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Abstract

We prove that under suitable assumptions, from a sequence of solutions of Globally Modi-
fied Navier-Stokes equations with delays we can extract a subsequence which converges in
an adequate sense to a weak solution of a three-dimensional Navier-Stokes equation with
delays. An additional case with a family of different delays involved in the approximating
problems is also discussed.
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1 Introduction
Let Ω ⊂ R3 be an open bounded set with regular boundary Γ. For each N ∈ (0,+∞) let us define
FN : [0,+∞)→ (0, 1] by

FN(r) := min
{
1,

N
r

}
, r ∈ [0,+∞),

and consider the following system of globally modified Navier-Stokes equations in Ω, with delays
and homogeneous Dirichlet boundary condition:

∂u
∂t
− ν∆u + FN (‖u‖) [(u · ∇)u] + ∇p = G(t, u(t − ρ(t))) in (0,T ) ×Ω,

∇ · u = 0 in (0,T ) ×Ω,

u = 0 on (0,T ) × Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), in (−h, 0) ×Ω,

(1.1)

where u is the unknown velocity field of the fluid, p is the unknown pressure, and we have given
ν > 0, the kinematic viscosity, T > 0 a final time, the external force term G(t, u(t − ρ(t))), which
depends on the value u(t − ρ(t)), where 0 ≤ ρ(t) ≤ h, with h > 0, is a delay function, u0 an initial
velocity field, and φ a velocity field defined in (−h, 0).

The globally modified Navier-Stokes equations, in the case without delays, were introduced and
studied in [1] (see also [2, 3, 10, 11, 12, 21] and the review paper [9]). However, there are situations
in which the model is better described if some terms containing delays appear in the equations.

The system (1.1) has been studied in [4], where existence, uniqueness and asymptotic behaviour
of a solution u(N) = u(N)(·; u0, φ) were analyzed (see also [16, 17, 18] for the case of infinite delays
with and without modification).

This system is a modification of the the following system of Navier-Stokes equations, with delays
and homogeneous Dirichlet boundary condition:

∂u
∂t
− ν∆u + (u · ∇)u + ∇p = G(t, u(t − ρ(t))) in (0,T ) ×Ω,

∇ · u = 0 in (0,T ) ×Ω,

u = 0 on (0,T ) × Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), in (−h, 0) ×Ω,

(1.2)

which has been studied in [5] and [8] (see also [6, 7, 14, 23, 19, 15] for the two-dimensional case).
In this note we prove, in particular, that under suitable assumptions, from the family of solutions

{u(N)(·; u0, φ) : N > 0}, we can extract a sequence {u(N j)(·; u0, φ) : j = 1, 2, ...}, with N j → +∞,
which converges in an adequate sense to a weak solution of (1.2). We thus extend the result obtained
in [1] for the case without delays.

The structure of the paper is the following. In Section 2 we give some preliminaries on the ab-
stract framework to deal with the problems, and the basic assumptions under which well-possedness
of the approximating problems hold, and so that additional estimates can be obtained. In Section
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3 we establish our main result on the convergence of a subsequence of solutions of approximating
problems to one weak solution of the problem without modification. Finally, a result about the case
when different delays may appear in the approximating problems is also discussed.

2 Preliminaries
To set our problem in the abstract framework, we consider the following usual abstract spaces (see
[13] and [24, 25]):

V =

{
u ∈

(
C∞0 (Ω)

)3
: div u = 0

}
,

H = the closure of V in (L2(Ω))3 with inner product (·, ·) and associate norm |·| , where for u, v ∈
(L2(Ω))3,

(u, v) =

3∑
j=1

∫
Ω

u j(x)v j(x)dx,

V = the closure of V in (H1
0(Ω))3 with scalar product ((·, ·)) and associate norm ‖·‖ , where for

u, v ∈ (H1
0(Ω))3,

((u, v)) =

3∑
i, j=1

∫
Ω

∂u j

∂xi

∂v j

∂xi
dx.

We we will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality pairing between V and V ′. Finally,
we will identify every u ∈ H with the element fu ∈ V ′ given by

〈 fu, v〉 = (u, v) for all v ∈ V .

It follows that V ⊂ H ⊂ V ′, where the injections are dense and compact.
Now we define

b(u, v,w) =

3∑
i, j=1

∫
Ω

ui
∂v j

∂xi
w j dx,

for all measurable functions u, v,w defined on Ω with values in R3 for which the integrals in the
right-hand member of the above equality are finite. In particular, b is a trilinear continuous form on
V × V × V.

We denote
bN(u, v,w) = FN(‖v‖)b(u, v,w), ∀ u, v,w ∈ V.

The form bN is linear in u and w, but it is nonlinear in v. Evidently we have bN(u, v, v) = 0, for
all u, v ∈ V. Moreover, from the properties of b (e.g. see [20] or [24]), and the definition of FN , one
easily obtains the existence of a constant C1 > 0 only dependent on Ω such that

|bN(u, v,w)| ≤ C1 |u|1/4‖u‖3/4|v|1/4‖v‖3/4‖w‖, ∀ u, v,w ∈ V,

|bN(u, v,w)| ≤ NC1 ‖u‖‖w‖, ∀ u, v,w ∈ V.

Thus, if we denote
〈BN(u, v),w〉 = bN(u, v,w), ∀ u, v,w ∈ V,
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we have
‖BN(u, v)‖∗ ≤ C1|u|1/4‖u‖3/4|v|1/4‖v‖3/4, ∀ u, v ∈ V, (2.3)

‖BN(u, v)‖∗ ≤ NC1 ‖u‖, ∀ u, v ∈ V. (2.4)

We also consider A : V → V ′ defined by 〈Au, v〉 = ((u, v)). Denoting D(A) = (H2(Ω))3 ∩ V, then
Au = −P∆u,∀ u ∈ D(A), is the Stokes operator (P is the ortho-projector from (L2(Ω))3 onto H).

We recall (see [21]) that there exists a constant C2 > 0 depending only on Ω such that

|b(u, v,w)| ≤ C2‖u‖‖v‖|w|1/2‖w‖1/2, ∀ u, v,w ∈ V,

and
|b(u, v,w)| ≤ C2|u|‖v‖|Aw|, ∀ u ∈ H, v ∈ V,w ∈ D(A).

Moreover, we assume given a mapping G : (0,T ) × H → H such that

c1) G(·, u) : (0,T )→ H is measurable, ∀u ∈ H,

c2) there exists a nonnegative function g ∈ Lp(0,T ) for some 1 ≤ p ≤ +∞, and a nondecreasing
function L : (0,+∞)→ (0,+∞), such that for all R > 0 if |u| , |v| ≤ R, then

|G(t, u) −G(t, v)| ≤ L(R)g1/2(t) |u − v| ,

a.e. t ∈ (0,T ), and

c3) there exists a nonnegative function f ∈ L1(0,T ), such that for any u ∈ H,

|G(t, u)|2 ≤ g(t) |u|2 + f (t), a.e. t ∈ (0,T ).

Finally, we suppose φ ∈ L2p′ (−h, 0; H) and u0 ∈ H, where 1/p + 1/p′ = 1.
In this situation, we consider a delay function ρ ∈ C1([0,T ]) such that 0 ≤ ρ(t) ≤ h for all t ∈ [0,T ],
and there exists a constant ρ∗ satisfying

ρ′(t) ≤ ρ∗ < 1 ∀ t ∈ [0,T ].

Definition 2.1 Let u0 ∈ H and φ ∈ L2p′ (−h, 0; H) be given. A weak solution of (1.1) is a function
u ∈ L2p′ (−h,T ; H) ∩ L2(0,T ; V) ∩ L∞(0,T ; H) such that

(u(t),w) + ν

∫ t

0
((u(s),w)) ds +

∫ t

0
bN (u(s), u(s),w) ds

= (u0,w) +

∫ t

0
(G(s, u(s − ρ(s))),w) ds,

for all t ∈ [0,T ] and all w ∈ V, and coincides with φ(t) a.e. in (−h, 0).

Remark 2.1 The definition of a weak solution of (1.2) is the analogous of Definition 2.1, but with
b instead of bN .
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Remark 2.2 If u is a weak solution of (1.1) and we define g̃(t) = g(θ−1(t)), where θ : [0,T ] →
[−ρ(0),T − ρ(T )] is the differentiable and strictly increasing function given by θ(s) = s − ρ(s), then,
by c3), we obtain ∫ T

0
|G(t, u(t − ρ(t)))|2 dt

≤
1

1 − ρ∗

∫ T−ρ(T )

−ρ(0)
g̃(t)|u(t)|2 dt +

∫ T

0
f (t) dt,

and therefore, taking into account the facts that g̃ ∈ Lp(−ρ(0),T − ρ(T )) and u ∈ L2p′ (−h,T ; H) ∩
L∞(0,T ; H), we have that G(·, u(·−ρ(·))) belongs to L2(0,T ; H). Thus, as u ∈ L2(0,T ; V) and satisfies
the equation

u′(t) + νAu(t) + BN(u(t), u(t)) = G(t, u(t − ρ(t))),

in D′(0,T ; V ′), as a consequence of (2.4), u′ ∈ L2(0,T ; V ′), and consequently (see [25]) u ∈
C([0,T ]; H) and satisfies the energy equality

|u(t)|2 + 2ν
∫ t

s
‖u(r)‖2 dr = |u(s)|2 + 2

∫ t

s
(G(r, u(r − ρ(r))), u(r)) dr,

for all 0 ≤ s, t ≤ T.

In [4], the following theorem of existence and uniqueness of solutions of (1.1) was proved.

Theorem 2.1 Assume that conditions c1)-c3) are satisfied, and that u0 ∈ H and φ ∈ L2p′ (−h, 0; H)
are given. Then, there exists a unique weak solution u = u(·; u0, φ) of (1.1) which is, in fact, a strong
solution in the sense that

u ∈ C([ε,T ]; V) ∩ L2(ε,T ; D(A)),

for all 0 < ε < T. Moreover, if u0 ∈ V, then

u ∈ C([0,T ]; V) ∩ L2(0,T ; D(A)).

3 Convergence to weak solutions of Navier-Stokes Equations

The main result of this paper is the following.

Theorem 3.1 Assume that conditions c1)-c3) are satisfied, and let {u(Nk) = u(Nk)(·; u(Nk)
0 , φ(Nk)) : k =

1, 2, ...}, where Nk → +∞ as k → +∞, be a sequence of weak solutions of (1.1) with N = Nk, and
with initial data such that u(Nk)

0 ⇀ u0 weakly in H, φ(Nk) → φ strongly in L
2p

2p−1 (−h, 0; H) as k → +∞,
and the sequence {φ(Nk) : k = 1, 2, ...} is bounded in L2p′ (−h, 0; H).

Then, there exists a subsequence {u(N j) : j = 1, 2, ...} ⊂ {u(Nk) : k = 1, 2, ...}, with N j → +∞,
which converges weakly-star in L∞(0,T ; H), weakly in L2(0,T ; V), weakly-star in L2p′(−h,T ; H),
strongly in L

2p
2p−1 (−h,T ; H), and strongly in L2(0,T ; H), to a weak solution u of (1.2).
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Proof. By Remark 2.2, we know that each of these solutions u(Nk) satisfies the energy equality

1
2

d
dt
|u(Nk)(t)|2 + ν‖u(Nk)(t)‖2 = (G(t, u(Nk)(t − ρ(t))), u(Nk)(t)), a.e. t ∈ (0,T ),

and therefore, taking into account c3) and that λ1|u(Nk)(t)|2 ≤ ‖u(Nk)(t)‖2, where λ1 is the first eigen-
value of the Stokes operator, we obtain

d
dt
|u(Nk)(t)|2 + ν‖u(Nk)(t)‖2 ≤

1
νλ1

(g(t)|u(Nk)(t − ρ(t))|2 + f (t)) a.e. t ∈ (0,T ).

Consequently, integrating between 0 and t, using the function g̃ defined in Remark 2.2, and denoting
g̃(s) = 0 for all s > T − ρ(T ), we obtain

|u(Nk)(t)|2 + ν

∫ t

0
‖u(Nk)(s)‖2 ds

≤ |uNk
0 |

2 +
1

νλ1(1 − ρ∗)

∫ t

0
g̃(s)|u(Nk)(s)|2 ds

+
1

νλ1(1 − ρ∗)

∫ 0

−ρ(0)
g̃(s)|φ(Nk)(s)|2 ds +

1
νλ1

∫ T

0
f (s) ds, (3.5)

for all t ∈ [0,T ].

From the assumptions there exists a constant C > 0 such that

|uNk
0 | ≤ C and ‖φ(Nk)‖L2p′ (−h,0;H) ≤ C, for all k. (3.6)

Therefore, from (3.5) we obtain

|u(Nk)(t)|2 + ν

∫ t

0
‖u(Nk)(s)‖2 ds ≤ KT +

1
νλ1(1 − ρ∗)

∫ t

0
g̃(s)|u(Nk)(s)|2 ds, (3.7)

for all t ∈ [0,T ], where

KT = C2 +
C2

νλ1(1 − ρ∗)
‖g̃‖Lp(−ρ(0),0) +

1
νλ1

∫ T

0
f (s) ds.

Thus, by the Gronwall lemma,

|u(Nk)(t)|2 ≤ KT exp
(

1
νλ1(1 − ρ∗)

∫ T

0
g̃(s) ds

)
=: CT , (3.8)

for all t ∈ [0,T ].

From (3.6)–(3.8), we obtain that the sequence {u(Nk)} is bounded in the space L2p′ (−h,T ; H) ∩
L∞(0,T ; H) ∩ L2(0,T ; V). Moreover, taking into account (2.3) and the equation satisfied by u(Nk),
we deduce that the sequence of time derivatives d

dt u
(Nk) is bounded in L4/3(0,T ; V∗). Thus, using in

particular the Aubin-Lions compactness theorem (see [13]), there exists a subsequence u(N j) of the
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u(Nk) which converges to a function u weakly-star in L∞(0,T ; H), weakly in L2(0,T ; V), weakly-star
in L2p′ (−h,T ; H), strongly in L

2p
2p−1 (−h,T ; H) and strongly in L2(0,T ; H), and such that |u(N j)(t) −

u(t)| → 0 a.e. in (−h,T ), u(N j) → u a.e. in (−h,T ) × Ω, and d
dt u

(Nk) converges to d
dt u weakly

in L4/3(0,T ; V∗). Moreover, we can assume, without loss of generality, that there exists a function
z ∈ L

2p
2p−1 (−h,T ) such that

|u(N j)(t)| ≤ z(t) a.e. t ∈ (−h,T ).

Now, we are going to prove that this limiting function u is a weak solution of (1.2).
Evidently, as φ(N j) → φ strongly in L

2p
2p−1 (−h, 0; H), we have that u(t) = φ(t) a.e. t ∈ (−h, 0).

Thus, by the density of D(A) into V , to finish the proof it is enough to see that for all w ∈ D(A), the
function u satisfies

(u(t),w) + ν

∫ t

0
((u(s),w)) ds +

∫ t

0
b (u(s), u(s),w) ds

= (u0,w) +

∫ t

0
(G(s, u(s − ρ(s))),w) ds t ∈ [0,T ]. (3.9)

Let us fix w ∈ D(A). We know that for all j one has

(u(N j)(t),w) + ν

∫ t

0
((u(N j)(s),w)) ds +

∫ t

0
bN j (u

(N j)(s), u(N j)(s),w) ds

= (u(N j)
0 ,w) +

∫ t

0
(G(s, u(N j)(s − ρ(s))),w) ds t ∈ [0,T ]. (3.10)

Evidently, by the assumptions,
(u(N j)

0 ,w)→ (u0,w) . (3.11)

Also, as u(N j) converges to u weakly in L2(0,T ; V), we have that

((u(N j),w))→ ((u,w)) in L2(0,T ). (3.12)

Now, observe that by c2), a.e. t ∈ (0,T ) the function G(t, ·) : H → H is continuous; thus, as
|u(N j)(s) − u(s)| → 0 a.e. in (−h,T ), we have that

G(t, u(N j)(t − ρ(t)))→ G(t, u(t − ρ(t))) in H a.e. in (0,T ).

On the other hand, by c3) and (3),

|G(t, u(N j)(t − ρ(t)))| ≤ g1/2(t)z(t − ρ(t)) + f 1/2(t) a.e. in (0,T ).

Thus, by dominated convergence,

G(·, u(N j)(· − ρ(·)))→ G(·, u(· − ρ(·))) in L1(0,T ; H). (3.13)

We claim that

bN j

(
u(N j)(·), u(N j)(·),w

)
⇀ b (u(·), u(·),w) weakly in L1(0,T ). (3.14)
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This can be seen as follows. First, we observe that by the boundedness of the sequence {u(N j)} in
L2(0,T ; V), we have (see [1, Lem.12]) that

FN j (‖u
(N j)(·)‖)→ 1 in L2(0,T ).

On the other hand, reasoning as in [13, pp.76–77], one obtains that

b
(
u(N j)(·), u(N j)(·),w

)
⇀ b (u(·), u(·),w) weakly in L2(0,T ).

Moreover, from the boundedness of the sequence {u(N j)} in L2(0,T ; V) ∩ L∞(0,T ; H) and (2), we
see that the sequence {b

(
u(N j)(·), u(N j)(·),w

)
} is bounded in L2(0,T ). Then, from (3) and (3), we can

deduce (3.14).
Finally, as u(N j) → u in L2(0,T ; H), we have that

(u(N j),w)→ (u,w) in L2(0,T ). (3.15)

From (3.10)–(3.14) and (3.15), we deduce that (3.9) holds a.e. t ∈ (0,T ). Now observe that u ∈
L∞(0,T ; H), and also, due to the fact that u′ ∈ L4/3(0,T ; V ′), we have that u ∈ C([0,T ]; V ′). Thus,
u is weakly continuous as a function from [0,T ] into H (see [22]), and therefore (3.9) holds for all
t ∈ [0,T ].

With a slight modification of the proof of Theorem 3.1, it is possible to prove the following
result.

Theorem 3.2 Assume that G(·, ·) : (−h,T + h) × H → H is continuous, and conditions c2) and c3)
hold with p = 1. Let {ρ(Nk) : k = 1, 2, ...} ⊂ C1([−h,T + h]), where Nk → +∞ as k → +∞, be a
sequence of functions such that 0 ≤ ρ(Nk)(t) ≤ h for all t ∈ [−h,T + h] and any k ≥ 1, there exist
constants ρ∗ < 1 and ρ∗ ≥ 0 such that

−ρ∗ ≤ (ρ(Nk))′(t) ≤ ρ∗ for all t ∈ [−h,T + h] and any k ≥ 1,

and
ρ(Nk) → ρ̄(t) uniformly in C1([−h,T + h]) as k → +∞.

For each k ≥ 1, let us denote u(Nk), the corresponding weak solution of (1.1) with N = Nk,
ρ = ρ(Nk), and with initial data (u(Nk)

0 , φ(Nk)) such that u(Nk)
0 ⇀ u0 weakly in H, φ(Nk) → φ strongly in

L2(−h, 0; H) as k → +∞, and the sequence {φ(Nk) : k = 1, 2, ...} is bounded in L∞(−h, 0; H).
Then, there exists a subsequence {u(N j) : j = 1, 2, ...} ⊂ {u(Nk) : k = 1, 2, ...}, with N j → +∞,

which converges weakly-star in L∞(−h,T ; H), weakly in L2(0,T ; V), and strongly in L2(−h,T ; H),
to a weak solution u of (1.2) with ρ = ρ̄.

Proof. The beginning of the proof follows the same steps as in Theorem 3.1. Indeed it only requires
to be adapted slightly to deal with the different delays, but the uniform estimates can be obtained
similarly.

However, although it is possible to obtain a uniform estimate for |G(t, u(N j)(t − ρ(N j)(t)))|, since
now z ∈ L∞(−h,T ), the pass to the limit from G(t, u(N j)(t−ρ(N j)(t))) to G(t, u(t− ρ̄(t))) is not so clear,
since the time arguments of u(N j) and u are different, and the convergence only seems to hold in V ′

but not in H.
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This can be circumvented in the following way. To conclude that u is a solution for (1.2) it only
remains to prove that∫ t

0
(G(s, u(N j)(s − ρ(N j)(s))),w)ds→

∫ t

0
(G(s, u(s − ρ̄(s))),w)ds as j→ +∞, (3.16)

since the rest of the convergences in the approximating equations toward the expected limit follow
analogously as in Theorem 3.1.

Using the change of variable θ j(s) := s − ρ(N j)(s) = r, (3.16) is equivalent to prove that∫ t−ρ(N j )(t)

−ρ(N j )(0)

1
1 − (ρ(N j))′(θ−1

j (r))
(G(θ−1

j (r), u(N j)(r)),w)dr

→

∫ t−ρ̄(t)

−ρ̄(0)

1
1 − ρ̄′(θ̄−1(r))

(G(θ̄−1(r), u(r)),w)dr as j→ +∞, (3.17)

where θ̄(s) := s − ρ̄(s).
Indeed, the proof of the above convergence again will follows from the dominated convergence

theorem (observe that now the functions u(N j) and u are written in the same time values), thanks
to the continuity of G, and if we finally check that θ−1

j (r) → θ̄−1(r) as j → +∞, for almost all
r ∈ (−h,T ). Actually, we claim that

θ−1
j (r)→ θ̄−1(r) as j→ +∞, for all r ∈ (−h,T ). (3.18)

Indeed, if it is not so, there exist values r̂ ∈ (−h,T ) and ε > 0, and a subsequence relabelled
{θ−1

j }, such that |θ−1
j (r̂) − θ̄−1(r̂)| ≥ ε for all j. Then, there are two possibilities.

Case 1: For a subsequence, again relabelled {θ−1
j },

θ−1
j (r̂) ≥ θ̄−1(r̂) + ε for all j. (3.19)

Due to the strict monotonicity of θ̄ and θ̄−1 and the fact that r̂ < T, then θ̄−1(r̂) < T + h. Taking
if necessary a smaller value ε > 0, we may assume that θ̄−1(r̂) + ε ∈ [−h,T + h]. We now make
the composition of the expressions in (3.19) with θ j. This leads to r̂ = θ j(θ−1

j (r̂)) ≥ θ j(θ̄−1(r̂) + ε).
Passing to the limit when j→ +∞ and using that θ̄ is strictly increasing, we obtain that

r̂ ≥ θ̄(θ̄−1(r̂) + ε) > θ̄(θ̄−1(r̂)) = r̂,

which is a contradiction.

Case 2: For a subsequence, again relabelled {θ−1
j },

θ̄−1(r̂) ≥ θ−1
j (r̂) + ε for all j. (3.20)

We claim that
θ−1

j (r̂) + ε ≤ T + h for all j, (3.21)

if ε > 0 is small enough.
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Indeed, by the mean value theorem, for a fixed δ ∈ (0,T − r̂), we have that θ−1
j (r̂ + δ) = θ−1

j (r̂) +

δ(θ−1
j )′(rr̂,δ), with rr̂,δ ∈ (r̂, r̂ + δ). On other hand, from the assumptions on ρ(N j), we have that

min[r̂,r̂+δ](θ−1
j )′(·) ≥ 1/(1 + ρ∗). Taking if necessary a smaller value ε > 0 so that δ/(1 + ρ∗) ≥ ε, and

using the monotonicity of the functions θ−1
j , we conclude that

θ−1
j (r̂) + ε ≤ θ−1

j (r̂) +
δ

1 + ρ∗

≤ θ−1
j (r̂ + δ)

< θ−1
j (T )

≤ T + h.

This proves (3.21) and we can compose in (3.20) with θ j, whence the monotonicity of all θ j implies
that

θ j(θ̄−1(r̂)) ≥ θ j(θ−1
j (r̂) + ε).

Using again the mean value theorem in the right hand side, θ j(θ−1
j (r̂) + ε) ≥ r̂ + (1 − ρ∗)ε, whence

passing to the limit when j→ +∞ above, we conclude that

r̂ ≥ r̂ + (1 − ρ∗)ε,

which is a contradiction.
This gives (3.18), which jointly with the assumptions on ρ(N j) and ρ̄, and G, and the pointwise

convergence for almost all times of u(N j) to u, allow us to pass to the limit by the dominated conver-
gence theorem, obtaining (3.17), whence the result follows.
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