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Abstract

In this paper we obtain some results on the existence of solution, and of pullback attractors,
for a 2D Navier-Stokes model with finite delay studied in [4] and [6]. Actually, we prove
a result of existence and uniqueness of solution under less restrictive assumptions than in
[4]. More precisely, we remove a condition on square integrable control of the memory
terms, which allows us to consider a bigger class of delay terms (for instance, just under
a measurability condition on the delay function leading the delayed time). After that, we
deal with dynamical systems in suitable phase spaces within two metrics, the L2 norm and
the H1 norm. Moreover, we prove that under these assumptions, pullback attractors not
only of fixed bounded sets but also of a set of tempered universes do exist. Finally, from
comparison results of attractors we establish relations among them, and under suitable
additional assumptions we conclude that these families of attractors are in fact the same
object.
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1 Introduction

Let Ω ⊂ R2 be an open bounded set with smooth enough boundary ∂Ω, and consider an arbitrary
initial time τ ∈ R, and the following functional Navier-Stokes problem:

∂u
∂t
− ν∆u + (u · ∇)u + ∇p = f (t) + g(t, ut) in Ω × (τ,∞),

div u = 0 in Ω × (τ,∞),

u = 0 on ∂Ω × (τ,∞),

u(x, τ + s) = φ(x, s), x ∈ Ω, s ∈ [−h, 0],

(1.1)

where we assume that ν > 0 is the kinematic viscosity, u = (u1, u2) is the velocity field of the fluid,
p is the pressure, f is a non-delayed external force field, g is another external force containing some
hereditary characteristics, and φ(x, s − τ) is the initial datum in the interval of time [τ − h, τ], where
h > 0 is the time of memory effect. For each t ≥ τ, we denote by ut the function defined on [−h, 0]
by the relation ut(s) = u(t + s), s ∈ [−h, 0].

The study of Navier-Stokes models including delay terms –existence, uniqueness, stationary
solutions, exponential decay, and other asymptotic properties such as the existence of attractors–
was initiated in the references [4, 5, 6], and after that, many different questions and models have
been addressed (e.g., cf. [17, 21, 19, 14, 20, 11, 15, 16] among others).

However, to our knowledge, in all finite delay frameworks the assumptions for the delay terms
used to involve estimates in L2 spaces, which in turn means some restrictive conditions on the
operators and on the function driving the delay time. As long as the solution for the problem (without
delay) in dimension two is continuous in time, it seems natural to develop a theory just considering
a phase space only requiring continuity in time. In this sense, we are able to remove an assumption
on the L2 estimates for the delay terms (e.g. cf. conditions (IV) and (V) in [4, 5, 6, 10]).

The goal of this paper is to generalize the conditions on the delay terms in the model by allowing
just continuous (in time) spaces, which will require less restrictive conditions on the involved delay
operators. Actually, we will provide a simple example where the delay function leading the delayed
time is just measurable, instead of the usual assumption of being ρ ∈ C1, with derivative ρ′(t) ≤ ρ∗ <
1. Observe that even we do not require any continuity on ρ. (cf. Example 2.1 and Remark 2.1 below,
for more details).

The contents of the paper are structured as follows. In Section 2 we obtain a result on the
existence, uniqueness, and regularity of the solution to (1.1). Our method to prove existence of
solution in this new framework requires more technicalities than in previous papers, namely, an
energy method for continuous functions.

In Section 3 we recall, for the sake of completeness, the necessary abstract theory in order to
construct pullback attractors for a dynamical system associated to the problem via the solution op-
erator. Actually, we provide results on the existence of minimal pullback attractors for two possible
choices of the attracted universes, namely, the standard one of fixed bounded sets, and secondly, one
given by a tempered condition. We conclude this section with several results comparing two families
of attractors associated to the same process but with different phase spaces and/or universes.

Section 4 is devoted to prove the existence of pullback attractors in the L2 norm (in the above
senses) for weak solutions of the problem (1.1), via asymptotic compactness, and using an energy
method which relies strongly on the energy equality associated to the problem.

The main results of the paper are given in Section 5. There, we strengthen the regularity of
solutions and a second energy equality for them, in order to obtain additional attraction, namely,
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in the H1 norm instead of L2 as in Section 4. Different families of universes (tempered and non-
tempered) are introduced. Now, a second (and more involved) energy method is employed to prove
asymptotic compactness in the new metric. We finish analyzing the relationship among all these
families. Actually, we are able to prove that under suitable assumptions, in fact all these objects
coincide.

2 Existence and uniqueness of solution
In this section we prove existence, uniqueness, and regularity of solution to problem (1.1).

To start with, we consider the usual spaces in the variational theory of Navier-Stokes equations:
H, the closure ofV = {u ∈ (C∞0 (Ω))2 : div u = 0} in (L2(Ω))2 with norm |·|, and inner product (·, ·),
and V , the closure ofV in (H1

0(Ω))2 with norm ‖·‖, and inner product ((·, ·)).
We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality product between V ′ and V . We

consider every element h ∈ H as an element of V ′, given by the equality 〈h, v〉 = (h, v) for all v ∈ V.
It follows that V ⊂ H ⊂ V ′, where the injections are dense and continuous, and, in fact, compact.

Define the operator A : V → V ′ as 〈Au, v〉 = ((u, v)) for all u, v ∈ V. Let us denote D(A) =

{u ∈ V : Au ∈ H}. By the regularity of ∂Ω, one has that D(A) = (H2(Ω))2 ∩ V, and Au = −P∆u
for all u ∈ D(A) is the Stokes operator (P is the ortho-projector from (L2(Ω))2 onto H). On D(A)
we consider the norm | · |D(A) defined by |u|D(A) = |Au|. Observe that on D(A) the norms ‖ · ‖(H2(Ω))2

and | · |D(A) are equivalent (see [7] or [24]), and D(A) is compactly and densely injected in V . Let us
define

b(u, v,w) =

2∑
i, j=1

∫
Ω

ui
∂v j

∂xi
w j dx,

for every functions u, v,w : Ω → R2 for which the right-hand side is well defined. In particular, b
makes sense for all u, v, w ∈ V, and is a continuous trilinear form on V × V × V.

Some useful properties concerning b that we will use in the next sections are the following (see
[22] or [23]): b(u, v,w) = −b(u,w, v) for all u, v, w ∈ V, which also implies that b(u, v, v) = 0 for all
u, v ∈ V. Moreover,

|b(u, v,w)| ≤ 2−1/2|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀ u, v,w ∈ V, (2.1)

and there exists a constant C1 > 0, only dependent on Ω, such that

|b(u, v,w)| ≤ C1|u|1/2|Au|1/2‖v‖|w| ∀ u ∈ D(A), v ∈ V, w ∈ H, and (2.2)
|b(u, v,w)| ≤ C1|Au|‖v‖|w| ∀ u ∈ D(A), v ∈ V, w ∈ H. (2.3)

In fact, (2.1) is a slight improvement of Lemma 3.3 in [24, p.291] (see [10]).
Now, we establish some appropriate assumptions on the term in (1.1) containing the delay.
Let us denote CH = C([−h, 0]; H), the space of continuous functions from [−h, 0] into H, with

the norm |ϕ|CH
= maxs∈[−h,0] |ϕ(s)|.

Let us establish some conditions on the delay operator in (1.1). Suppose that g is well defined as
g : R ×CH → (L2(Ω))2, and it satisfies the following assumptions:

(I) for all ξ ∈ CH , the function R 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable,

(II) g(t, 0) = 0, for all t ∈ R,

(III) there exists Lg > 0 such that for all t ∈ R, and for all ξ, η ∈ CH , |g(t, ξ) − g(t, η)| ≤ Lg|ξ − η|CH .
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Observe that (I) − (III) imply that given T > τ and u ∈ C([τ − h,T ]; H), the function gu :
[τ,T ] → (L2(Ω))2 defined by gu(t) = g(t, ut) for all t ∈ [τ,T ], is measurable and, in fact, belongs to
L∞(τ,T ; (L2(Ω))2).

It is worth pointing out that any condition involving L2 norms of the memory term in g is assumed
(e.g. cf. conditions (IV) and (V) in [4, 5, 6, 10]).

Example 2.1 Consider a globally Lipschitz function G : H → (L2(Ω))2, with Lipschitz constant
LG > 0, and such that G(0) = 0, and a measurable function ρ : R→ [0, h]. Then, it is not difficult to
check that the operator g : R ×CH → (L2(Ω))2, defined by

R ×CH 3 (t, ξ) 7→ g(t, ξ) := G(ξ(−ρ(t)))

satisfies the assumptions (I)–(III) given above.

Remark 2.1 (a) Observe that the only assumption on ρ is that it is measurable, in contrast with the
usual conditions appearing in the previous literature, i.e., C1, with derivative ρ′(t) ≤ ρ∗ < 1 (e.g., cf.
[10]).

(b) The example above can be generalized in several senses. The most immediate generalization
is to take into account more than one delay term in the problem. Namely, consider m measurable
functions ρi : R → [0, h] for i = 1 to m, a measurable mapping G : R × Hm → (L2(Ω))2 such
that G(t, ·) is globally Lipschitz in Hm uniformly with respect to time, and with G(t, 0) = 0 for all
t ∈ R. Then, consider g : R ×CH → (L2(Ω))2 given by g(t, ξ) := G(t, ξ(−ρ1(t)), . . . , ξ(−ρm(t))). This
operator g also satisfies conditions (I)–(III).

Assume that φ ∈ CH , and f ∈ L2
loc(R; V ′).

Definition 2.1 A weak solution of (1.1) is a function u ∈ C([τ − h,∞); H) such that u ∈ L2(τ,T ; V)
for all T > τ, with u(t) = φ(t − τ) for all t ∈ [τ − h, τ], and such that for all v ∈ V,

d
dt

(u(t), v) + ν〈Au(t), v〉 + b(u(t), u(t), v) = 〈 f (t), v〉 + (g(t, ut), v), (2.4)

where the equation must be understood in the sense ofD′(τ,∞).

Remark 2.2 If u is a weak solution of (1.1), then from (2.4) we deduce that for any T > τ, one has
u′ ∈ L2(τ,T ; V ′), and the following energy equality holds:

|u(t)|2 + 2ν
∫ t

s
‖u(r)‖2 dr = |u(s)|2 + 2

∫ t

s

[
〈 f (r), u(r)〉 + (g(r, ur), u(r))

]
dr ∀ τ ≤ s ≤ t.

A notion of more regular solution is also suitable for problem (1.1).

Definition 2.2 A strong solution of (1.1) is a weak solution u of (1.1) such that u ∈ L2(τ,T ; D(A))∩
L∞(τ,T ; V) for all T > τ.

Remark 2.3 If f ∈ L2
loc(R; (L2(Ω))2) and u is a strong solution of (1.1), then u′ ∈ L2(τ,T ; H) for all

T > τ, and so u ∈ C([τ,∞); V). In this case the following energy equality holds:

‖u(t)‖2 + 2ν
∫ t

s
|Au(r)|2 dr + 2

∫ t

s
b(u(r), u(r), Au(r)) dr

= ‖u(s)‖2 + 2
∫ t

s
( f (r) + g(r, ur), Au(r)) dr ∀ τ ≤ s ≤ t. (2.5)



Pullback attractors for 2D Navier-Stokes equations 5

Let us denote λ1 = infv∈V\{0} ‖v‖2/|v|2 > 0 the first eigenvalue of the Stokes operator A.
Concerning the existence and uniqueness of weak solution for (1.1), we have the following

result, which improves, in the case of initial data φ ∈ CH and dimension two, Theorem 2.1 in [4]
(see also [10, Th.2.3]). In fact, in the theorem below, we neither assume hypotheses (IV) nor (V) of
[4].

Theorem 2.1 Let f ∈ L2
loc(R; V ′), and g : R × CH → (L2(Ω))2 satisfying (I)–(III), be given. Then,

for each τ ∈ R and φ ∈ CH , there exists a unique weak solution u = u(·; τ, φ) of (1.1). Moreover, if
f ∈ L2

loc(R; (L2(Ω))2), then

(a) u ∈ C([τ + ε,T ]; V) ∩ L2(τ + ε,T ; D(A)) for all T > τ + ε > τ.

(b) If φ(0) ∈ V, in fact u is a strong solution of (1.1).

Proof. The uniqueness of solution can be obtained in the following way. Consider two weak solu-
tions of (1.1), u and v, with the same initial data, and denote w = u − v. We note that by (2.1),

|b(u(s), u(s),w(s)) − b(v(s), v(s),w(s))| = |b(w(s), u(s),w(s))|
≤ 2−1/2|w(s)|‖w(s)‖‖u(s)‖.

Then, from the equation satisfied by w and the energy equality, we obtain for all t ≥ τ that

|w(t)|2 + 2ν
∫ t

τ

‖w(s)‖2 ds

= −2
∫ t

τ

b(w(s), u(s),w(s)) ds + 2
∫ t

τ

(g(s, us) − g(s, vs),w(s)) ds

≤ 21/2
∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds + 2Lg

∫ t

τ

|ws|CH |w(s)| ds. (2.6)

Observe that w(θ) = 0 if τ − h ≤ θ ≤ τ, and therefore, |ws|CH = maxr∈[τ,s] |w(r)| for τ ≤ s.
So, from (2.6), using Young inequality, we deduce

|w(t)|2 + 2ν
∫ t

τ

‖w(s)‖2ds

≤ 21/2
∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds + 2Lg

∫ t

τ

max
r∈[τ,s]

|w(r)||w(s)| ds

≤ ν

∫ t

τ

‖w(s)‖2 ds +
1
2ν

∫ t

τ

‖u(s)‖2|w(s)|2 ds + 2Lg

∫ t

τ

max
r∈[τ,s]

|w(r)|2 ds,

for all t ≥ τ, and therefore,

max
r∈[τ,t]

|w(r)|2 ≤
( 1
2ν

+ 2Lg

) ∫ t

τ

(
1 + ‖u(s)‖2

)
max
r∈[τ,s]

|w(r)|2 ds,

for all t ≥ τ. Thus, using Gronwall lemma, we finish the proof of uniqueness.
For the existence, we split the proof in two steps.

Step 1: Galerkin scheme. A priori estimates. Let us consider {w j} ⊂ V, the Hilbert basis of H
of all the normalized eigenfunctions of the Stokes operator A. Denote Vm = span[w1, . . . ,wm] and
consider the projector Pm of H onto Vm given by Pmv =

∑m
j=1(v,w j)w j, for all v ∈ H. Observe that

by the choice of the basis {w j}, the restriction Pm |V of Pm to V belongs to L(V), and ‖Pm |V ‖L(V) ≤ 1
for all m ≥ 1.



6 J. Garcı́a-Luengo, P. Marı́n-Rubio, J. Real

Define also

um(t) =

m∑
j=1

αm, j(t)w j,

where the upper script m will be used instead of (m) for short, since no confusion is possible with
powers of u, and where the coefficients αm, j are required to satisfy the system

d
dt

(um(t),w j) + ν((um(t),w j)) + b(um(t), um(t),w j)

= 〈 f (t),w j〉 + (g(t, um
t ),w j), a.e. t > τ, 1 ≤ j ≤ m, (2.7)

and the initial condition
um(τ + s) = Pmφ(s) ∀ s ∈ [−h, 0]. (2.8)

The above system of ordinary functional differential equations with finite delay fulfills the con-
ditions for existence and uniqueness of local solution (see for example [12]).

Next, we will deduce a priori estimates that in particular assure that the solutions um do exist for
all time t ∈ [τ − h,∞).

Multiplying in (2.7) by αm, j(t), and summing from j = 1 to j = m, we obtain

d
dt
|um(t)|2 + 2ν‖um(t)‖2 = 2〈 f (t), um(t)〉 + 2(g(t, um

t ), um(t))

≤ ν‖um(t)‖2 + ν−1‖ f (t)‖2∗ + 2Lg|um
t |

2
CH
, a.e. t > τ.

Hence,

|um(t)|2 + ν

∫ t

τ

‖um(s)‖2 ds ≤ |φ(0)|2 +

∫ t

τ

(
ν−1‖ f (s)‖2∗ + 2Lg|um

s |
2
CH

)
ds ∀ t ≥ τ. (2.9)

From this inequality, in particular one deduces that

|um
t |

2
CH
≤ |φ|2CH

+

∫ t

τ

(
ν−1‖ f (s)‖2∗ + 2Lg|um

s |
2
CH

)
ds ∀ t ≥ τ,

and therefore, by Gronwall lemma we have

|um
t |

2
CH
≤ e2Lg(t−τ)

(
|φ|2CH

+ ν−1
∫ t

τ

‖ f (s)‖2∗ ds
)
,

for all t ≥ τ, and any m ≥ 1.
Then, by (2.9), we deduce that for each T > τ and R > 0, there exists a positive constant

C(τ,T,R), depending on the constants of the problem ν, Lg and f , and on τ, T and R, such that for
all m ≥ 1

|um
t |

2
CH

+ ‖um‖2L2(τ,T ;V) ≤ C(τ,T,R) ∀ t ∈ [τ,T ], |φ|CH ≤ R. (2.10)

In particular, this implies that

{um} is bounded in L∞(τ − h,T ; H) ∩ L2(τ,T ; V) ∀T > τ. (2.11)

From (2.1), (2.7), and because of the choice of the basis, we obtain

‖(um)′(t)‖∗ ≤ ν‖u
m(t)‖ + 2−1/2|um(t)|‖um(t)‖ + ‖ f (t)‖∗ + λ−1/2

1 |g(t, um
t )|, a.e. t > τ,
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which combined with (II), (III), (2.10) and (2.11), implies that

{(um)′} is bounded in L2(τ,T ; V ′) ∀T > τ. (2.12)

Step 2: Energy method and compactness results. Now, we combine some well-known compact-
ness results with an energy method to pass to the limit in a subsequence of {um} to obtain a solution
of (1.1). First we observe that

um
|[τ−h,τ] = Pmφ→ φ in CH . (2.13)

From the assumptions on the operator g and Step 1 we deduce, using the Compactness Theorem
5.1 [13, p.58] and Lemma 1.2 [24, p.260], that there exist a subsequence (which we relabel the same)
{um}, a function u ∈ C([τ − h,∞); H), with u|[τ−h,τ] = φ, u ∈ L2(τ,T ; V) and u′ ∈ L2(τ,T ; V ′) for all
T > τ, and an element ξ ∈ L∞(τ,T ; (L2(Ω))2) for all T > τ, such that

um ∗
⇀ u weakly-star in L∞(τ,T ; H),

um ⇀ u weakly in L2(τ,T ; V),
(um)′ ⇀ u′ weakly in L2(τ,T ; V ′),
um → u strongly in L2(τ,T ; H),
g(·, um

· )
∗
⇀ ξ weakly-star in L∞(τ,T ; (L2(Ω))2),

(2.14)

for all T > τ. Using (2.14) we can also assume that

um(t)→ u(t) in H a.e. t ∈ (τ,∞), (2.15)

which nevertheless is not enough to deduce that ξ(·) = g(·, u·). However, we can obtain convergence
for all t ≥ τ with a little more effort and in a more general sense. Observe that

um(t) − um(s) =

∫ t

s
(um)′(r) dr in V ′ ∀ s, t ∈ [τ,∞),

and by (2.12) we have that {um} is equi-continuous on [τ,T ] with values in V ′, for all T > τ.
Since the injection of V into H is compact, the injection of H into V ′ is compact too. So, from

(2.11) and the equi-continuity in V ′, by the Ascoli-Arzelà theorem and (2.14), we have that (again,
up to a subsequence)

um → u in C([τ,T ]; V ′) ∀T > τ. (2.16)

This, jointly with (2.11), allows us to claim that for any sequence {tm} ⊂ [τ,∞), with tm → t, one has

um(tm) ⇀ u(t) weakly in H, (2.17)

where we have used (2.16) in order to identify which is the weak limit.
Our goal now is to prove that in fact

um → u in C([τ,T ]; H) ∀T > τ. (2.18)

If it were not so, then, taking into account that u ∈ C([τ,∞); H), there would exist T > τ, ε0 > 0, a
value t0 ∈ [τ,T ], and subsequences (relabelled the same) {um} and {tm} ⊂ [τ,T ], with limm→∞ tm = t0,
such that

|um(tm) − u(t0)| ≥ ε0 ∀m ≥ 1.

To prove that this is absurd, we will use an energy method.
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Observe that the following energy inequality holds for all um:

1
2
|um(t)|2 +

ν

2

∫ t

s
‖um(r)‖2 dr

≤
1
2
|um(s)|2 +

∫ t

s
〈 f (r), um(r)〉 dr + C(t − s) ∀ τ ≤ s ≤ t ≤ T, (2.19)

where C = D
2νλ1

and D corresponds to the upper bound∫ t

s
|g(r, um

r )|2 dr ≤ D(t − s) ∀ τ ≤ s ≤ t ≤ T,

by (II), (III) and (2.10). On the other hand, observe that by (2.14), passing to the limit in (2.7), we
have that u ∈ C([τ,T ]; H) is a solution of a similar problem to (1.1), namely,

d
dt

(u(t), v) + ν((u(t), v)) + b(u(t), u(t), v) = 〈 f (t), v〉 + (ξ(t), v) ∀ v ∈ V,

fulfilled with the initial datum u(τ) = φ(0). Therefore, it satisfies the energy equality

|u(t)|2 + 2ν
∫ t

s
‖u(r)‖2 dr = |u(s)|2 + 2

∫ t

s

(
〈 f (r), u(r)〉 + (ξ(r), u(r))

)
dr ∀ τ ≤ s ≤ t ≤ T.

On other hand, from the last convergence in (2.14) we deduce that∫ t

s
|ξ(r)|2 dr ≤ lim inf

m→∞

∫ t

s
|g(r, um

r )|2 dr

≤ D(t − s) ∀ τ ≤ s ≤ t ≤ T.

So, u also satisfies inequality (2.19) with the same constant C.
Now, consider the functions Jm, J : [τ,T ]→ R defined by

Jm(t) =
1
2
|um(t)|2 −

∫ t

τ

〈 f (r), um(r)〉 dr −Ct,

J(t) =
1
2
|u(t)|2 −

∫ t

τ

〈 f (r), u(r)〉 dr −Ct,

with C the constant given in (2.19). From (2.19) and the analogous inequality for u, it is clear that
Jm and J are non-increasing (and continuous) functions. Moreover, by (2.14) and (2.15),

Jm(t)→ J(t) a.e. t ∈ [τ,T ]. (2.20)

Now we are ready to prove that

um(tm)→ u(t0) in H. (2.21)

Firstly, recall from (2.17) that

um(tm) ⇀ u(t0) weakly in H. (2.22)

So, we have that |u(t0)| ≤ lim infm→∞ |um(tm)|. Therefore, if we show that

lim sup
m→∞

|um(tm)| ≤ |u(t0)|, (2.23)
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we obtain that limm→∞ |um(tm)| = |u(t0)|, which jointly with (2.22) implies (2.21).
Now, observe that the case t0 = τ follows directly from (2.13) and (2.19) with s = τ. So, we may

assume that t0 > τ. This is important, since we will approach this value t0 from the left by a sequence
{t̃k}, i.e., limk→∞ t̃k ↗ t0, being {t̃k} values where (2.20) holds. Since J(·) is continuous at t0, for any
ε > 0 there is kε such that |J(t̃k) − J(t0)| < ε/2 for all k ≥ kε. On other hand, taking m ≥ m(kε) such
that tm > t̃kε , as Jm is non-increasing and for all t̃k the convergence (2.20) holds, one has that

Jm(tm) − J(t0) ≤ |Jm(t̃kε ) − J(t̃kε )| + |J(t̃kε ) − J(t0)|,

and obviously, taking m ≥ m′(kε), it is possible to obtain |Jm(t̃kε ) − J(t̃kε )| < ε/2. It can also be
deduced from (2.14) that ∫ tm

τ

〈 f (r), um(r)〉 dr →
∫ t0

τ

〈 f (r), u(r)〉 dr,

so we conclude that (2.23) holds. Thus, (2.21) and finally (2.18) are also true, as we wanted to
check.

This also implies, thanks to (2.13), that um
t → ut in CH for all t ≥ τ. Therefore, we identify the

weak limit ξ from (2.14), and indeed, from the above convergence and since g satisfies (III), we
have that g(·, um

· ) → g(·, u·) in L2(τ,T ; (L2(Ω))2) for all T > τ. Thus, we can pass to the limit finally
in (2.7) concluding that u solves (1.1).

Finally, the regularity in (a) and (b) is a consequence of well-known regularity results and the
fact that, if f ∈ L2

loc(R; (L2(Ω))2), then the function f̂ defined by f̂ (t) = f (t) + g(t, ut), t > τ, belongs
to L2

loc(τ,∞; (L2(Ω))2).

Remark 2.4 Observe that by the uniqueness of the weak solution of (1.1), the convergences in
(2.14) hold for the entire sequence {um} of the Galerkin approximations defined by (2.7) and (2.8).

We also have the following result on continuity of solutions with respect to the initial datum φ.

Proposition 2.1 Let f ∈ L2
loc(R; V ′), g : R × CH → (L2(Ω))2 satisfying (I)–(III), τ ∈ R, and φ,

ψ ∈ CH , be given. Let us denote u = u(·; τ, φ) and v = v(·; τ, ψ) the corresponding weak solutions of
(1.1). Then, the following estimate holds:

|ut − vt |
2
CH
≤ |φ − ψ|2CH

exp
{ ∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
ds

}
∀ t ≥ τ.

Proof. Let us denote w = u − v. Analogously to the obtention of (2.6) in the proof of uniqueness of
weak solution of (1.1), we obtain that

|w(t)|2 + 2ν
∫ t

τ

‖w(s)‖2 ds

≤ |φ(0) − ψ(0)|2 + 21/2
∫ t

τ

|w(s)|‖w(s)‖‖u(s)‖ ds + 2Lg

∫ t

τ

|ws|CH
|w(s)| ds ∀ t ≥ τ.

So, we deduce that

|w(t)|2 + 2ν
∫ t

τ

‖w(s)‖2 ds

≤ |φ(0) − ψ(0)|2 + 21/2
∫ t

τ

|ws|CH ‖w(s)‖‖u(s)‖ ds + 2Lg

∫ t

τ

|ws|
2
CH

ds

≤ |φ(0) − ψ(0)|2 + ν

∫ t

τ

‖w(s)‖2 ds +

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|

2
CH

ds ∀ t ≥ τ,
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and in particular, we have that

|w(t)|2 ≤ |φ(0) − ψ(0)|2 +

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|

2
CH

ds ∀ t ≥ τ. (2.24)

Taking into account that |w(τ + s)|2 ≤ |φ − ψ|2CH
for all s ∈ [−h, 0], from (2.24), we deduce that

|wt |
2
CH
≤ |φ − ψ|2CH

+

∫ t

τ

(
(2ν)−1‖u(s)‖2 + 2Lg

)
|ws|

2
CH

ds ∀ t ≥ τ.

From this inequality and Gronwall lemma, we can conclude the result.

3 Abstract results on minimal pullback attractors
In this section we recall briefly some results from [9] about the existence of minimal pullback attrac-
tors (see also [2, 3, 18]). In particular, we consider the process U being closed (see Definition 3.1
below). Consider given a metric space (X, dX), and let us denote R2

d = {(t, τ) ∈ R2 : τ ≤ t}. A process
U on X is a mapping R2

d × X 3 (t, τ, x) 7→ U(t, τ)x ∈ X such that U(τ, τ)x = x for any (τ, x) ∈ R × X,
and U(t, r)(U(r, τ)x) = U(t, τ)x for any τ ≤ r ≤ t and all x ∈ X.

Definition 3.1 A process U on X is said to be closed if for any τ ≤ t, and any sequence {xn} ⊂ X
with xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Let us denote by P(X) the family of all nonempty subsets of X, and consider a family of
nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 3.2 We say that a process U on X is pullback D̂0-asymptotically compact if for any t ∈ R
and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, the
sequence {U(t, τn)xn} is relatively compact in X.

Denote

Λ(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ)
X
∀ t ∈ R,

where {· · · }
X

is the closure in X. We denote by distX(O1,O2) the Hausdorff semi-distance in X
between two sets O1 and O2, defined as

distX(O1,O2) = sup
x∈O1

inf
y∈O2

dX(x, y) for O1,O2 ⊂ X.

Let D be a given nonempty class of families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X).
The classD will be called a universe in P(X).

Definition 3.3 A process U on X is said to be pullback D-asymptotically compact if it is pullback
D̂-asymptotically compact for any D̂ ∈ D. It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback
D-absorbing for the process U on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t) ∀ τ ≤ τ0(t, D̂).

Remark 3.1 Observe that if D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback D-absorbing for the process
U on X, and U is pullback D̂0-asymptotically compact, then U is alsoD-asymptotically compact.
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With the above definitions, we may establish the main result of this section (cf. [9, Th.3.11]).

Theorem 3.1 Consider a closed process U : R2
d × X → X, a universe D in P(X), and a family

D̂0 = {D0(t) : t ∈ R} ⊂ P(X) which is pullback D-absorbing for U, and assume also that U is
pullback D̂0-asymptotically compact. Then, the family AD = {AD(t) : t ∈ R} defined by AD(t) =⋃

D̂∈D ΛX(D̂, t)
X

, has the following properties:

(a) for any t ∈ R, the setAD(t) is a nonempty compact subset of X, andAD(t) ⊂ ΛX(D̂0, t),

(b) AD is pullback D-attracting, i.e., lim
τ→−∞

distX(U(t, τ)D(τ),AD(t)) = 0 for all D̂ ∈ D, and any
t ∈ R,

(c) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for all τ ≤ t,

(d) if D̂0 ∈ D, thenAD(t) = ΛX(D̂0, t) ⊂ D0(t)
X

for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of closed sets
such that for any D̂ = {D(t) : t ∈ R} ∈ D, limτ→−∞ distX(U(t, τ)D(τ),C(t)) = 0, thenAD(t) ⊂ C(t).

Remark 3.2 Under the assumptions of Theorem 3.1, the familyAD is called the minimal pullback
D-attractor for the process U. If AD ∈ D, then it is the unique family of closed subsets in D that
satisfies (b)–(c).

A sufficient condition forAD ∈ D is to have that D̂0 ∈ D, the set D0(t) is closed for all t ∈ R, and
the family D is inclusion-closed (i.e., if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X) with D′(t) ⊂ D(t)
for all t, then D̂′ ∈ D).

We will denote byDF(X) the universe of fixed nonempty bounded subsets of X, i.e., the class of
all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of X.

Now, it is easy to conclude the following result.

Corollary 3.1 [cf. [9, Cor.3.13]] Under the assumptions of Theorem 3.1, if the universeD contains
the universe DF(X), then both attractors, ADF (X) and AD, exist, and ADF (X)(t) ⊂ AD(t) for all
t ∈ R.

Remark 3.3 It can be proved (see [18]) that, under the assumptions of the preceding corollary, if
for some T ∈ R, the set ∪t≤T D0(t) is a bounded subset of X, thenADF (X)(t) = AD(t) for all t ≤ T.

Now, and since it will be useful below, we establish an abstract result (cf. [9, Th.3.15]) that
allows us to compare two attractors for a process under appropriate assumptions.

Theorem 3.2 Let {(Xi, dXi )}i=1,2 be two metric spaces such that X1 ⊂ X2 with continuous injection,
and for i = 1, 2, let Di be a universe in P(Xi), with D1 ⊂ D2. Assume that we have a map U that
acts as a process in both cases, i.e., U : R2

d × Xi → Xi for i = 1, 2 is a process.
For each t ∈ R, let us denote

Ai(t) =
⋃

D̂i∈Di

Λi(D̂i, t)
Xi

, i = 1, 2,

where the subscript i in the symbol of the omega-limit set Λi is used to denote the dependence of the
respective topology. Then, A1(t) ⊂ A2(t) for all t ∈ R. Suppose moreover that the two following
conditions are satisfied:
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(i) A1(t) is a compact subset of X1 for all t ∈ R,

(ii) for any D̂2 ∈ D2 and any t ∈ R, there exist a family D̂1 ∈ D1 and a t∗
D̂1
≤ t (both possibly

depending on t and D̂2), such that U is pullback D̂1-asymptotically compact, and for any
s ≤ t∗

D̂1
there exists a τs ≤ s such that U(s, τ)D2(τ) ⊂ D1(s) for all τ ≤ τs.

Then, under all the conditions above,A1(t) = A2(t) for all t ∈ R.

Remark 3.4 In the preceding theorem, if instead of assumption (ii) we consider the following con-
dition:

(ii’) for any D̂2 ∈ D2 and any sequence τn → −∞, there exist another family D̂1 ∈ D1 and another
sequence τ′n → −∞ with τ′n ≥ τn for all n, such that U is pullback D̂1-asymptotically compact,
and U(τ′n, τn)D2(τn) ⊂ D1(τ′n) for all n,

then, with a similar proof, one can obtain that the equalityA2(t) = A1(t) for all t ∈ R also holds.
Observe that a sufficient condition for (ii’) is that there exists T > 0 such that for any D̂2 ∈

D2, there exists a D̂1 ∈ D1 satisfying that U is pullback D̂1-asymptotically compact, and U(τ +

T, τ)D2(τ) ⊂ D1(τ + T ) for all τ ∈ R.

4 Existence of pullback attractors for the process associated to
(1.1)

Now, by the previous results, we are able to define correctly a process U on CH associated to (1.1),
and to obtain the existence of minimal pullback attractors.

Proposition 4.1 Let f ∈ L2
loc(R; V ′), and g : R×CH → (L2(Ω))2 satisfying (I)–(III), be given. Then,

the bi-parametric family of maps U(t, τ) : CH → CH , with τ ≤ t, given by

U(t, τ)φ = ut, (4.1)

where u = u(·; τ, φ) is the unique weak solution of (1.1), defines a continuous process on CH .

Proof. It is a consequence of Theorem 2.1 and Proposition 2.1.

Lemma 4.1 Consider that the assumptions of Proposition 4.1 are satisfied and let µ be such that
0 < µ < 2νλ1. Then, for any φ ∈ CH , the following estimates hold for the solution to (1.1) for all
t ≥ τ:

|ut |
2
CH

≤ eµhe−(µ−2eµhLg)(t−τ)|φ|2CH

+eµh(2ν − µλ−1
1 )−1

∫ t

τ

e−(µ−2eµhLg)(t−s)‖ f (s)‖2∗ ds, (4.2)

ν

∫ t

τ

‖u(s)‖2 ds ≤ |u(τ)|2 + ν−1
∫ t

τ

‖ f (s)‖2∗ ds + 2Lg

∫ t

τ

|us|
2
CH

ds. (4.3)

Proof. Take a µ such that 0 < µ < 2νλ1. By the energy equality (see Remark 2.2), one has

d
dt
|u(t)|2 + 2ν‖u(t)‖2

= 2〈 f (t), u(t)〉 + 2(g(t, ut), u(t))
≤ 2‖ f (t)‖∗‖u(t)‖ + 2Lg|ut |CH |u(t)|
≤ (2ν − µλ−1

1 )‖u(t)‖2 + (2ν − µλ−1
1 )−1‖ f (t)‖2∗ + 2Lg|ut |

2
CH
, a.e. t > τ.
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Thus,
d
dt
|u(t)|2 + µ|u(t)|2 ≤ (2ν − µλ−1

1 )−1‖ f (t)‖2∗ + 2Lg|ut |
2
CH
, a.e. t > τ,

and therefore,

eµt |u(t)|2 ≤ eµτ|u(τ)|2 +

∫ t

τ

eµs((2ν − µλ−1
1 )−1‖ f (s)‖2∗ + 2Lg|us|

2
CH

)
ds ∀ t ≥ τ.

From this inequality, we deduce

eµt |ut |
2
CH
≤ eµheµτ|φ|2CH

+ eµh
∫ t

τ

eµs((2ν − µλ−1
1 )−1‖ f (s)‖2∗ + 2Lg|us|

2
CH

)
ds ∀ t ≥ τ.

Then, by Gronwall lemma we can conclude that (4.2) holds.
Finally, observing that

d
dt
|u(t)|2 + 2ν‖u(t)‖2 ≤ 2‖ f (t)‖∗‖u(t)‖ + 2Lg|ut |CH |u(t)|

≤ ν‖u(t)‖2 + ν−1‖ f (t)‖2∗ + 2Lg|ut |
2
CH
, a.e. t > τ,

we conclude (4.3).

From now on we will assume that

there exists 0 < µ < 2νλ1 such that 2eµhLg < µ, (4.4)

and ∫ 0

−∞

e(µ−2eµhLg)s‖ f (s)‖2∗ ds < ∞. (4.5)

Remark 4.1 If we assume that f ∈ L2
loc(R; V ′), assumption (4.5) is equivalent to∫ t

−∞

e(µ−2eµhLg)s‖ f (s)‖2∗ ds < ∞ ∀ t ∈ R.

Definition 4.1 For any σ > 0, we will denote by Dσ(CH) the class of all families of nonempty
subsets D̂ = {D(t) : t ∈ R} ⊂ P(CH) such that

lim
τ→−∞

(
eστ sup

v∈D(τ)
|v|2CH

)
= 0.

Accordingly to the notation introduced in the previous section, DF(CH) will denote the class of
families D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty bounded subset of CH .

Remark 4.2 Observe that for any σ > 0,DF(CH) ⊂ Dσ(CH) and thatDσ(CH) is inclusion-closed.

From now on, for brevity, we will denote

σµ = µ − 2eµhLg. (4.6)
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Corollary 4.1 Under the assumptions of Proposition 4.1, if moreover conditions (4.4) and (4.5) are
satisfied, then the family D̂0,µ = {D0,µ(t) : t ∈ R}, with D0,µ(t) = BCH (0, ρµ(t)), the closed ball in CH

of center zero and radius ρµ(t), where

ρ2
µ(t) = 1 + eµh(2ν − µλ−1

1 )−1
∫ t

−∞

e−σµ(t−s)‖ f (s)‖2∗ ds,

is pullbackDσµ (CH)-absorbing for the process U defined by (4.1). Moreover, D̂0,µ ∈ Dσµ (CH).

Proof. It follows immediately from Lemma 4.1.

Proposition 4.2 Under the assumptions of Corollary 4.1, the process U defined by (4.1) is pullback
D̂0,µ-asymptotically compact.

Proof. Let us fix t0 ∈ R. Let {un} with un = un(·; τn, φ
n) be a sequence of weak solutions of (1.1),

defined in their respective intervals [τn − h,∞), with initial data φn ∈ D0,µ(τn) = BCH (0, ρµ(τn)),
where {τn} ⊂ (−∞, t0) satisfies that τn → −∞ as n → ∞. We will prove that the sequence {un

t0 }

is relatively compact in CH , i.e., we will see that there exist a subsequence, relabelled {un
t0 }, and a

function ψ ∈ CH , such that un
t0 → ψ in CH .

Consider an arbitrary value T > h. It follows from (4.2) and (4.5) that there exists n0(t0,T ) such
that τn < t0 − T for n ≥ n0(t0,T ), and

|un
t |

2
CH
≤ R(t0,T ) ∀ t ∈ [t0 − T, t0], n ≥ n0(t0,T ), (4.7)

where

R(t0,T ) = 1 + eµh(2ν − µλ−1
1 )−1e−σµ(t0−T )

∫ t0

−∞

eσµ s‖ f (s)‖2∗ ds,

so that, in particular,

|un(t)|2 ≤ R(t0,T ) ∀ t ∈ [t0 − T, t0], n ≥ n0(t0,T ). (4.8)

Let us denote yn(t) = un(t + t0 − T ) for all t ∈ [0,T ]. In particular, by (4.8), the sequence
{yn}n≥n0(t0,T ) is bounded in L∞(0,T ; H).

On the other hand, for each n ≥ n0(t0,T ), the function yn is a weak solution on [0,T ] of a
problem similar to (1.1), namely with f and g replaced by

f̃ (t) = f (t + t0 − T ) and g̃(t, ·) = g(t + t0 − T, ·), t ∈ (0,T ),

respectively, and with yn
0 = un

t0−T and yn
T = un

t0 . By (4.7), |yn
0|

2
CH
≤ R(t0,T ) for all n ≥ n0(t0,T ). From

(4.3) we have
‖yn‖2L2(0,T ;V) ≤ K(t0,T ) ∀ n ≥ n0(t0,T ),

where

K(t0,T ) = ν−1R(t0,T ) + ν−2
∫ T

0
‖ f̃ (s)‖2∗ ds + ν−12LgR(t0,T )T.

Hence, the sequence {yn}n≥n0(t0,T ) is also bounded in L2(0,T ; V), and the sequence of time derivatives
{(yn)′}n≥n0(t0,T ) is bounded in L2(0,T ; V ′). Thus, up to a subsequence (relabelled the same), for some
function y we have that 

yn ∗
⇀ y weakly-star in L∞(0,T ; H),

yn ⇀ y weakly in L2(0,T ; V),
(yn)′ ⇀ y′ weakly in L2(0,T ; V ′),
yn → y strongly in L2(0,T ; H),
yn(t)→ y(t) in H, a.e. t ∈ (0,T ).
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Observe also that y ∈ C([0,T ]; H), and that for every sequence {tn} ⊂ [0,T ] with tn → t∗, one
has

yn(tn) ⇀ y(t∗) weakly in H, (4.9)

which is a consequence of the boundedness of the sequences {yn}n≥n0(t0,T ) and {(yn)′}n≥n0(t0,T ) in
L∞(0,T ; H) and L2(0,T ; V ′) respectively, and the compactness of the injection of H into V ′ (see
the proof of Theorem 2.1 for a similar argument).

Also, by (II), (III), and (4.7), we obtain∫ t

0
|g̃(s, yn

s)|2 ds ≤ Ct,

where C > 0 does not depend neither on n nor t ∈ [0,T ]. Thus, eventually extracting a subsequence,
there exists ξ ∈ L2(0,T ; (L2(Ω))2) such that

g̃(·, yn
· ) ⇀ ξ weakly in L2(0,T ; (L2(Ω))2),

and therefore ∫ t

s
|g̃(r, yn

r )|2 dr ≤ C(t − s),∫ t

s
|ξ(r)|2 dr ≤ lim inf

n→∞

∫ t

s
|g̃(r, yn

r )|2 dr ≤ C(t − s),
(4.10)

for all 0 ≤ s ≤ t ≤ T. Then, in a standard way, one can prove that y(·) is the unique weak solution to
the problem 

∂u
∂t
− ν∆u + (u · ∇)u + ∇p = f̃ (t) + ξ(t) in Ω × (0,T ),

∇ · u = 0 in Ω × (0,T ),

u = 0 on ∂Ω × (0,T ),

u(x, 0) = y(x, 0), x ∈ Ω.

By the energy equality and (4.10), we obtain that

1
2
|z(t)|2 ≤

1
2
|z(s)|2 +

∫ t

s
〈 f̃ (r), z(r)〉 dr + C̃(t − s) ∀ 0 ≤ s ≤ t ≤ T,

where C̃ = C(4νλ1)−1, and z = yn or z = y. Then, the maps J̃n, J̃ : [0,T ]→ R defined by

J̃n(t) =
1
2
|yn(t)|2 −

∫ t

0
〈 f̃ (r), yn(r)〉 dr −Ct,

J̃(t) =
1
2
|y(t)|2 −

∫ t

0
〈 f̃ (r), y(r)〉 dr −Ct,

are non-increasing and continuous, and satisfy

J̃n(t)→ J̃(t) a.e. t ∈ (0,T ). (4.11)

We can use the functionals J̃n and J̃ to deduce that yn → y in C([δ,T ]; H), for any 0 < δ < T.
If this is not true, then there exist 0 < δ∗ < T, ε∗ > 0, and subsequences {ym} ⊂ {yn}n≥n0(t0,T ) and
{tm} ⊂ [δ∗,T ], with tm → t∗, such that

|ym(tm) − y(t∗)| ≥ ε∗ ∀m. (4.12)
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Let us fix ε > 0. Observe that t∗ ∈ [δ∗,T ], and therefore, by (4.11) and the continuity and
non-increasing character of J̃, there exists 0 < t̂ε < t∗ such that

lim
m→∞

J̃m(t̂ε) = J̃(t̂ε), (4.13)

and
0 ≤ J̃(t̂ε) − J̃(t∗) ≤ ε. (4.14)

As tm → t∗, there exists an mε such that t̂ε < tm for all m ≥ mε. Then, by (4.14),

J̃m(tm) − J̃(t∗) ≤ J̃m(t̂ε) − J̃(t∗)
≤ |J̃m(t̂ε) − J̃(t̂ε)| + |J̃(t̂ε) − J̃(t∗)|
≤ |J̃m(t̂ε) − J̃(t̂ε)| + ε

for all m ≥ mε, and consequently, by (4.13), lim supm→∞ J̃m(tm) ≤ J̃(t∗) + ε. Thus, as ε > 0 is
arbitrary, we deduce that

lim sup
m→∞

J̃m(tm) ≤ J̃(t∗). (4.15)

Taking into account that tm → t∗, and∫ tm

0
〈 f̃ (r), ym(r)〉 dr →

∫ t∗

0
〈 f̃ (r), y(r)〉 dr,

from (4.15) we deduce that lim supm→∞ |y
m(tm)| ≤ |y(t∗)|. This last inequality and (4.9), imply that

ym(tm)→ y(t∗) strongly in H, which is in contradiction with (4.12).
We have thus proved that yn → y in C([δ,T ]; H), for any 0 < δ < T. As T > h, we obtain in

particular that un
t0 → ψ in CH , where ψ(s) = y(s + T ), for s ∈ [−h, 0].

Joining all the above statements we obtain the existence of minimal pullback attractors for the
process U on CH associated to problem (1.1).

Theorem 4.1 Assume that f ∈ L2
loc(R; V ′), and g : R × CH → (L2(Ω))2 satisfying the assump-

tions (I)–(III), (4.4) and (4.5), are given. Then, there exist the minimal pullback DF(CH)-attractor
ADF (CH ), and the minimal pullbackDσµ (CH)-attractorADσµ (CH ), for the process U defined by (4.1).
The familyADσµ (CH ) belongs toDσµ (CH), and the following relation holds:

ADF (CH )(t) ⊂ ADσµ (CH )(t) ⊂ BCH (0, ρµ(t)) ∀ t ∈ R.

Proof. The result is a direct consequence of Theorem 3.1, Remark 3.2, Corollary 3.1, Proposition
4.1, Corollary 4.1, and Proposition 4.2.

Remark 4.3 (i) If, additionally, we assume that

sup
r≤0

∫ r

−∞

e−σµ(r−s)‖ f (s)‖2∗ ds < ∞,

where σµ is given by (4.6), then, taking into account Remark 3.3, we deduce that

ADF (CH )(t) = ADσµ (CH )(t) ∀ t ∈ R.

(ii) Observe that a natural question concerning the existence of more families of pullback attractors
is to strengthen the conditions on the parameter µ that satisfies (32) and (33). More exactly, if
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σ < σ′, then Dσ(CH) ⊂ Dσ′ (CH). Therefore, in order to obtain attractors for bigger universes,
we would wonder if there exists µ′ ∈ (0, 2νλ1) such that σµ′ > σµ. In such a case, conditions (32)
and (33) would be satisfied automatically. The key point for having σµ′ > σµ is to analyze the
growth behaviour of the map µ 7→ σµ. Namely, if the map µ 7→ σµ is non-decreasing, we look
for µ < µ′ < 2νλ1 (this may involve a smallness condition on the delay); otherwise, we seek for
0 < µ′ < µ. Under any of these conditions, we would obtain new families of pullback attractors and
new relations among them (see [9, Remark 4.15] or [1, Remark 5] for similar results in a simpler
context).

5 Regularity of pullback attractors and V attraction for the pro-
cess associated to (1.1)

Now, we strengthen the regularity of solutions and a second energy equality for them, in order to
obtain additional attraction, namely, in the H1 norm instead of L2 as in Section 4. For any h̃ ∈ [0, h],
let us denote

Ch̃,V
H =

{
ϕ ∈ CH : ϕ|[−h̃,0] ∈ B([−h̃, 0]; V)

}
,

where B([−h̃, 0]; V) is the space of bounded functions from [−h̃, 0] into V . The space Ch̃,V
H is a

Banach space with the norm
‖ϕ‖h̃,V = |ϕ|CH + sup

θ∈[−h̃,0]
‖ϕ(θ)‖.

Observe that the space CV = C([−h, 0]; V) is a Banach subspace of Ch,V
H .

Proposition 5.1 Assume that f ∈ L2
loc(R; (L2(Ω))2), and g : R × CH → (L2(Ω))2, satisfying the

assumptions (I)–(III), are given. Then, for any bounded set B ⊂ CH , one has:

(i) The set of weak solutions of (1.1) {u(·; τ, φ) : φ ∈ B} is bounded in L∞(τ + ε,T ; V), for any
ε > 0 and any T > τ + ε.

(ii) Moreover, if {φ(0) : φ ∈ B} is bounded in V, then {u(·; τ, φ) : φ ∈ B} is bounded in L∞(τ,T ; V),
for all T > τ.

Proof. By (2.5), the regularity property (a) in Theorem 2.1, Cauchy-Schwartz and Young inequali-
ties, we obtain

1
2

d
dθ
‖u(θ)‖2 + ν|Au(θ)|2 + b(u(θ), u(θ), Au(θ))

≤
2
ν

(| f (θ)|2 + |g(θ, uθ)|2) +
ν

4
|Au(θ)|2, a.e. θ > τ.

Since the trilinear term b can be estimated using (2.2) as

|b(u(θ), u(θ), Au(θ))| ≤ C1|u(θ)|1/2‖u(θ)‖|Au(θ)|3/2

≤
ν

4
|Au(θ)|2 + C(ν)|u(θ)|2‖u(θ)‖4,

where
C(ν) = 27C4

1(4ν3)−1, (5.1)
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this, combined with the above and the properties of g, gives

d
dθ
‖u(θ)‖2 + ν|Au(θ)|2 ≤

4
ν
| f (θ)|2 + 2C(ν)|u(θ)|2‖u(θ)‖4 +

4L2
g

ν
|uθ|2CH

, a.e. θ > τ. (5.2)

Integrating, in particular we deduce that for all τ < s ≤ r

‖u(r)‖2 ≤ ‖u(s)‖2 +
4
ν

∫ r

s
| f (θ)|2 dθ + 2C(ν)

∫ r

s
|u(θ)|2‖u(θ)‖4 dθ +

4L2
g

ν

∫ r

s
|uθ|2CH

dθ.

By Gronwall lemma we obtain again that for all τ < s ≤ r

‖u(r)‖2 ≤

(
‖u(s)‖2 +

4
ν

∫ r

s
| f (θ)|2 dθ +

4L2
g

ν

∫ r

s
|uθ|2CH

dθ
)

×exp
(
2C(ν)

∫ r

s
|u(θ)|2‖u(θ)‖2 dθ

)
. (5.3)

Integrating once more with respect to s ∈ (τ, r), it yields

(r − τ)‖u(r)‖2 ≤

( ∫ T

τ

‖u(s)‖2 ds +
4(T − τ)

ν

∫ T

τ

| f (θ)|2 dθ +
4L2

g(T − τ)

ν

∫ T

τ

|uθ|2CH
dθ

)
×exp

(
2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ
)
∀ τ < r ≤ T.

In particular, for τ + ε ≤ r ≤ T, we have

‖u(r)‖2 ≤
1
ε

( ∫ T

τ

‖u(s)‖2 ds +
4(T − τ)

ν

∫ T

τ

| f (θ)|2 dθ +
4L2

g(T − τ)

ν

∫ T

τ

|uθ|2CH
dθ

)
×exp

(
2C(ν)

∫ T

τ

|u(θ)|2‖u(θ)‖2 dθ
)
.

Taking into account (4.2) and (4.3), the claim (i) is proved.
The proof of claim (ii) is simpler. If φ(0) belongs to V, then from (5.2) one deduces that for all

τ ≤ r ≤ T,

‖u(r)‖2 ≤ ‖u(τ)‖2 +
4
ν

∫ r

τ

| f (θ)|2 dθ + 2C(ν)
∫ r

τ

|u(θ)|2‖u(θ)‖4 dθ +
4L2

g

ν

∫ r

τ

|uθ|2CH
dθ.

Hence, one may apply directly Gronwall lemma and proceed analogously as before to conclude (ii).

Corollary 5.1 Under the assumptions of Proposition 5.1, the process U defined by (4.1) satisfies
that U(t, τ) maps bounded sets of CH into bounded sets of CH , for all t ≥ τ. Moreover, for any
h̃ ∈ [0, h], the family of mappings U(t, τ)|Ch̃,V

H
, with t ≥ τ, is also a well defined process on Ch̃,V

H , and

maps bounded sets of Ch̃,V
H into bounded sets of Ch̃,V

H .

Proposition 5.2 Assume that f ∈ L2
loc(R; (L2(Ω))2), and g : R × CH → (L2(Ω))2 satisfying the

assumptions (I)–(III), are given. Let us denote u = u(·; τ, φ) and v = v(·; τ, ψ) the solutions of (1.1)
corresponding to initial data φ and ψ ∈ C0,V

H . Then, the following estimate holds:

‖u(s) − v(s)‖2 ≤

(
‖φ(0) − ψ(0)‖2 +

L2
g

ν

∫ t

τ

|uθ − vθ|2CH
dθ

)
× exp

[ ∫ t

τ

(
2C(ν)λ−1

1 ‖u(θ)‖4 +
2C2

1

ν
|v(θ)||Av(θ)|

)
dθ

]
(5.4)
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for all τ ≤ s ≤ t, where C(ν) is given in (5.1).
As a consequence, for all h̃ ∈ [0, h] and any τ ≤ t, the mapping U(t, τ) : Ch̃,V

H → Ch̃,V
H given by

(4.1), is continuous.

Proof. In order to prove the statement, we only have to check (5.4) and combine it with Proposition
2.1, and claim (ii) in Proposition 5.1.

Let us denote w = u − v. If we apply the energy equality to w, we obtain

1
2

d
dt
‖w(t)‖2 + ν|Aw(t)|2 + b(u(t), u(t), Aw(t)) − b(v(t), v(t), Aw(t))

= (g(t, ut) − g(t, vt), Aw(t))

≤
L2

g

2ν
|wt |

2
CH

+
ν

2
|Aw(t)|2, a.e. t > τ,

where we have used Young inequality and the property (III) of g.
The trilinear terms can be estimated, using (2.2), as follows:

|b(u(t), u(t), Aw(t)) − b(v(t), v(t), Aw(t))|
= |b(w(t), u(t), Aw(t)) + b(v(t),w(t), Aw(t))|
≤ C1|w(t)|1/2‖u(t)‖|Aw(t)|3/2 + C1|v(t)|1/2|Av(t)|1/2‖w(t)‖|Aw(t)|

≤ C(ν)|w(t)|2‖u(t)‖4 +
C2

1

ν
|v(t)||Av(t)|‖w(t)‖2 +

ν

2
|Aw(t)|2.

Therefore, from above we obtain that

d
dt
‖w(t)‖2 ≤ 2C(ν)|w(t)|2‖u(t)‖4 +

2C2
1

ν
|v(t)||Av(t)|‖w(t)‖2 +

L2
g

ν
|wt |

2
CH
, a.e. t > τ.

Integrating, it yield,s for all τ ≤ s ≤ t,

‖w(s)‖2 ≤ ‖w(τ)‖2 +
L2

g

ν

∫ s

τ

|wθ|
2
CH

dθ +

∫ s

τ

‖w(θ)‖2
(
2C(ν)λ−1

1 ‖u(θ)‖4 +
2C2

1

ν
|v(θ)||Av(θ)|

)
dθ.

From this inequality, using Gronwall lemma, we deduce (5.4).

Definition 5.1 For any σ > 0 and h̃ ∈ [0, h], we will denote by Dh̃,V
σ (CH) the class of families

D̂ = {D(t) : t ∈ R} ∈ Dσ(CH) such that for any t ∈ R and for any ϕ ∈ D(t), it follows that
ϕ|[−h̃,0] ∈ B([−h̃, 0]; V).

Analogously, we will denote by Dh̃,V
F (CH) the class of families D̂ = {D(t) = D : t ∈ R} with D a

fixed nonempty bounded subset of CH such that for any ϕ ∈ D, it holds that ϕ|[−h̃,0] ∈ B([−h̃, 0]; V).
Finally, we will denote by DF(Ch̃,V

H ) the class of families D̂ = {D(t) = D : t ∈ R} with D a fixed
nonempty bounded subset of Ch̃,V

H .

Remark 5.1 The chain of inclusions for the universes in the above definition and the universes
introduced in Section 3, is the following:

DF(Ch̃,V
H ) ⊂ Dh̃,V

F (CH) ⊂ Dh̃,V
σ (CH) ⊂ Dσ(CH),

and
DF(Ch̃,V

H ) ⊂ Dh̃,V
F (CH) ⊂ DF(CH) ⊂ Dσ(CH),
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for all σ > 0 and any h̃ ∈ [0, h]. It must also be pointed out that Dh̃,V
σ (CH) is also inclusion-closed,

which will be important (cf. Remark 3.2). Finally, it is clear that if 0 ≤ h̃1 < h̃2 ≤ h, then

DF(Ch̃2,V
H ) ⊂ DF(Ch̃1,V

H ), D
h̃2,V
F (CH) ⊂ Dh̃1,V

F (CH), Dh̃2,V
σ (CH) ⊂ Dh̃1,V

σ (CH).

We establish now some results on absorbing properties of U : R2
d ×Ch̃,V

H → Ch̃,V
H .

Proposition 5.3 Let g satisfying (I)-(III) be given. Assume that f ∈ L2
loc(R; (L2(Ω))2) is such that

there exists 0 < µ < 2νλ1 such that µ > 2eµhLg, and∫ 0

−∞

eσµ s| f (s)|2 ds < ∞, (5.5)

where σµ is given by (4.6). Then, for any h̃ ∈ [0, h], the family D̂0,µ,h̃ = {D0,µ,h̃(t) : t ∈ R} ⊂ P(Ch̃,V
H ),

with
D0,µ,h̃(t) = D0,µ(t) ∩Ch̃,V

H ,

where D0,µ(t) defined in Corollary 4.1, is a family of closed sets of Ch̃,V
H , which is pullbackDh̃,V

σµ (CH)-

absorbing for the process U : R2
d×Ch̃,V

H → Ch̃,V
H given by (4.1). Moreover, D̂0,µ,h̃ belongs toDh̃,V

σµ (CH).

Proof. It is a consequence of Corollary 4.1.

Lemma 5.1 Under the assumptions of Proposition 5.3, for any D̂ ∈ Dσµ (CH) and any r > h, the
family D̂(r) = {D(r)(τ) : τ ∈ R}, where D(r)(τ) = U(τ+ r, τ)D(τ), for any τ ∈ R, belongs toDh,V

σµ (CH).

Proof. From (4.2), we deduce

sup
ψ∈D(r)(τ)

(
eσµτ|ψ|2CH

)
≤ eµh−σµr sup

φ∈D(τ)

(
eσµτ|φ|2CH

)
+ (2νλ1 − µ)−1eµh−σµr

∫ τ+r

τ

eσµ s| f (s)|2 ds.

From this inequality, property (a) in Theorem 2.1, and assumption (5.5), we deduce the result.

Now, we establish several estimates in finite intervals of time when the initial time is sufficiently
shifted in a pullback sense (cf. [8, 9] for similar results in a context without delays).

Lemma 5.2 Under the assumptions of Proposition 5.3, for any t ∈ R and D̂ ∈ Dσµ (CH), there exist
τ1(D̂, t, h) < t − 2h − 2 and functions {ρi}

4
i=1 depending on t and h, such that for any τ ≤ τ1(D̂, t, h)

and any φτ ∈ D(τ), we have

|u(r; τ, φτ)|2 ≤ ρ1(t) ∀ r ∈ [t − 2h − 2, t],

‖u(r; τ, φτ)‖2 ≤ ρ2(t) ∀ r ∈ [t − h − 1, t],

ν

∫ r

r−1
|Au(θ; τ, φτ)|2 dθ ≤ ρ3(t) ∀ r ∈ [t − h, t],∫ r

r−1
|u′(θ; τ, φτ)|2 dθ ≤ ρ4(t) ∀ r ∈ [t − h, t],

(5.6)
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where

ρ1(t) = 1 + eµh(2νλ1 − µ)−1e−σµ(t−2h−2)
∫ t

−∞

eσµ s| f (s)|2 ds,

ρ2(t) =

(
ν−1

(
1 + 2ν−1λ−1

1 L2
g + 4L2

g

)
ρ1(t) + ν−1

(
4 + 2ν−1λ−1

1

) ∫ t

t−h−2
| f (θ)|2 dθ

)
×exp

{
2ν−1C(ν)ρ1(t)

[ (
1 + 2ν−1λ−1

1 L2
g

)
ρ1(t) + 2ν−1λ−1

1

∫ t

t−h−2
| f (θ)|2 dθ

]}
,

ρ3(t) = ρ2(t) + 2C(ν)ρ1(t)ρ2
2(t) + 4L2

gν
−1ρ1(t) + 4ν−1

∫ t

t−h−1
| f (θ)|2 dθ,

ρ4(t) = νρ2(t) + 4L2
gρ1(t) + 2C2

1ν
−1ρ2(t)ρ3(t) + 4

∫ t

t−h−1
| f (θ)|2 dθ,

and C(ν) is given in (5.1).

Proof. Let τ1(D̂, t, h) < t − 2h − 2 be such that

eµhe−σµ(t−2h−2)eσµτ|φτ|2CH
≤ 1 ∀ τ ≤ τ1(D̂, t, h), φτ ∈ D(τ).

Consider fixed τ ≤ τ1(D̂, t, h) and φτ ∈ D(τ). First estimate in (5.6) follows directly from (4.2), using
the increasing character of the exponential.

Now, for the rest of the estimates, let us consider again the Galerkin approximations already
used in Theorem 2.1, and denote for short um(r) = um(r; τ, φτ). Multiplying in (2.7) by αm, j(t), and
summing from j = 1 to m, we have

1
2

d
dt
|um(t)|2 + ν‖um(t)‖2 = ( f (t) + g(t, um

t ), um(t))

≤
1
νλ1

(
| f (t)|2 + |g(t, um

t )|2
)

+
ν

2
λ1|um(t)|2, a.e. t > τ,

where we have used Young inequality. Now, by the assumptions (II) and (III) on g, we obtain

d
dt
|um(t)|2 + ν‖um(t)‖2 ≤

2
νλ1

(
| f (t)|2 + L2

g|u
m
t |

2
CH

)
, a.e. t > τ.

Integrating, we deduce that

ν

∫ r

r−1
‖um(θ)‖2 dθ ≤ |um(r − 1)|2 +

2
νλ1

∫ r

r−1

(
| f (θ)|2 + L2

g|u
m
θ |

2
CH

)
dθ ∀ τ ≤ r − 1. (5.7)

Now, observe that the first estimate in (5.6) and the estimates obtained in the proof of Proposition
5.1 also hold for the um. From (5.3), integrating with respect to s ∈ (r − 1, r), and using the first
estimate in (5.6), we obtain

‖um(r)‖2 ≤

( ∫ r

r−1
‖um(s)‖2 ds + 4ν−1

∫ r

r−1
| f (θ)|2 dθ + 4L2

gν
−1ρ1(t)

)
×exp

(
2C(ν)ρ1(t)

∫ r

r−1
‖um(θ)‖2 dθ

)
∀ r ∈ [t − h − 1, t].

From this, jointly with (5.7) and the first estimate in (5.6) for um, one deduces

‖um(r; τ, φτ)‖2 ≤ ρ2(t) ∀ r ∈ [t − h − 1, t]. (5.8)



22 J. Garcı́a-Luengo, P. Marı́n-Rubio, J. Real

From this inequality and Remark 2.4, we deduce that

um ∗
⇀ u(·; τ, φτ) weakly-star in L∞(t − h − 1, t; V).

So, taking inferior limit when m goes to infinity in (5.8), and using the fact that u(·; τ, φτ) ∈ C([t −
h − 1, t]; V), we obtain the second estimate in (5.6).

On other hand, from (5.2) we also have

ν

∫ r

r−1
|Aum(θ)|2 dθ ≤ ‖um(r − 1)‖2 + 4ν−1

∫ r

r−1
| f (θ)|2 dθ + 2C(ν)

∫ r

r−1
|um(θ)|2‖um(θ)‖4 dθ

+4L2
gν
−1

∫ r

r−1
|um
θ |

2
CH

dθ ∀ τ ≤ r − 1.

Therefore,

ν

∫ r

r−1
|Aum(θ; τ, φτ)|2 dθ ≤ ρ3(t) ∀ r ∈ [t − h, t]. (5.9)

From Remark 2.4 and (5.9), we deduce that

um ⇀ u(·; τ, φτ) weakly in L2(r − 1, r; D(A))∀ r ∈ [t − h, t].

Thus, taking inferior limit when m goes to infinity in (5.9), we obtain the third inequality in (5.6).
Finally, multiplying in (2.7) by α′m, j(t), and summing from j = 1 till m, we obtain

|(um)′(θ)|2 +
ν

2
d
dθ
‖um(θ)‖2 + b(um(θ), um(θ), (um)′(θ))

= ( f (θ), (um)′(θ)) + (g(θ, um
θ ), (um)′(θ)), a.e. θ > τ.

Observing that by Young inequality and (2.3),

|( f (θ), (um)′(θ))| ≤
1
8
|(um)′(θ)|2 + 2| f (θ)|2,

|(g(θ, um
θ ), (um)′(θ))| ≤

1
8
|(um)′(θ)|2 + 2|g(θ, um

θ )|2,

|b(um(θ), um(θ), (um)′(θ))| ≤ C1|Aum(θ)|‖um(θ)‖|(um)′(θ)|

≤
1
4
|(um)′(θ)|2 + C2

1 |Aum(θ)|2‖um(θ)‖2,

we obtain that

|(um)′(θ)|2 + ν
d
dθ
‖um(θ)‖2 ≤ 4| f (θ)|2 + 4|g(θ, um

θ )|2 + 2C2
1 |Aum(θ)|2‖um(θ)‖2, a.e. θ > τ.

From the properties of g, and integrating above, we conclude∫ r

r−1
|(um)′(θ)|2 dθ ≤ ν‖um(r − 1)‖2 + 4

∫ r

r−1
| f (θ)|2 dθ + 2C2

1

∫ r

r−1
|Aum(θ)|2‖um(θ)‖2 dθ

+4L2
g

∫ r

r−1
|um
θ |

2
CH

dθ ∀ τ ≤ r − 1.

From the first estimate in (5.6) for um, (5.8) and (5.9), we deduce that∫ r

r−1
|(um)′(θ; τ, φτ)|2 dθ ≤ ρ4(t) ∀ r ∈ [t − h, t]. (5.10)
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From Remark 2.4 and (5.10), we deduce that

(um)′ ⇀ u′(·; τ, φτ) weakly in L2(r − 1, r; H)∀ r ∈ [t − h, t].

Thus, taking inferior limit when m goes to infinity in (5.10), we obtain the fourth inequality in (5.6).

Remark 5.2 Under the assumptions of Lemma 5.2, limt→−∞ eσµtρ1(t) = 0.

Now, we can prove the Dh̃,V
σµ (CH)-asymptotic compactness of the process U restricted to the

space Ch̃,V
H . The proof relies on an energy method with continuous functions, which is similar to that

used in the proof of Proposition 4.2, but starting with the energy equality (2.5), as in [9, Lem.4.13];
we reproduce it here just for the sake of completeness.

Lemma 5.3 Under the assumptions of Proposition 5.3, and for any h̃ ∈ [0, h], the process U :
R2

d ×Ch̃,V
H → Ch̃,V

H is pullbackDh̃,V
σµ (CH)-asymptotically compact.

Proof. Let h̃ ∈ [0, h] be fixed. Since, taking into account Remark 3.1, the asymptotic compactness in
the norm of CH was already established in Proposition 4.2, we only must care about the sup norm in
B([−h̃, 0]; V). So, let us fix t ∈ R, a family D̂ = {D(t) : t ∈ R} ∈ Dh̃,V

σµ (CH), a sequence {τn} ⊂ (−∞, t]

with τn → −∞, and a sequence {φτn } ⊂ Ch̃,V
H , with φτn ∈ D(τn) for all n.

For short, let us denote un(·) = u(·; τn, φ
τn ). It is enough to prove that the sequence {un(t + ·)} is

relatively compact in CV . By the asymptotic compactness in the norm of CH and using a recursive
argument in a finite number of steps, we may assume without loss of generality that there exists
ξ ∈ C([−2h − 1, 0]; H) such that

un(t + ·)→ ξ(·) strongly in C([−2h − 1, 0]; H). (5.11)

From Lemma 5.2 we know that there exists a value τ1(D̂, t, h) < t − 2h − 2 such that the subse-
quence {un : τn ≤ τ1(D̂, t, h)} is bounded in L∞(t − h − 1, t; V) ∩ L2(t − h − 1, t; D(A)) with {(un)′}
bounded in L2(t− h− 1, t; H). Moreover, using the Aubin-Lions compactness lemma (e.g., cf. [13]),
and taking into account (5.11), we may ensure that if we denote u(t+r) = ξ(r) for all r ∈ [−2h−1, 0],
then u ∈ L∞(t− h− 1, t; V)∩ L2(t− h− 1, t; D(A)) with u′ ∈ L2(t− h− 1, t; H), and for a subsequence
(relabelled the same) the following convergences hold:

un ∗
⇀ u weakly-star in L∞(t − h − 1, t; V),

un ⇀ u weakly in L2(t − h − 1, t; D(A)),
(un)′ ⇀ u′ weakly in L2(t − h − 1, t; H),
un → u strongly in L2(t − h − 1, t; V),
un(s)→ u(s) strongly in V, a.e. s ∈ (t − h − 1, t).

(5.12)

Indeed, u ∈ C([t−h−1, t]; V) satisfies, thanks to (5.11) and (5.12), the equation (2.4) in (t−h−1, t).
From the boundedness of {un} in C([t − h − 1, t]; V), we have that for any sequence {sn} ⊂

[t − h − 1, t] with sn → s∗, it holds that

un(sn) ⇀ u(s∗) weakly in V, (5.13)

where we have used (5.11) to identify the weak limit. We will prove that

un → u strongly in C([t − h, t]; V), (5.14)
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using an energy method for continuous functions analogous to that employed in the proof of Propo-
sition 4.2, but starting with the energy equality (2.5) as in [9].

Indeed, if (5.14) is false, there exist ε > 0, a value t∗ ∈ [t − h, t], and subsequences (which we
relabel the same) {un} and {tn} ⊂ [t − h, t], with limn→∞ tn = t∗, such that

‖un(tn) − u(t∗)‖ ≥ ε ∀ n ≥ 1. (5.15)

Recall that by (5.13) we have that

‖u(t∗)‖ ≤ lim inf
n→∞

‖un(tn)‖. (5.16)

On the other hand, using the energy equality (2.5) for u and all un, and reasoning as for the obtention
of (5.2), we have that for all t − h − 1 ≤ s1 ≤ s2 ≤ t,

‖un(s2)‖2 + ν

∫ s2

s1

|Aun(r)|2 dr

≤ ‖un(s1)‖2 + 2C(ν)
∫ s2

s1

|un(r)|2‖un(r)‖4 dr +
4
ν

∫ s2

s1

| f (r)|2 dr +
4L2

g

ν

∫ s2

s1

|un
r |

2
CH

dr,

and

‖u(s2)‖2 + ν

∫ s2

s1

|Au(r)|2 dr

≤ ‖u(s1)‖2 + 2C(ν)
∫ s2

s1

|u(r)|2‖u(r)‖4 dr +
4
ν

∫ s2

s1

| f (r)|2 dr +
4L2

g

ν

∫ s2

s1

|ur |
2
CH

dr.

In particular, we can define the functions

J̄n(s) = ‖un(s)‖2 − 2C(ν)
∫ s

t−h−1
|un(r)|2‖un(r)‖4 dr −

4
ν

∫ s

t−h−1
| f (r)|2 dr −

4L2
g

ν

∫ s

t−h−1
|un

r |
2
CH

dr,

J̄(s) = ‖u(s)‖2 − 2C(ν)
∫ s

t−h−1
|u(r)|2‖u(r)‖4 dr −

4
ν

∫ s

t−h−1
| f (r)|2 dr −

4L2
g

ν

∫ s

t−h−1
|ur |

2
CH

dr.

These are continuous functions on [t − h − 1, t], and from the above inequalities, both J̄n and J̄
are non-increasing. Now, reasoning analogously as in the proofs of Theorem 2.1 (Step 2) and of
Proposition 4.2, we may conclude that lim supn→∞ J̄n(tn) ≤ J̄(t∗), and therefore, by (5.11) and (5.12),
lim supn→∞ ‖u

n(tn)‖ ≤ ‖u(t∗)‖, which joined to (5.16) and (5.13) implies that un(tn)→ u(t∗) strongly
in V, in contradiction with (5.15). Thus, (5.14) is proved as desired.

Now, we can establish our main result.

Theorem 5.1 Let g satisfying (I)-(III) be given. Assume that f ∈ L2
loc(R; (L2(Ω))2) satisfies (5.5) for

some 0 < µ < 2νλ1 such that µ > 2eµhLg. Then, for any h̃ ∈ [0, h], the process U on Ch̃,V
H possesses

a minimal pullbackDh̃,V
σµ (CH)-attractorA

D
h̃,V
σµ (CH ), a minimal pullbackDh̃,V

F (CH)-attractorA
D

h̃,V
F (CH ),

and a minimal pullbackDF(Ch̃,V
H )-attractorA

DF (Ch̃,V
H ). Besides, the following relations hold:

A
DF (Ch̃,V

H )(t) ⊂ A
D

h̃,V
F (CH )(t)

⊂ ADF (CH )(t)
⊂ A

D
h̃,V
σµ (CH )(t) = ADσµ (CH )(t)

⊂ CV ∀ t ∈ R, (5.17)



Pullback attractors for 2D Navier-Stokes equations 25

and for any family D̂ ∈ Dσµ (CH),

lim
τ→−∞

distCV (U(t, τ)D(τ),ADσµ (CH )(t)) = 0 ∀ t ∈ R. (5.18)

Finally, if moreover f satisfies

sup
s≤0

(
e−σµ s

∫ s

−∞

eσµθ| f (θ)|2 dθ
)
< ∞, (5.19)

then all attractors in (5.17) coincide, and this family is tempered in CV , in the sense that

lim
t→−∞

(
eσµt sup

v∈ADσµ (CH )(t)
‖v‖2CV

)
= 0, (5.20)

where for v ∈ CV , ‖v‖CV = maxs∈[−h,0] ‖v(s)‖.

Proof. Let us fix h̃ ∈ [0, h]. The existence ofA
D

h̃,V
σµ (CH ) is a consequence of Theorem 3.1, Proposition

5.2, Proposition 5.3, and Lemma 5.3.
The existence ofA

D
h̃,V
F (CH ) andA

DF (Ch̃,V
H ) follows from the above facts, and the inclusionsDF(Ch̃,V

H ) ⊂

D
h̃,V
F (CH) ⊂ Dh̃,V

σµ (CH).
In (5.17), the chain of inclusions follows from Corollary 3.1, Theorem 3.2, and Remark 5.1.

The equality is a consequence of Theorem 3.2 and Remark 3.4, by using Theorem 2.1, Remark 5.1,
Lemma 5.2, Remark 5.2, and Lemma 5.3. The last inclusion is a consequence of the regularity result
(a) in Theorem 2.1.

Property (5.18) is a consequence of Lemma 5.1, and the fact that by the regularity result (a) in
Theorem 2.1, for any D̂ ∈ Dσµ (CH) and any τ < t − h − 1,

distCV (U(t, τ)D(τ),ADσµ (CH )(t))
≤ distCh,V

H
(U(t, τ + h + 1)(U(τ + h + 1, τ)D(τ)),ADσµ (CH )(t))

= distCh,V
H

(U(t, τ + h + 1)D(h+1)(τ),A
D

h,V
σµ (CH )(t)).

The coincidence of all attractors in (5.17) under the additional assumption (5.19) holds by ap-
plying once more Theorem 3.2 and Remark 3.4, Theorem 2.1, Proposition 5.1 (i), Remark 5.1, and
Lemma 5.3, since (5.19) is equivalent to

sup
s≤0

∫ s

s−1
| f (θ)|2 dθ < ∞. (5.21)

The tempered condition (5.20) comes from (5.19) (and therefore (5.21)) and the expression of
ρ2(t) given in Lemma 5.2.

Remark 5.3 (i) Observe that, under the assumptions of Theorem 5.1, one hasA
D

h̃,V
σµ (CH ) ≡ ADh,V

σµ (CH )

for any h̃ ∈ [0, h], i.e., the pullback attractorA
D

h̃,V
σµ (CH ) is independent of h̃. Actually, if f also satisfies

(5.19), thenA
D

h̃,V
F (CH ) ≡ ADh,V

F (CH ), andA
DF (Ch̃,V

H ) ≡ ADF (Ch,V
H ).

(ii) Observe that since D̂0,µ,h ∈ D
h,V
σµ (CH), and that for each t ∈ R, D0,µ,h(t) is closed in Ch,V

H , from
Remark 3.2 and Remark 5.1, we deduce thatA

D
h,V
σµ (CH ) ∈ D

h,V
σµ (CH).
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Remark 5.4 We can also consider, for each 0 ≤ h̃ ≤ h, the class Dσµ (C
h̃,V
H ) of all families D̂ =

{D(t) : t ∈ R} ⊂ P(Ch̃,V
H ) such that

lim
τ→−∞

(
eσµτ sup

v∈D(τ)
‖v‖2h̃,V

)
= 0.

For this universe we have the chain of inclusions

DF(Ch̃,V
H ) ⊂ Dσµ (C

h̃,V
H ) ⊂ Dh̃,V

σµ
(CH) ⊂ Dσµ (CH).

Under the assumptions of Theorem 5.1, we deduce the existence of the minimal pullbackDσµ (C
h̃,V
H )-

attractorA
Dσµ (Ch̃,V

H ). Moreover, this pullback attractor satisfies

A
DF (Ch̃,V

H )(t) ⊂ ADσµ (Ch̃,V
H )(t) ⊂ ADσµ (CH )(t) ∀ t ∈ R.

In fact, if assumption (5.19) is satisfied, thenA
Dσµ (Ch̃,V

H ) ≡ ADσµ (CH ).
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