ukm(x, t)) dx

≤ |f(t)|2T , a.e. t ∈ (τ, T ). (40)

Now, observe that

((Pk(t)ukm(t), u′km
(t)))T = k

∫ 1/k

0
((P (t + r)ukm(t), u′km

(t)))T dr

= k
∫ t+1/k

t
((P (r)ukm(t), u′km

(t)))T dr,

and

1

k

d

dt
((Pk(t)ukm(t), ukm(t)))T

=
d

dt

∫ t+1/k

t
((P (r)ukm(t), ukm(t)))T dr

= 2
∫ t+1/k

t
((P (r)ukm(t), u′km

(t)))T dr

+((P (t + 1/k)ukm(t), ukm(t)))T − ((P (t)ukm(t), ukm(t)))T

≤ 2
∫ t+1/k

t
((P (r)ukm(t), u′km

(t)))T dr,

where (30) has been used in the last inequality. Thus,

((Pk(t)ukm(t), u′km
(t)))T ≥ 1

2

d

dt
((Pk(t)ukm(t), ukm(t)))T ,

and hence, by (40),

|u′km
(t)|2T +

d

dt
‖ukm(t)‖2

T + k
d

dt
((Pk(t)ukm(t), ukm(t)))T

+2
d

dt

∫
OT

G(ukm(x, t)) dx

≤ |f(t)|2T a.e. t ∈ (τ, T ). (41)

This last estimate and (7) give
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∫ t

τ
|u′km

(r)|2T dr + ‖ukm(t)‖2
T

+k((Pk(t)ukm(t), ukm(t)))T + 2α̃1‖ukm(t)‖p
Lp(OT )

≤‖uτm‖2
T + k((Pk(τ)uτm , uτm))T + 2α̃2‖uτm‖

p
Lp(OT )

+4β̃|OT |+
∫ t

τ
|f(r)|2T dr, (42)

for all t ∈ [τ, T ].

Since uτ ∈ VT ∩ Lp(OT ), there is a sequence uτm converging to uτ in VT ∩
Lp(OT ) with uτm in the vector space spanned by the m first ej. With this
choice of initial values one easily deduces from (42) that the sequence {ukm}
is bounded in L∞(τ, T ; VT ) ∩ L∞(τ, T ; Lp(OT )) and that the sequence {u′km

}
is bounded in L2(τ, T ; HT ), and therefore that uk satisfies (36). Moreover,
by the uniqueness of uk, the complete sequence ukm converges weakly-star
to uk in L∞(τ, T ; VT ) ∩ L∞(τ, T ; Lp(OT )) and u′km

converges weakly to u′k in
L2(τ, T ; HT ) as m → +∞. Then it follows from (42) and the weak and weak-
star lower semicontinuity of the norms that

∫ T

τ
|u′k(t)|2T dt + ‖uk‖2

L∞(τ,T ;VT ) + 2α̃1‖uk‖p
L∞(τ,T ;Lp(OT ))

≤ 3‖uτ‖2
T + 3k((Pk(τ)uτ , uτ ))T + 6α̃2‖uτ‖p

Lp(OT )

+12β̃|OT |+ 3
∫ T

τ
|f(r)|2T dr. (43)

On the other hand, by (42) again,

k
∫ T

τ
((Pk(t)ukm(t), ukm(t)))T dt

≤ (T − τ)

[
‖uτm‖2

T + k((Pk(τ)uτm , uτm))T + 2α̃2‖uτm‖
p
Lp(OT )

+4β̃|OT |+
∫ t

τ
|f(r)|2T dr

]
.

Hence, since a functional Φ : L2(τ, T ; VT ) → R defined by

Φ(v) =
∫ T

τ
((Pk(t)v(t), v(t)))T dt, v ∈ L2(τ, T ; VT ),

is continuous and convex, it follows that

16



k
∫ T

τ
((Pk(t)uk(t), uk(t)))T dt

≤ k lim inf
m→+∞

∫ T

τ
((Pk(t)ukm(t), ukm(t)))T dt

≤ (T − τ)

[
‖uτ‖2

T + k((Pk(τ)uτ , uτ ))T + 2α̃2‖uτ‖p
Lp(OT )

+4β̃|OT |+
∫ t

τ
|f(r)|2T dr

]
. (44)

The inequalities (43) and (44) then give (37).

5 Variational solution of (4) satisfying the energy equality

The purpose of this section is to establish the existence of variational solutions
satisfying the energy inequality.

Theorem 15 Suppose that (1), (2), (5) and (6) hold. Then for each f ∈
L2(τ, T ; HT ) and uτ ∈ L2(Oτ ) there exists a unique variational solution u of
(4) satisfying the energy equality a.e. in (τ, T ). In addition, u ∈ C([τ, T ]; HT )
and satisfies the energy equality (22) for all t ∈ [τ, T ]. Moreover, if uτ ∈
Vτ ∩ Lp(Oτ ), then u also satisfies

u ∈ L∞(τ, T ; VT ) ∩ L∞(τ, T ; Lp(OT )), u′ ∈ L2(τ, T ; HT ).

Proof. First suppose that uτ ∈ Vτ ∩ Lp(Oτ ). Then, by (31),

((Pk(τ)uτ , uτ )) = 0 ∀ k ≥ 1.

Hence, from estimate (37), there exists a subsequence of the sequence {uk}
of solutions of (35), which for simplicity will continue to be denoted by {uk},
and a function u such that

uk ⇀ u weak-star in L∞(τ, T ; VT ) ∩ L∞(τ, T ; Lp(OT )), (45)

and

u′k ⇀ u′ weakly in L2(τ, T ; HT ).

Hence, u ∈ C([τ, T ]; HT ).

Observe that uk ⇀ u weakly in L2(τ, T ; VT ), and consequently, by Lemma 13
and (37), that
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∫ T

τ
‖P (t)u(t)‖2

T dt≤ lim inf
k→+∞

∫ T

τ
((Pk(t)uk(t), uk(t))) dt

≤ lim inf
k→+∞

C

k
= 0,

where

C = (3 + T − τ)

[
‖uτ‖2

τ + 2α̃2‖uτ‖p
Lp(Oτ ) + 4β̃|OT |+

∫ T

τ
|f(r)|2T dr

]
, (46)

from which it follows that P (t)u(t) = 0 a.e. in (τ, T ), i.e.,

u(t) ∈ Vt a.e. in (τ, T ). (47)

On the other hand, (37) and the equality

uk(t)− uk(s) =
∫ t

s
u′k(r) dr ∀ s, t ∈ [τ, T ], ∀ k ≥ 1,

give
|uk(t)− uk(s)|T ≤ C1/2|t− s|1/2 ∀ s, t ∈ [τ, T ], ∀ k ≥ 1, (48)

with C defined by (46). It allows follows by (37) that ‖uk(t)‖2
T ≤ C for all

t ∈ [τ, T ] and each k ≥ 1. Since the injection of VT into HT is compact, the
set {v ∈ VT : ‖v‖2

T ≤ C} is compact in HT . By (48) and the Ascoli-Arzelà
Theorem there thus exists a subsequence that will still be denoted {uk} such
that

uk → u in C([τ, T ]; HT ) as k → +∞. (49)

Hence, in particular, uk → u in L2(τ, T ; HT ), and, extracting a subsequence if
necessary, uk(x, t) → u(x, t) a.e. in OT × (τ, T ), so

g(uk(x, t)) → g(u(x, t)) a.e. in OT × (τ, T ). (50)

From (50) and the fact that by (5) and (37) the sequence g(uk) is bounded
in Lp/p−1(Q̃τ,T ), it follows by an application of Lemma 1.3, Chapter 1, in [17]
that

g(uk) ⇀ g(u) weakly in Lp/p−1(Q̃τ,T ). (51)

Observe by (31) and (35) that

∫ T

τ
[−(uk(t), φ

′(t))T + ((uk(t), φ(t)))T + (g(uk(t)), φ(t))T ] dt

=
∫ T

τ
(f(t), φ(t))T dt (52)

for any φ ∈ Uτ,T . In view of (45), (49) and (51), it is possible to take the limit
as k → +∞ in (52) and to conclude that u is a variational solution of (4).

18



In order to show that u satisfies the energy equality in (τ, T ), observe from
the energy equality for uk that

|uk(T )|2T + 2
∫ T

τ
‖uk(r)‖2

T dr + 2
∫ T

τ
(g(uk(r)), uk(r))T dr

≤ |uτ |2T + 2
∫ T

τ
(f(r), uk(r))T dr. (53)

Now

∫ T

τ
(g(uk(r)), uk(r))T dr

=
∫ T

τ
(g(uk(r))− g(u(r)), uk(r)− u(r))T dr +

∫ T

τ
(g(uk(r)), u(r))T dr

+
∫ T

τ
(g(u(r)), uk(r))T dr −

∫ T

τ
(g(u(r)), u(r))T dr.

Thus, by (6),

∫ T

τ
(g(uk(r)), uk(r))T dr

≥−l
∫ T

τ
|uk(r)− u(r)|2T dr +

∫ T

τ
(g(uk(r)), u(r))T dr

+
∫ T

τ
(g(u(r)), uk(r))T dr −

∫ T

τ
(g(u(r)), u(r))T dr.

This inequality and (53) give

|uk(T )|2T + 2
∫ T

τ
‖uk(r)‖2

T dr

≤ |uτ |2T + 2l
∫ T

τ
|uk(r)− u(r)|2T dr

−2
∫ T

τ
(g(uk(r)), u(r))T dr − 2

∫ T

τ
(g(u(r)), uk(r))T dr

+2
∫ T

τ
(g(u(r)), u(r))T dr + 2

∫ T

τ
(f(r), uk(r))T dr. (54)

By the lower semicontinuity of the norm, (49) and (51), it follows from uk ⇀ u
weakly in L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ) and (54) that

|u(T )|2T ≤ |uτ |2T + 2
∫ T

τ

[
(f(r), u(r))T − ‖u(r)‖2

T − (g(u(r)), u(r))T

]
dr.

By Lemma 10 and the fact that u ∈ C([τ, T ]; HT ) one concludes that u in fact
satisfies the energy equality for all t ∈ [τ, T ].

19



Finally, suppose that uτ ∈ L2(Oτ ) and consider a sequence {uτn} ⊂ Vτ∩Lp(Oτ )
such that uτn → uτ in L2(Oτ ) as n → +∞. For each n let un ∈ C([τ, T ]; HT )
be the unique variational solution of (4) satisfying the energy equality in [τ, T ]
with initial value uτn . Thus, for each n ≥ 1,

|un(t)|2T + 2
∫ t

τ
‖un(r)‖2

T dr + 2
∫ t

τ
(g(un(r)), un(r))T dr

= |uτn|2T + 2
∫ t

τ
(f(r), un(r))T dr, (55)

for all t ∈ [τ, T ]. From this equality and (5), it is then standard to prove that

{un} is bounded in L∞(τ, T ; HT ) ∩ L2(τ, T ; VT ) ∩ Lp(Q̃τ,T ). (56)

On the other hand, reasoning as in the proof of Proposition 11,

|un(t)− um(t)|2T + 2
∫ t

τ
‖un(r)− um(r)‖2

T dr

≤ |uτn − uτm|2T + 2l
∫ t

τ
|un(r)− um(r)|2T dr

for all t ∈ [τ, T ] and any n, m ≥ 1. Using Gronwall’s lemma, one concludes
from this inequality that

{un} is a Cauchy sequence in L2(τ, T ; VT ) ∩ C([τ, T ]; HT ). (57)

From (56) and (57) it follows that un → u in L2(τ, T ; VT ) ∩ C([τ, T ]; HT ) as
n → +∞, with u ∈ Lp(Q̃τ,T ). Then, reasoning as before, there is a convergent
subsequence g(un) ⇀ g(u) weakly in Lp/p−1(Q̃τ,T ) as n → +∞. One can thus
pass to the limit in the equation satisfied by the un and conclude that u is
a variational solution of (4). Finally, as each un satisfies the energy equality
in [τ, T ], applying Lemma 10 it is easy to see that u also satisfies the energy
equality in [τ, T ].

6 A uniform estimate in VT for the solution of (4)

A uniform estimate in VT will be established now for the solutions of (4)
satisfying the energy equality under an additional assumption on f . The proof
requires the following lemma.

Lemma 16 (cf. [18]) Let X ⊂ Y be Banach spaces such that X is reflex-
ive and the injection of X in Y is compact. Suppose that {vn} is a bounded
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sequence in L∞(t0, T ; X) such that vn ⇀ v weakly in Lp(t0, T ; X) for some
p ∈ [1, +∞) and v ∈ C0([t0, T ]; Y ). Then, v(t) ∈ X for all t ∈ [t0, T ] and

‖v(t)‖X ≤ lim inf
n→+∞

‖vn‖L∞(t0,T ;X), ∀ t ∈ [t0, T ]. (58)

Proposition 17 Assume that (1), (2), (5) and (6) hold. In addition, suppose
that T > τ + 1 and that f ∈ L2

loc(RN+1) satisfies

Cf,T := sup
t≤T

∫ t

t−1
|f(r)|2T dr < +∞. (59)

Then, for any uτ ∈ L2(Oτ ) the corresponding solution u of (4) satisfying the
energy equality in (τ, T ) also satisfies

u(t) ∈ VT ∀ τ + 1 ≤ t ≤ T, (60)

and

‖u(t)‖2
T ≤α3|uτ |2τeλ1,T (τ−t+2) + [4β̃ + 2α3β(1 + λ−1

1,T )]|OT |

+
(
1 + 2α3λ

−1
1,T (1− e−λ1,T )−1

)
Cf,T , (61)

for all τ +1 ≤ t ≤ T, where α3 := (1+ α̃2α
−1
1 ), and λ1,T is the first eigenvalue

for the operator −∆ in OT with homogeneous Dirichlet boundary condition.

Proof. Suppose first that uτ ∈ Vτ ∩ Lp(Oτ ) and denote

ykm(t) := ‖ukm(t)‖2
T +k((Pk(t)ukm(t), ukm(t)))T +2

∫
OT

G(ukm(x, t)) dx+2β̃|OT |,

where the ukm are the Galerkin approximations of uk defined by (38). Then,
by (41) and (7),

ykm(t) ≥ 0, and y′km
(t) ≤ |f(t)|2T a.e. t ∈ (τ, T ). (62)

On the other hand, from the energy equality

1

2

d

dt
|ukm(t)|2T + ‖ukm(t)‖2

T

+k((Pk(t)ukm(t), ukm(t)))T + (g(ukm(t)), ukm(t))T

= (f(t), ukm(t))T , a.e. t ∈ (τ, T ),

it follows that
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d

dt
|ukm(t)|2T + ‖ukm(t)‖2

T

+2k((Pk(t)ukm(t), ukm(t)))T + 2α1‖ukm(t)‖p
Lp(OT )

≤ 2β|OT |+ λ−1
1,T |f(t)|2T , a.e. t ∈ (τ, T ), (63)

and, in particular, that

d

dt
|ukm(t)|2T + λ1,T |ukm(t)|2T ≤ 2β|OT |+ λ−1

1,T |f(t)|2T , a.e. t ∈ (τ, T ).

Multiplying this inequality by eλ1,T t and integrating gives

|ukm(t)|2T ≤ |uτm|2T eλ1,T (τ−t) + 2βλ−1
1,T |OT |

+λ−1
1,T e−λ1,T t

∫ t

τ
eλ1,T r|f(r)|2T dr, ∀ t ∈ [τ, T ]. (64)

Then, integrating (63) from t to t + 1 and using (64), gives

∫ t+1

t
‖ukm(s)‖2

T ds + 2k
∫ t+1

t
((Pk(s)ukm(s), ukm(s)))T ds

+2α1

∫ t+1

t
‖ukm(s)‖p

Lp(OT ) ds

≤ |uτm|2T eλ1,T (τ−t) + 2β(1 + λ−1
1,T )|OT |+ λ−1

1,T

∫ t+1

t
|f(r)|2T dr

+λ−1
1,T e−λ1,T t

∫ t

τ
eλ1,T r|f(r)|2T dr, (65)

for all τ ≤ t ≤ T − 1.

Observing that, as can be easily deduced,∫ t

τ
eλ1,T r|f(r)|2T dr ≤ Cf,T eλ1,T t(1− e−λ1,T )−1,

the inequality (65) becomes

∫ t+1

t
‖ukm(s)‖2

T ds + 2k
∫ t+1

t
((Pk(s)ukm(s), ukm(s)))T ds

+2α1

∫ t+1

t
‖ukm(s)‖p

Lp(OT ) ds

≤ |uτm|2T eλ1,T (τ−t) + 2β(1 + λ−1
1,T )|OT |+ 2λ−1

1,T Cf,T (1− e−λ1,T )−1, (66)

for all τ ≤ t ≤ T − 1.
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Thus, by (7) and the definition of ykm ,

ykm(t) ≤ ‖ukm(t)‖2
T + k((Pk(t)ukm(t), ukm(t)))T + 2α̃2‖ukm(t)‖p

Lp(OT ) + 4β̃|OT |

for t ∈ (τ, T ). From this and (66), it follows that

∫ t+1

t
ykm(s) ds≤α3|uτm|2T eλ1,T (τ−t) + [4β̃ + 2α3β(1 + λ−1

1,T )]|OT |

+2α3λ
−1
1,T Cf,T (1− e−λ1,T )−1, (67)

for all τ ≤ t ≤ T − 1. Now, by (62),

ykm(t + 1) ≤ ykm(s) +
∫ t+1

t
|f(r)|2T dr ∀ τ ≤ t ≤ s ≤ t + 1 ≤ T,

so integrating between t and t + 1 one has

ykm(t + 1) ≤
∫ t+1

t
ykm(s) ds + Cf,T ∀ τ ≤ t ≤ T − 1.

It then follows from this inequality and (67) that

‖ukm(t)‖2
T ≤α3|uτm|2T eλ1,T (τ−t+1) + [4β̃ + 2α3β(1 + λ−1

1,T )]|OT |

+
(
1 + 2α3λ

−1
1,T (1− e−λ1,T )−1

)
Cf,T , (68)

for all τ + 1 ≤ t ≤ T.

Now it is known that ukm ⇀ uk in L2(τ, T ; VT ) as m → +∞ and, in particular,
that

ukm ⇀ uk in L2(t, t + 1; VT ) as m → +∞, for all τ ≤ t ≤ T − 1.

Hence, by (68) and Lemma 16, it follows that for any k ≥ 1

uk(t) ∈ VT ∀ τ + 1 ≤ t ≤ T,

and

‖uk(t)‖2
T ≤α3|uτ |2τeλ1,T (τ−t+2) +

[
4β̃ + 2α3β(1 + λ−1

1,T )
]
|OT |

+
(
1 + 2α3λ

−1
1,T (1− e−λ1,T )−1

)
Cf,T ,

for all τ + 1 ≤ t ≤ T.

Finally, since uk ⇀ u in L2(τ, T ; VT ) as k → +∞ and u ∈ C([τ, T ]; HT ), with
u being the solution of (4) with the initial value uτ ∈ Vτ ∩ Lp(Oτ ), one can
use the same argument to show that u satisfies (60) and (61).
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It is easy to see, again with the same arguments as above, that (60) and (61)
also hold for the solution of (4) corresponding to any uτ ∈ L2(Oτ ).

7 Pullback attractors for asymptotically compact non-autonomous
dynamical systems

Some basic ideas and results from the abstract theory of non-autonomous dy-
namical systems that are needed to study the existence of global attractor for
(3) will now be sketched. This will be done in terms of the process formulation
of a non-autonomous dynamical system rather than the cocycle formalism (see
[6,12]) since the former is more appropriate in the present context. The results
in this section are modifications of those in [5].

Consider a process (also called a two-parameter semigroup) U on a family of
metric spaces {(Xt, dt); t ∈ R}, i.e., a family {U(t, τ); −∞ < τ ≤ t < +∞} of
continuous mappings U(t, τ) : Xτ → Xt such that U(τ, τ)x = x for all x ∈ Xτ

and
U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t. (69)

In addition, suppose D is a nonempty class of parameterized sets of the form
D̂ = {D(t); D(t) ⊂ Xt, D(t) 6= ∅, t ∈ R}.

Definition 18 The process U(·, ·) is said to be pullback D-asymptotically com-
pact if the sequence {U(t, τn)xn} is relatively compact in Xt for any t ∈ R, any
D̂ ∈ D, and any sequences {τn} and {xn} with τn → −∞, and xn ∈ D(τn).

Definition 19 A family B̂ ∈ D is said to be pullback D-absorbing for the
process U(·, ·) if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0(t, D̂).

Remark 20 Note that if B̂ ∈ D is pullback D-absorbing for the process U(·, ·),
and B(t) is a compact subset of Xt for any t ∈ R, then the process U(·, ·) is
pullback D-asymptotically compact.

For each t ∈ R let distt(D1, D2) be the Hausdorff semi-distance between
nonempty subsets D1 and D2 of Xt, which is defined as

distt(D1, D2) = sup
x∈D1

inf
y∈D2

dt(x, y) for D1, D2 ⊂ Xt.

Definition 21 The family Â = {A(t); A(t) ⊂ Xt, A(t) 6= ∅, t ∈ R} is said
to be a pullback D-attractor for U(·, ·) if

(1) A(t) is a compact subset of Xt for all t ∈ R,
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(2) Â is pullback D-attracting, i.e.,

lim
τ→−∞

distt(U(t, τ)D(τ), A(t)) = 0 for all D̂ ∈ D and all t ∈ R,

(3) Â is invariant, i.e.,

U(t, τ)A(τ) = A(t) for −∞ < τ ≤ t < +∞.

Remark 22 Observe that Definition 21 does not guarantee the uniqueness of
pullback D-attractors (see [4] for a discussion on this point). In order to ensure
uniqueness one needs to impose additional conditions as, for instance, that
the attractor belongs to the same family D or enjoys some kind of minimality.
These assumptions have not been included in the definition above since they
do not always hold. However, as it will be seen in Theorem 23, it is possible
under very general hypotheses to ensure the existence of a global pullback D-
attractor which is minimal in an appropriate sense. Actually, in Theorem
24 both conditions -minimality and inclusion of the attractor in the attracted
family- hold.

Theorem 23 Suppose that the process U(·, ·) is pullback D-asymptotically
compact and that B̂ ∈ D is a family of pullback D-absorbing sets for U(·, ·).

Then, the family Â = {A(t); t ∈ R} defined by A(t) := Λ(B̂, t), t ∈ R, where
for each D̂ ∈ D and t ∈ R

Λ(D̂, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ)
Xt

 (closure in Xt)

is a pullback D-attractor for U(·, ·), which in addition satisfies

A(t) =
⋃

D̂∈D

Λ(D̂, t)
Xt

, ∀t ∈ R.

Furthermore, Â is minimal in the sense that if Ĉ = {C(t); t ∈ R} is a family
of nonempty sets such that C(t) is a closed subset of Xt and

lim
τ→−∞

distt(U(t, τ)B(τ), C(t)) = 0

for any t ∈ R, then A(t) ⊂ C(t) for all t ∈ R.

Proof. (Sketch) The proof follows from the properties of the pullback omega
limit sets Λ(D̂, t). Indeed, it follows that Λ(D̂, t) is a compact nonempty set
in Xt for all D̂ ∈ D and all t ∈ R. Moreover, the family {Λ(D̂, t), t ∈ R}
pullback attracts D̂, is invariant in the sense of Definition 21, and satisfies

that Λ(B̂, t) =
⋃

D̂∈D Λ(D̂, t), with the closure taken in Xt. The minimality
property follows immediately (see [6] for more details).
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7.1 Application to problem (3)

The aim in this subsection is to establish the existence of a global pullback
attractor for the problem (3).

Suppose that f ∈ L2
loc(RN+1). Then, according to Theorem 15 and Remark

2, for each τ ∈ R and uτ ∈ Hτ there exists a unique variational solution
u(·; τ, uτ ) of (3) satisfying the energy equality a.e. in (τ, T ) for all T > τ.
Moreover, u(·; τ, uτ ) ∈ C([τ, T ]; HT ) and, in fact, satisfies the energy equality
for all t ∈ [τ, T ] and for any T > τ.

Define

U(t, τ)uτ := u(t; τ, uτ ), −∞ < τ ≤ t < +∞, uτ ∈ Hτ , (70)

It is evident that U(τ, τ)uτ = uτ , and by the uniqueness of variational solution
to problem (3) satisfying the energy equality a.e. in (τ, T ) for all T > τ , it is
not difficult to see that the family of mappings {U(t, τ); −∞ < τ ≤ t < +∞}
satisfy (69). In addition, by Proposition 11 and the fact that u(·; τ, uτ ) ∈
C([τ, T ]; HT ) and actually satisfies the energy equality for all t ∈ [τ, T ], for
any T > τ, it follows that for all τ ≤ t the mapping U(t, τ) : Hτ → Ht

is continuous. Hence the family of mappings {U(t, τ); −∞ < τ ≤ t < +∞}
defined by (70) is a process U(·, ·) for the family of Hilbert spaces {Ht; t ∈ R}.

Let Rλ1 be the set of all functions r : R → (0, +∞) such that

lim
t→−∞

etλ1,tr2(t) = 0, (71)

where λ1,t is the first eigenvalue for the operator −∆ in Ot with homogeneous
Dirichlet boundary condition (see Proposition 17) and denote by Dλ1 the class
of all families D̂ = {D(t); D(t) ⊂ Ht, D(t) 6= ∅, t ∈ R} such that D(t) ⊂
B(0, r

D̂
(t)) for some r

D̂
∈ Rλ1 , where B(0, r

D̂
(t)) is the closed ball in Ht

centered at zero with radius r
D̂
(t).

Theorem 24 Suppose that the assumptions in Theorem 15 hold and that f ∈
L2

loc(RN+1) and satisfies (59). Then, there exists a unique global pullback Dλ1-
attractor belonging to Dλ1 for the process U defined by (70).

Proof. For each t ∈ R define Rλ1(t) as the positive constant given by

(Rλ1(t))
2 = 1 + [4β̃ + 2α3β(1 + λ−1

1,t )]|Ot|+
(
1 + 2α3λ

−1
1,t (1− e−λ1,t)−1

)
Cf,t,

and consider the family of closed balls B̂λ1 = {Bλ1(t); t ∈ R} defined by

Bλ1(t) = {v ∈ Vt; ‖v‖t ≤ Rλ1(t)}, t ∈ R.
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Taking into account (1) and the variational characterization of λ1,t, one sees
that λ1,t is a non-increasing function of t. It is then not difficult to check that
B̂λ1 ∈ Dλ1 and that by (61) B̂λ1 is pullback Dλ1-absorbing for the process
U(·, ·). Moreover, by the compactness of the injection of Vt into Ht, it is clear
that Bλ1(t) is a compact subset of Ht for any t ∈ R. The asserted result then
follows from Theorem 23 and the fact that the universe Dλ1 is inclusion closed.

Remark 25 Denote O∞ = ∪t∈ROt and let B∞ be the class of bounded subsets
of L2(O∞). For each B ∈ B∞ consider the family D̂B = {DB(t); t ∈ R},
where

DB(t) := {v|Ot
; v ∈ B} ∀ t ∈ R.

It is easy to see that D̂B ∈ Dλ1 and hence that the global pullback Dλ1-attractor
Âλ1 ∈ Dλ1 satisfies, in particular,

lim
τ→−∞

sup
uτ∈B

inf
v∈Aλ1

(t)
|u(t; τ, uτ )− v|L2(Ot) = 0, for any B ∈ B∞.

On the other hand, if O∞ is bounded and supT∈R Cf,T < +∞, then Rλ1(t)
defined in the proof of Theorem 24 remains uniformly bounded and one can
verify that the uniform forward attractor in the sense of Chepyzhov and Vishik
(see [10]) exists, i.e., a compact subset A∞ of L2(O∞) such that, amongst other
properties,

lim
t→+∞

sup
τ∈R

distL2(O∞)(U(t + τ, τ)B, A∞) = 0 for all B ∈ B∞,

or equivalently (uniform pullback attraction)

lim
s→+∞

sup
t∈R

distL2(O∞)(U(t, t− s)B, A∞) = 0 for all B ∈ B∞.

Moreover, in this case,

Aλ1(t) ⊂ A∞ ∀ t ∈ R.

Conclusion

We have proved the existence and uniqueness of solution satisfying an energy
equality to a semilinear heat equation in a non-cylindrical domain. The result
is obtained under the assumption (1) of spatial domains which are expanding
in time.

This problem is intrinsically non-autonomous, and the previous result has been
used to study the asymptotic behaviour of the solutions, namely to establish
a result on existence of pullback attractor.
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It would be interesting to reproduce similar results for other nonlinear PDEs
on non-cylindrical domains and/or without the cited restriction (1) on the
spatial domains, and more exactly to obtain solutions still satisfying an energy
equality. To our knowledge these are open problems.
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