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1. Introduction and statement of the problem

The Navier-Stokes equations govern the motion of usual fluids like water, air, oil,
etc. These equations have been the object of numerous works since the first paper of
Leray was published in 1933 (see Constantin & Foias 1988; Lions 1969; Temam 1979,
and the references therein), even with unbounded domains, allowing the possibility
of channel and multi-channel flows among other variations (see for instance Rosa
1998; Temam 1979). On other hand, delay effects have been proved to be useful
in many physical and biological situations. These situations may appear when we
want to control the system (in a certain sense) by applying a force which takes into
account not only the present state of the system but the history of the solution.
To our knowledge, this has been rarely treated in the context of Navier-Stokes
equations (cf. Caraballo & Real 2001, 2003, 2004). To date, we have not found in the
literature any work that considers the combination of delay terms and unbounded
domains.

The aim of the paper is two-fold: firstly we consider several situations in which
the external force contains some hereditary features and the domain is not bounded,
and prove existence (for dimension N = 2 and 3) and uniqueness (N = 2) of
solutions. In a second part of the paper the existence and uniqueness of a stationary
solution are established in dimensions 2 and 3, and, in the case N = 2 exponential
stability of the solution under an additional assumption.

Let Ω ⊂ RN (N = 2 or 3) be an open set with boundary Γ that is not necessarily
bounded but satisfies a Poincaré inequality:

There exists λ1 > 0 such that
∫

Ω

|φ|2dx ≤ 1
λ1

∫

Ω

|∇φ|2dx, ∀φ ∈ H1
0 (Ω). (1.1)
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2 M. J. Garrido-Atienza, & P. Maŕın-Rubio

Consider the following functional Navier-Stokes problem (for further details and
notations see Lions 1969 and Temam 1979):





∂u

∂t
− ν∆u +

∑N
i=1 ui

∂u

∂xi
= f(t)−∇p + g(t, ut) in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), t ∈ (−h, 0) x ∈ Ω,

where we assume that T > 0 is given, ν > 0 is the kinematic viscosity, u is the
velocity field of the fluid, p the pressure, u0 the initial velocity field, f a non-
delayed external force field, g another external force containing some hereditary
characteristic and φ the initial datum in the interval of time (−h, 0), where h is a
positive fixed number.

To start, we consider the following usual abstract spaces:

V =
{

u ∈ (C∞0 (Ω))N : divu = 0
}

,

H = the closure of V in (L2(Ω))N with the norm |·| , and inner product (·, ·)
where for u, v ∈ (L2(Ω))N ,

(u, v) =
N∑

j=1

∫

Ω

uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))N with the norm [thanks to (1.1)] ‖·‖ associated

to the inner product ((·, ·)), where for u, v ∈ (H1
0 (Ω))N ,

((u, v)) =
N∑

i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and continuous.
We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality 〈V ′, V 〉 . Now we denote
a(u, v) = ((u, v)), and define the trilinear form b on V × V × V by

b(u, v, w) =
N∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx ∀u, v, w ∈ V.

Let X be a Banach space. Given a function u : (−h, T ) → X, for each t ∈ (0, T )
we denote by ut the function defined on (−h, 0) by the relation ut(s) = u(t+s), s ∈
(−h, 0).

In order to state the problem in the correct framework, let us first establish
suitable assumptions on the term in which the delay is present.

In a general way, let X and Y be two separable Banach spaces, and g : [0, T ]×
C0([−h, 0]; X) → Y such that

(I) for all ξ ∈ C0([−h, 0]; X), the mapping t ∈ [0, T ] → g(t, ξ) ∈ Y is measur-
able,
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Navier-Stokes equations with delays on unbounded domains 3

(II) for each t ∈ [0, T ], g(t, 0) = 0,
(III) there exists Lg > 0 such that ∀ t ∈ [0, T ], ∀ ξ, η ∈ C0([−h, 0];X)

‖g(t, ξ)− g(t, η)‖Y ≤ Lg ‖ξ − η‖C0([−h,0];X) ,

(IV) there exists Cg > 0 such that ∀ t ∈ [0, T ], ∀u, v ∈ C0([−h, T ];X)
∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

Observe that (I)-(III) imply that given u ∈ C0([−h, T ]; X), the function gu : t ∈
[0, T ] → Y defined by gu(t) = g(t, ut) ∀ t ∈ [0, T ], is measurable (see Bensoussan et
al. 1992) and, in fact, belongs to L∞(0, T ;Y ). Then, thanks to (IV), the mapping

G : u ∈ C0([−h, T ];X) → gu ∈ L2(0, T ; Y )

has a unique extension to a mapping G̃ which is uniformly continuous from L2(−h, T ; X)
into L2(0, T ; Y ). From now on, we will denote g(t, ut) = G̃(u)(t) for each u ∈
L2(−h, T ;X), and thus, ∀ t ∈ [0, T ], ∀u, v ∈ L2(−h, T ; X), we will have

∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

With the convention above, assume that u0 ∈ H, φ ∈ L2(−h, 0; V ) , f ∈ L2(0, T ;V ′),
and the following delay operators:

g1 : [0, T ]× C0([−h, 0];V ) → (L2(Ω))N

satisfying hypotheses (I)-(IV) with X = V , Y = (L2(Ω))N , Lg1 = L1 and Cg1 = C1,
and

g2 : [0, T ]× C0([−h, 0];V ) → V ′

satisfying hypotheses (I)-(IV) with X = V , Y = V ′, Lg2 = L2 and Cg2 = C2.
We are interested in the following problem:




To find u ∈ L2(−h, T ; V ) ∩ L∞(0, T ; H) such that, for all v ∈ V,
d
dt

(u(t), v) + νa(u(t), v) + b(u(t), u(t), v) = 〈f(t), v〉+ (g1(t, ut), v)

+ 〈g2(t, ut), v〉 ,
u(0) = u0, u(t) = φ(t), t ∈ (−h, 0),

(1.2)

where the equation in (1.2) must be understood in the sense of D′(0, T ).

Remark 1.1. Observe that the terms in (1.2) are well defined. In particular, by
hypotheses (I)-(IV), if u ∈ L2(−h, T ;V ) the term g1(t, ut) defines a function in
L2(0, T ; (L2(Ω))N ), and the term g2(t, ut) defines a function in L2(0, T ; V ′). Thus
(see Lions 1969), if u ∈ L2(−h, T ; V )∩L∞(0, T ; H) satisfies the equation in (1.2), u
is weakly continuous from [0, T ] into H, and therefore the initial condition u(0) = u0

makes sense. Of course, for N = 2, if there exists a solution u to the problem (1.2),
it then belongs to the space C0([0, T ];H).

In Section 2 we shall prove existence of solutions to (1.2) and the uniqueness
of solution to the problem in the case N = 2. In Section 3, general situations
containing delayed terms –variable and distributed– are considered. We finish with
the study of existence and uniqueness of a stationary solution and its exponential
stability (for N = 2) in Section 4.
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2. Existence of solutions

In this section we will prove a general theorem on the existence of solutions when
N = 2 or 3, and uniqueness if N = 2.

In the proof of existence we will need the following two results:

Theorem 2.1. (cf. [Caraballo & Real 2001, Theorem A.1]) Let u0 ∈ Rm, φ ∈
L2(−h, 0;Rm), k ∈ L2(0, T ;Rm), g : [0, T ] × C0([−h, 0];Rm) → Rm satisfying
hypotheses (I)-(IV) with X = Y = Rm, and f : [0, T ] × Rm → Rm a continuous
function such that f(t, 0) = 0 and for all n > 0 there exists Ln > 0 such that

|f(t, u)− f(t, v)|Rm ≤ Ln|u− v|Rm , ∀ |u|Rm ≤ n, |v|Rm ≤ n, ∀ t ∈ [0, T ].

Then:
a) For each t∗ ∈ (0, T ] there exists at most one solution to the problem




To find u ∈ L2(−h, t∗;Rm) ∩ C0([0, t∗];Rm) such that
u(t) = φ(t), t ∈ (−h, 0),

u(t) = u0 +
∫ t

0

f(s, u(s)) ds +
∫ t

0

g(s, us) ds +
∫ t

0

k(s) ds ∀ t ∈ [0, t∗].
(2.1)

b) There exists t∗ ∈ (0, T ] such that there exists one (and only one) solution to the
problem (2.1).
c) Suppose that there exists a constant C > 0 such that if t∗ ∈ (0, T ] is such
that there is a solution u of (2.1), then maxt∈[0,t∗] |u(t)|Rm ≤ C. Then, under this
additional assumption, there exists a solution to problem (2.1) with t∗ = T .

Theorem 2.2. (cf. [Simon 2003, Corollary 2.34]) Let Θ be a bounded open set of
Rd, and X ⊂ E Banach spaces with compact injection. Consider 1 ≤ r < q ≤ ∞.
Suppose F ⊂ Lr(Θ; E) satisfies

(i) ∀ω ⊂⊂ Θ, supf∈F ‖τhf − f‖Lr(ω;E) → 0 when h → 0 [where τhf is the
translation: (τhf)(x) = f(x + h)],

(ii) F is bounded in Lq(Θ;E) ∩ L1(Θ;X).

Then F is precompact in Lr(Θ; E).

The main result in this section needs extra notation for an additional condition
(V), which will be discussed in some detail below in Remark 2.5.

Denote V(O) the same space as V but with an open set O instead of Ω, and
analogously define V (O) the closure of V(O) in (H1

0 (Ω))N .

Theorem 2.3. Let u0 ∈ H, φ ∈ L2(−h, 0; V ), f ∈ L2(0, T ;V ′), and assume that
g1 : [0, T ]×C0([−h, 0]; V ) → (L2(Ω))N and g2 : [0, T ]×C0([−h, 0];V ) → V ′ satisfy
hypotheses (I)-(IV) in their corresponding spaces. Then:

a) If N = 2 and ν2 > C2, there exists at most one solution to problem (1.2).
b) If N ∈ {2, 3} and ν2 > C2, there exists a solution to (1.2) if, in addition,

the following assumption (V) holds:
(V) If vm converges weakly to v in L2(−h, T ; V ), weakly-star in L∞(0, T ; H),

and strongly in L2(−h, T ; (L2(O))N ) for a bounded open set O ⊂ Ω with smooth
boundary, then gi(·, vm

· ) converges weakly to gi(·, v·) in L2(0, T ; V (O)′) for i = 1, 2.
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Proof. a) Uniqueness for N = 2 follows as the case with bounded domain given
in Theorem 2.1 in [Caraballo & Real 2001] and it is reproduced here for the sake of
completeness. If ν2 > C2, let u, v be two solutions to (1.2) and set w = u−v. Then,
from the energy equality, and the bound for the trilinear form (see Ladyzhenskaya
1992), it follows that for all t ∈ (0, T )

|w(t)|2 + 2ν

∫ t

0

‖w(s)‖2 ds = −2
∫ t

0

b(w(s), u(s), w(s)) ds

+2
∫ t

0

(g1(s, us)− g1(s, vs), w(s)) ds

+2
∫ t

0

〈g2(s, us)− g2(s, vs), w(s)〉 ds

≤ 21/2

∫ t

0

|w(s)|‖w(s)‖‖u(s)‖ds

+2
∫ t

0

|g1(s, us)− g1(s, vs)| |w(s)| ds

+2
∫ t

0

‖g2(s, us)− g2(s, vs)‖∗ ||w(s)|| ds.

Then, from assumption (IV), taking into account that w(s) = 0 for s ∈ (−h, 0),
and denoting 2ε = ν −√C2 > 0, we have for all t ∈ (0, T )

|w(t)|2 + 2ν

∫ t

0

‖w(s)‖2 ds ≤ 1
2ε

∫ t

0

|w(s)|2‖u(s)‖2 ds + ε

∫ t

0

‖w(s)‖2 ds

+
C1

ε

∫ t

0

|w(s)|2 ds + ε

∫ t

0

‖w(s)‖2 ds

+2
√

C2

∫ t

0

‖w(s)‖2 ds,

and so,

|w(t)|2 + 2ε

∫ t

0

‖w(s)‖2 ds ≤ 1
2ε

∫ t

0

|w(s)|2‖u(s)‖2 ds +
C1

ε

∫ t

0

|w(s)|2 ds,

from which uniqueness follows thanks to the Gronwall lemma: indeed, denoting
C = max(2−1, C1)/ε, we have that

d
dt

(
|w(t)|2exp

{
−C

∫ t

0

(‖u(s)‖2 + 1)ds

})
≤ 0.

b) Now for the existence, we assume N ∈ {2, 3}, ν2 > C2 and that condition
(V) holds.

We will develop a proof based on the unbounded case without delays (see for
instance Temam 1979), and on the case with delays on bounded domains (Caraballo
& Real 2001), but with both difficulties treated jointly.
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Consider an orthonormal basis B = {w1, . . . , wn, . . .} ⊂ V of H such that linear
combinations of elements of B are dense in V.† [Notice one usually takes a special
basis, using the Stokes operator. This is not valid here since compactness is lost,
and it will have influence on the way one can obtain a convergent subsequence,
because standard estimates on the derivatives of the velocity fields are not valid
neither.]

Let us denote Vm =span[w1, . . . , wm], PH
Vm

: H → Vm the projector given by
PH

Vm
u =

∑m
j=1(u,wj)wj . We will also denote PV

Vm
: V → Vm the projector given

by PV
Vm

u =
∑m

j=1((v, w̃j))w̃j (where the sequence {w̃1, . . . , w̃n} comes from the
Gram-Schmidt orthonormalization process in V ; this will be useful since the initial
convergence in (−h, 0) must hold in V ).

Finally, define um(t) =
∑m

j=1 γmj(t)wj , where




um ∈ L2(−h, T ; Vm) ∩ C0([0, T ];Vm)
d
dt

(um(t), wj) + νa(um(t), wj) + b(um(t), um(t), wj) = 〈f(t), wj〉+
+ (g1(t, um

t ), wj) + 〈g2(t, um
t ), wj〉 in D′(0, T ), 1 ≤ j ≤ m,

um(0) = PH
Vm

u0, um(t) = PV
Vm

φ(t), t ∈ (−h, 0).

(2.2)

The preceding is a system of ordinary functional differential equations in the
unknown γm(t) = (γm1(t), ..., γmm(t)). Existence and uniqueness of solution is ob-
tained by applying Theorem 2.1 stated above.

Observe that problem (2.2) has one solution defined in an interval [0, t∗] with
0 < t∗ ≤ T . However, as usual, it can be deduced by the a priori estimates below,
we can set t∗ = T.

In fact, multiplying in (2.2) by γmj(t) and summing in j, we get for all t ∈ [0, t∗]

|um(t)|2 + 2ν

∫ t

0

‖um(s)‖2 ds ≤ |u0|2 + 2
∫ t

0

〈f(s), um(s)〉ds

+2
∫ t

0

(g1(s, um
s ), um(s)) ds

+2
∫ t

0

〈g2(s, um
s ), um(s)〉 ds,

and arguing in a similar manner as in the proof of uniqueness in the 2-dimensional
case, we easily get two constants (depending on φ, ν, f, g1, g2, h, T, but not on m
nor t∗) K1 and K2 such that

sup
t∈[0,t∗]

|um(t)|2 ≤ K1,

∫ t∗

0

‖um(s)‖2 ds ≤ K2. (2.3)

So we can take t∗ = T , and obtain that {um} is bounded in L2(0, T ; V )∩L∞(0, T ; H),
so there exists a subsequence, relabelled the same, such that

um ⇀ u in L2(0, T ; V ) weakly and in L∞(0, T ; H) weak-star as m →∞. (2.4)

† This can be obtained as follows: V is separable (since it is a subset of (H1
0 (Ω))N ), and by

definition V is dense in V and H, which implies that V is also dense in H. Thus, given a sequence
{vi}i≥1 ⊂ V dense in V, we may take a sequence {wi

n}i,n≥1 ⊂ V which accumulates to every point
vi, and therefore, linear combinations of these elements are dense in V and H. Since V ⊂ H are
vectorial subspaces of (L2(Ω))N , linear (in)dependence is equivalent considered in any of them,
whence B is obtained applying the Gram-Schmidt orthonormalization process.
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Moreover, observe that um = PV
Vm

φ in (−h, 0) converges to φ in L2(−h, 0; V ), and,
in particular, thanks to (IV), g1(·, um) + g2(·, um) is bounded in L2(0, T ;V ′).

As we noticed before, when it is possible to choose a special basis (in bounded do-
mains it is so), standard estimates on ‖ d

dtu
m‖L2(0,T ;V ′) (for N = 2, and L4/3(0, T ;V ′)

for N = 3) allow us to obtain a compactness result: a subsequence um converges to
u in L2(0, T ; H).

Here we will have a similar result but not in a straightforward way, nor on the
whole domain Ω. Actually, what holds in this case is the following:
For any bounded open set O ⊂ Ω there exists a subsequence (depending on O which
we relabel) satisfying

um|O → u|O in L2(0, T ; (L2(O))N ). (2.5)

For the sake of clarity, we postpone the proof (we will use Theorem 2.2) to Lemma
2.4 below.

Now, let ψ be a continuously differentiable function on [0, T ] with ψ(T ) =
0. Consider equation (2.2) and a fixed element wj of B. Since (um(·), wj)ψ(·) ∈
W 1,1(0, T ) (actually in H1(0, T ) for N = 2, and W 1,4/3(0, T ) for N = 3) we have

−
∫ T

0

(um(t), ψ′(t)wj)dt + ν

∫ T

0

((um(t), wjψ(t)))dt

+
∫ T

0

b(um(t), um(t), wjψ(t))dt = (um(0), wj)ψ(0) +
∫ T

0

〈f(t), wjψ(t)〉dt

+
∫ T

0

(g1(t, um
t ), wjψ(t))dt +

∫ T

0

〈g2(t, um
t ), wjψ(t)〉dt.

Taking a diagonal subsequence, denoted again um, that satisfies (2.5) for a
sequence of regular bounded open sets Oj ⊂ Ω that contain all supports of functions
wj of the basis, we may now pass to the limit, thanks to the weak convergence in
(2.4) and condition (V) too. Thus, we obtain (first for any w ∈ {w1, w2, . . .}, and
by density for every w ∈ V ):

−
∫ T

0

(u(t), ψ′(t)w)dt + ν

∫ T

0

((u(t), wψ(t)))dt

+
∫ T

0

b(u(t), u(t), wψ(t))dt = (u0, w)ψ(0) +
∫ T

0

〈f(t), wψ(t)〉dt

+
∫ T

0

(g1(t, ut), wψ(t))dt +
∫ T

0

〈g2(t, ut), wψ(t)〉dt. (2.6)

Writing (2.6) for ψ ∈ D(0, T ), u satisfies (2.2) in the distribution sense.
By Remark 1.1 it makes sense to wonder about the value at time t = 0. Now,

since (u(t), wj)ψ(t) ∈ W 1,4/3(0, T ), for both N = 2 or 3, arguing as before, we ob-
tain an analogous expression to (2.6) with (u(0), w) instead of (u0, w). This implies
(u(0)− u0, w) = 0 for all w ∈ V, so u(0) = u0.
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For the following result, let us observe that the constants appearing in stan-
dard estimates of the trilinear form b –for a proof see for instance Temam 1979,
lemmas 3.3, 3.4, 3.5 and Theorem 3.3, pp. 291 and forward– may be improved (cf.
Ladyzhenskaya 1992 for the case N = 2). Although it is not essential to make the
most of them for existence and uniqueness, since we will establish a stability result
later, we use them in order to ensure it under the minimal conditions.

Lemma 2.4. Under the assumptions of Theorem 2.3, the sequence um given in
(2.2) is precompact in the following sense: suppose a bounded open set O ⊂ Ω is
given, then there exists a subsequence depending on O, which we relabel, such that

um|O → u|O in L2(0, T ; (L2(O))N ),

where u is the weak limit given in (2.4).

Proof. We will adapt the proof of Theorem 9.4 [cf. Simon 2003] to check our situa-
tion fits to the Theorem 2.2. More exactly, we claim it can be applied taking r = 2,
q = +∞, Θ = (0, T ).

For the set O ⊂ Ω let us make precise a technical detail: if O ⊂⊂ Ω one may
obtain a finite recovering of balls, denoted Õ ⊂ Ω, which is bounded and open, and
then X = (H1(Õ))N ⊂ E = (L2(Õ))N with compact injection.

However, for a general O ⊂ Ω the above comment may not be true since O
and Ω can share part of their boundaries. The compact injection from H1 may
not hold for lack of regularity on the boundary (it is not imposed for Γ), however
it does in H1

0 . One may then use a truncation argument (see for instance Rosa
1998): fix χ ∈ C1(R+) with χ(s) = 1 for s ∈ [0, 1] and χ(s) = 0 for s ≥ 4. Con-
sider O as in the statement, let R > 0 be such that O ⊂ B(0, R) and denote
Õ = Ω ∩B(0, 2R), and um,R(x) = um(x)χ(|x|2/R2). Again the compactness holds
for X = (H1

0 (Õ))N ⊂ E = (L2(Õ))N with compact injection, and we conserve the
original functions um on Ω ∩B(0, R).

For the sake of clarity, we continue the proof directly with um instead of um,R.
Since condition (ii) in Theorem 2.2 is obviously satisfied by (2.3), we concentrate
on (i). Actually, we will prove that for the whole domain Ω the following property
holds:

sup
m∈N

‖τhum − um‖L2(0,T−h;(L2(Ω))N ) → 0 when h → 0.

Consider h > 0 arbitrarily small. From (2.2) we deduce for (t, t + h) ⊂ (0, T )
that

∫

Ω

(um(t+h)−u(t))wjdx+ν

∫ t+h

t

∫

Ω

∇um(s)·∇wjdxds+
∫ t+h

t

b(um(s), um(s), wj)ds

=
∫ t+h

t

〈f(s), wj〉ds +
∫ t+h

t

∫

Ω

g1(s, um
s )wjdxds +

∫ t+h

t

〈g2(s, um
s ), wj〉ds.
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Multiplying by γmj(t + h)− γmj(t) and summing in j we obtain
∫

Ω

|um(t + h)− u(t)|2dx = −ν

∫ t+h

t

∫

Ω

∇um(s) · (∇um(t + h)−∇um(t))dxds

+
∫ t+h

t

b(um(s), um(s), um(t + h)− um(t))ds

+
∫ t+h

t

∫

Ω

g1(s, um
s )(um(t + h)− um(t))dxds

+
∫ t+h

t

〈f(s) + g2(s, um
s ), um(t + h)− um(t)〉ds.

The right hand side may be bounded by

ν|∇um(t + h)−∇um(t)|
∫ t+h

t

|∇um(s)|ds

+
∫ t+h

t

GN (|um(s)|, ‖um(s)‖, ‖um(t + h)− um(t)‖) ds

+
∫ t+h

t

|g1(s, um
s )||um(t + h)− um(t)|ds

+
∫ t+h

t

(‖f(s)‖∗ + ‖g2(s, um
s )‖∗) ‖um(t + h)− um(t)‖ds

where the trilinear form b is bounded (depending on the dimension) by the function
GN : R3 → R defined as

GN (x, y, z) =
{

2−1/2xyz if N = 2,

2−1x1/2y3/2z if N = 3.
(2.7)

Thus, using (1.1) and (2.3), we have proved that
∫

Ω

|um(t + h)− um(t)|2dx ≤ ‖um(t + h)− um(t)‖
∫ t+h

t

Gm(s)ds

where the function Gm : R→ R is defined (recall definition given in (2.7)) as

Gm(s)=

{
ν‖um(s)‖+(2−1K1)1/2‖um(s)‖+‖f(s)‖∗+‖g2(s, um

s )‖∗+λ
−1/2
1 |g1(s, um

s )| if N = 2,

ν‖um(s)‖+2−1K
1/4
1 ‖um(s)‖3/2+‖f(s)‖∗+‖g2(s, um

s )‖∗+λ
−1/2
1 |g1(s, um

s )| if N = 3.

To finish the proof, we will estimate

‖τhum − um‖2L2(0,T−h;(L2(Ω))N ) =
∫ T−h

0

∫

Ω

|τhum − um|2dxdt

≤
∫ T−h

0

‖um(t + h)− um(t)‖
∫ t+h

t

Gm(s)dsdt.

For the right hand side, the Fubini theorem yields, using the function

s̄ =





0 if s ≤ 0,

s if 0 < s ≤ T − h,

T − h if s > T − h,
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10 M. J. Garrido-Atienza, & P. Maŕın-Rubio

to
∫ T−h

0

‖um(t + h)− um(t)‖
∫ t+h

t

Gm(s)dsdt ≤
∫ T

0

Gm(s)
∫ s̄

s−h

‖um(t + h)− um(t)‖dtds

≤ 2(hK2)1/2

∫ T

0

Gm(s)ds

where we have used Young inequality, (2.3) and the fact that 0 ≤ s̄− s− h ≤ h for∫ s̄

s−h
‖um(t + h)− um(t)‖dt. Indeed,

∫ s̄

s−h

‖um(t + h)− um(t)‖dt ≤
(∫ s̄

s−h

dt

)1/2 (∫ s̄

s−h

‖um(t + h)− um(t)‖2dt

)1/2

≤ 2h1/2

(∫ T−h

0

∫

Ω

|∇um|2dxdt

)1/2

≤ 2h1/2K
1/2
2 .

To conclude, we observe that
∫ T

0
Gm(s)ds is bounded, for N = 2 or 3. For instance,

suppose N = 2, then one has

∫ T

0

(
(ν + (2−1K1)1/2)‖um(s)‖+ ‖f(s)‖∗ + ‖g2(s, um

s )‖∗ + λ
−1/2
1 |g1(s, um

s )|
)

≤ (ν + (2−1K1)1/2)
√

T

(∫ T

0

‖um(s)‖2ds

)1/2

+
√

T

(∫ T

0

‖f(s)‖2∗ds

)1/2

+
√

T

(∫ T

0

‖g2(s, um
s )‖2∗ds

)1/2

+
√

Tλ
−1/2
1

(∫ T

0

|g1(s, um
s )|2ds

)1/2

,

and assumptions (II) and (IV) give bounds for the integrals of gi in terms of the
bounds in (2.3). The case N = 3 is analogous, since the only difference, namely
∫ T

0

‖um(s)‖3/2ds, is also bounded by T 1/4

(∫ T

0

‖um(s)‖2ds

)3/4

.

Remark 2.5. On condition (V)
(i) The reason we formulate condition (V) with so many assumptions is to state

it in the weakest way, since all these hypothesis are satisfied by {um}.
(ii) By the assumptions on {vm} and (IV) we already know {gi(·, vm

· )}, i = 1, 2
are weakly relatively compact in L2(0, T ; (L2(Ω))N ) and L2(0, T ; V ′) respectively,
and so both in L2(0, T ; V (O)′) for any O ⊂ Ω. What claimed is that if O ⊂ Ω is
bounded and has a smooth boundary, the weak limit is precisely gi(·, v·).

When Condition (V) is satisfied in all “good” O ⊂ Ω (actually, it is enough for
all Oj ⊃supp(wj)), then the convergence holds in L2(0, T ; V ′). Indeed, consider ϕ ∈
V. We check that limm〈gi(·, vm

· ), ϕ〉 = 〈gi(·, v·), ϕ〉. Take a sequence ϕn ∈ V such
that ϕn → ϕ in V, and fix ε > 0. Consider nε such that max{‖gi(·, vm

· )‖, ‖gi(·, v·)}‖ϕn−
ϕ‖ ≤ ε/2 for all n ≥ nε. Observe that 〈gi(·, vm

· )−gi(·, v·), ϕnε〉 → 0, so it is possible
to choose mε to conclude that the claim is true.

(iii) Consider the following condition:
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(IV’) there exists Cg > 0 such that ∀ t ∈ [0, T ], ∀u, v ∈ C0([−h, T ];V ) and for
every bounded subset O ⊂ Ω

∫ t

0

‖g(s, us)− g(s, vs)‖2(L2(O))N ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2(L2(O))N ds,

where the norm ‖ · ‖(L2(O))N is understood as the restriction to O of the concerned
functions.

Observe that if g1 satisfies (I)-(IV) and (IV’), then, as a direct consequence of
(IV’), g1 satisfies assumption (V).

3. Some general situations

In this section, we are going to show some situations where our theory can be
applied. The cases considered include situations of variable and distributed delay.
For other examples, see [Caraballo & Real 2003].

(a) Case 1

Let G : [0, T ] × RN → RN be a measurable function satisfying G(t, 0) = 0 for
all t ∈ [0, T ], and assume that there exists L1 > 0 such that

|G(t, u)−G(t, v)|RN ≤ L1|u− v|RN ,∀u, v ∈ RN .

Consider a function ρ(t), which is going to play the role of the delay function. We
suppose that ρ ∈ C1([0, T ]), ρ(t) ≥ 0 for all t ∈ [0, T ], h = maxt∈[0,T ] ρ(t) > 0
and ρ∗ = maxt∈[0,T ] ρ

′(t) < 1. Then, we define g1(t, ξ)(x) = G(t, ξ(−ρ(t))(x)) for
each ξ ∈ C0([−h, 0];H), x ∈ Ω and t ∈ [0, T ]. Notice that, in this case, the delayed
term g1 in our problem turns into g1(t, ut) = G(t, u(t−ρ(t))). Then, g1 satisfies the
corresponding hypotheses in Theorem 2.3.

Indeed, (I)-(III) follow immediately. On the other hand, if u, v ∈ L2(−h, T ; H),
using the change of variable τ = s− ρ(s) it is easy to see that
∫ t

0

‖g1(s, us)− g1(s, vs)‖2(L2(O))N ds ≤
∫ t

−h

‖u(τ)− v(τ)‖2(L2(O))N dτ ∀ t ∈ [0, T ],

for any O ⊂ Ω and, consequently, (IV), (IV’) and (V) are fulfilled.

(b) Case 2

Let now G : [0, T ] × [−h, 0] × RN → RN be a measurable function satisfying
G(t, s, 0) = 0 for all (t, s) ∈ [0, T ] × [−h, 0] and such that there exists a function
γ ∈ L2(−h, 0) such that

|G(t, s, u)−G(t, s, v)|RN ≤ γ(s)|u− v|RN ,∀u, v ∈ RN ∀ (t, s) ∈ [0, T ]× [−h, 0].

Then, we define g1(t, ξ)(x) =
∫ 0

−h

G(t, s, ξ(s)(x)) ds for each ξ ∈ C0([0, T ];H),

x ∈ Ω and t ∈ [0, T ]. In this case, the delayed term g1 in our problem becomes

g1(t, ut) =
∫ 0

−h

G(t, s, u(t + s)) ds.
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As in Case 1, g1 satisfies the hypotheses in Theorem 2.3 with X = H and Y =(
L2(Ω)

)N .
Indeed, (I) and (II) can be deduced immediately. On the other hand, if ξ, η ∈

C0([0, T ]; H), for each t ∈ [0, T ] we obtain

|g1(t, ξ)− g1(t, η)|2 ≤
∫

Ω

(∫ 0

−h

|G(t, s, ξ(s)(x))−G(t, s, η(s)(x))|RN ds

)2

dx

≤
∫

Ω

(∫ 0

−h

γ(s)|ξ(s)(x)− η(s)(x)|RN ds

)2

dx

≤
∫

Ω

‖γ‖2L2(−h,0)

(∫ 0

−h

|ξ(s)(x)− η(s)(x)|2RN ds

)
dx

≤ h‖γ‖2L2(−h,0)‖ξ − η‖2C0([0,T ];H).

Finally, if u, v ∈ L2(−h, T ; H) then, for each t ∈ [0, T ] it follows
∫ t

0

|g1(τ, uτ )−g1(τ, vτ )|2 dτ ≤ h‖γ‖2L2(−h,0)

∫ t

0

(∫ 0

−h

|u(s + τ)− v(s + τ)|2 ds

)
dτ,

and, with the change r = s + τ,
∫ t

0

|g1(τ, uτ )− g1(τ, vτ )|2 dτ ≤ h‖γ‖2L2(−h,0)

∫ t

0

(∫ τ

τ−h

|u(r)− v(r)|2 dr

)
dτ

≤ hT‖γ‖2L2(−h,0)

∫ t

−h

|u(r)− v(r)|2 dr.

Condition (V) can be checked similarly.

4. Stability of stationary solutions

In this section, we prove existence and uniqueness of stationary solutions to our
Navier-Stokes model for dimensions N = 2 or 3, when the delay term has a special
form, provided the viscosity is large enough. Additionally, for N = 2, we see that
all the solutions to the evolutionary problem converge to the (unique) stationary
solution exponentially fast.

From here on we suppose f is independent of time, and the delay term has the
form g(t, ut) = G(u(t− ρ(t)) with G as in Case 1 but independent of time too, i.e.
G : RN → RN satisfies G(0) = 0 and there exists L1 > 0 such that

|G(u)−G(v)|RN ≤ L1|u− v|RN ,∀u, v ∈ RN .

So we will consider the problem




To find u ∈ L2(−h, T ; V ) ∩ L∞(0, T ; H) such that, for all v ∈ V,
d
dt

(u(t), v) + νa(u(t), v) + b(u(t), u(t), v) = 〈f, v〉+ (G(ut), v) ,

u(0) = u0, u(t) = φ(t), t ∈ (−h, 0).

(4.1)

A stationary solution to (4.1) is a function u∗ ∈ V such that

νa(u∗, v) + b(u∗, u∗, v) = 〈f, v〉+ (G(u∗), v) for all v ∈ V. (4.2)

Then, we may establish the following
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Theorem 4.1. Suppose that G satisfies the conditions above and ν > λ−1
1 L1. Then,

(a) For all f ∈ V ′ there exists at least a solution to (4.2);
(b) The following conditions are sufficient to have uniqueness of solution to

(4.2):
(ν − λ−1

1 L1)2 > (2λ1)−1/2‖f‖∗ for N = 2,

and
(ν − λ−1

1 L1)2 > 2−1λ
−1/4
1 ‖f‖∗ for N = 3.

Proof. (a) As before, we consider B = {w1, w2, . . .} an ortonormal basis in H
composed by elements of V such that their linear combinations are dense in V.

Since compact injection is not valid in this context, we modify the arguments
in Simon 2003 and in Caraballo & Real 2003 (Theorem 3.1). We will proceed in
three steps, by a Galerkin argument and using Brouwer fixed point theorem on each
projected equation.

Step 1: Denote Vm =span[w1, . . . , wm] and consider, for a fixed zm ∈ Vm, the
problem of finding um ∈ Vm such that solves the equation

ν((um, vm)) + b(zm, um, vm) = 〈f, vm〉+ (G(zm), vm) ∀vm ∈ Vm. (4.3)

Observe that for each zm ∈ Vm the functional (u, v) 7→ ν((u, v)) + b(zm, u, v) is
bilinear, continuous and coercive in Vm × Vm (Vm is considered with the norm ‖ · ‖
of V ). On other hand, the functional in Vm defined by v 7→ 〈f, v〉 + (G(zm), v) is
obviously linear and continuous. So, by the Lax-Milgram Theorem, for each fixed
zm ∈ Vm, there exists a unique solution to (4.3), which we denote um. Define
Tm : Vm → Vm the operator given by Tm(zm) = um.

Step 2: We will see that for each m we may apply a fixed point theorem to the
map Tm (restricted to a suitable subset Km ⊂ Vm) to ensure that we can obtain
existence of um ∈ Vm such that

ν((um, vm)) + b(um, um, vm) = 〈f, vm〉+ (G(um), vm) ∀vm ∈ Vm. (4.4)

In order to proceed, we take in (4.3) vm = um, which leads by standard estimations
to the following

ν‖um‖2 ≤ ‖f‖∗‖um‖+ λ−1
1 L1‖zm‖‖um‖ ⇒ ν‖um‖ ≤ ‖f‖∗ + λ−1

1 L1‖zm‖.

As long as we assume ν > λ−1
1 L1, one may take k > 0 such that k(ν − λ−1

1 L1) ≥
‖f‖∗, so we conclude ν‖um‖ ≤ kν − kλ−1

1 L1 + λ−1
1 L1‖zm‖. We define now Km =

{z ∈ Vm : ‖z‖ ≤ k}, which is a convex set of V, and indeed compact. Observe that
the application Tm maps Km into itself.

We will complete this step applying the Brouwer fixed point theorem to Tm|Km .
For this goal, it only remains to check that Tm is continuous. Indeed, take zm

1 and
zm
2 ∈ Vm and denote by um

i = T (zm
i ) the respective solutions to equations (4.4).

So, taking the difference

ν((um
1 − um

2 , vm)) + b(zm
1 , um

1 , vm)− b(zm
2 , um

2 , vm) = (G(zm
1 )−G(zm

2 ), vm)
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for all vm ∈ Vm. In particular, if we put vm = um
1 − um

2 , and since b(u, v, v) = 0,
we have the required continuity of Tm|Km

:

ν‖um
1 − um

2 ‖2 = b(zm
2 , um

2 , um
1 − um

2 )− b(zm
1 , um

1 , um
1 − um

2 )
+(G(zm

1 )−G(zm
2 ), um

1 − um
2 )

= b(zm
2 , um

2 , um
1 − um

2 )± b(zm
2 , um

1 , um
1 − um

2 )− b(zm
1 , um

1 , um
1 − um

2 )
+(G(zm

1 )−G(zm
2 ), um

1 − um
2 )

= b(zm
2 − zm

1 , um
1 , um

1 − um
2 ) + (G(zm

1 )−G(zm
2 ), um

1 − um
2 ).

Taking into account that um
1 ∈ Km, this can be bounded by

ν‖um
1 − um

2 ‖2 ≤
{

((2λ1)−1/2k + λ−1
1 L1)‖zm

2 − zm
1 ‖‖um

1 − um
2 ‖ if N = 2,

(2−1λ
−1/4
1 k + λ−1

1 L1)‖zm
2 − zm

1 ‖‖um
1 − um

2 ‖ if N = 3.

Step 3: We will pass to the limit on the solutions obtained in Step 2 to conclude
the existence of a solution of (4.2).

Put vm = um in (4.4), so

ν‖um‖2 = 〈f, um〉+ (G(um), um) ≤ ‖f‖∗‖um‖+ λ−1
1 L1‖um‖2.

This gives a uniform bound in V for all the solutions obtained in Step 2: ‖um‖ ≤
‖f‖∗/(ν − λ−1

1 L1). [Actually this is redundant since we did check this as the op-
timal value k in Step 2, valid bound for all the fixed point with the norm ‖ · ‖ on
every Km.] We may extract a weakly convergent subsequence (which we relabel the
same): um ⇀ u in V. Moreover, for any regular bounded set O ⊂ Ω, we have the
same uniform bounds of um|O, which means, using now the compact injection, that
um|O → u|O in (L2(O))N .

To proceed, we fix any wj ∈ B. Since we have a (sub-)sequence of equations
(4.4) for every m greater than j, it is clear we may pass through the limit on every
term to obtain

ν((u, wj)) + b(u, u, wj) = 〈f, wj〉+ (G(u), wj). (4.5)

The first term is obtained by the weak convergence in V um ⇀ u. The trilinear terms
converge as long as they have sense on the support of wj which is compact (denote
by Oj ⊂ Ω a bounded open set with smooth boundary containing it); thus we not
only have the weak convergence um ⇀ u in V but the strong convergence um → u
in (L2(Oj))N . Finally, for the terms (G(um), wj) we have something similar:

|(G(um), wj)−(G(u), wj)| ≤ ‖G(um)−G(u)‖(L2(Oj))N |wj | ≤ L1‖um−u‖(L2(Oj))N |wj |

which goes to zero by the strong convergence in (L2(Oj))N .
Thus, we deduce (4.5) holds for each wj . Since the linear combinations of ele-

ments of B = {w1, w2, . . .} is dense in V, we conclude that (4.2) is satisfied at least
by u∗ = u.

(b) Now we prove uniqueness of solution to (4.2) under the suitable extra as-
sumptions for N = 2 and 3.
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Firstly, as we will use it below, we give an estimate on the solution we know
there exists. Putting v = u∗ in (4.2), this gives ‖u∗‖ ≤ ‖f‖∗/(ν−λ−1

1 L1). Actually,
every solution to (4.2) must satisfy this bound.

Suppose there are two solutions u1 and u2 to (4.2). Then,

ν((u1 − u2, v)) + b(u1, u1, v)− b(u2, u2, v) = (G(u1)−G(u2), v) for all v ∈ V.

Taking v = u1 − u2 and using, as before, that b(u, v, v) = 0, this leads (for N = 2)
to

ν‖u1 − u2‖2 = b(u2 − u1, u1, u1 − u2) + (G(u1)−G(u2), u1 − u2)
≤ 2−1/2|u2 − u1|‖u1‖‖u2 − u1‖+ λ−1

1 L1‖u2 − u1‖2.

Using the above estimation over any solution ‖u1‖, and the Poincaré condition
(1.1), we conclude that

ν‖u1 − u2‖2 ≤ (2λ1)−1/2‖f‖∗
ν − λ−1

1 L1

‖u2 − u1‖2 + λ−1
1 L1‖u2 − u1‖2,

whence
(ν − λ−1

1 L1)2‖u1 − u2‖2 ≤ (2λ1)−1/2‖f‖∗‖u2 − u1‖2,
and the uniqueness follows for N = 2 as long as we suppose (ν − λ−1

1 L1)2 >
(2λ1)−1/2‖f‖∗.

The case N = 3 follows analogously:

|b(u2 − u1, u1, u1 − u2)| ≤ 2−1‖u1‖|u2 − u1|1/2‖u2 − u1‖3/2

≤ 2−1λ
−1/4
1

‖f‖∗
ν − λ−1

1 L1

‖u2 − u1‖2

whence
(ν − λ−1

1 L1)2‖u1 − u2‖2 ≤ 2−1λ
−1/4
1 ‖f‖∗‖u1 − u2‖2.

The next result is stated for N = 2 and gives another condition, slightly stronger
than (a) in Theorem 4.1, and therefore ensuring again existence and uniqueness of
stationary solution of (4.2), denoted u∗, but such that every weak solution of the
evolutionary problem (1.2) approaches u∗ exponentially fast as t goes to +∞. This
result is an improvement of Theorem 3.3 in Caraballo & Real 2003, both in the
condition (4.6) below and the allowed force field f.

Theorem 4.2. Consider G : R2 → R2 a Lipschitz map satisfying G(0) = 0, and
with Lipschitz constant L1 > 0. Assume that the forcing term g(t, ut) in (1.2) is
given by g(t, ut) = G(u(t − ρ(t)) with ρ ∈ C1(R+; [0, h]) such that ρ′(t) ≤ ρ∗ < 1
for all t ≥ 0. Suppose also that f ∈ V ′, ν > λ−1

1 L1, and the following inequality is
satisfied in addition:

νλ1 >
L1

(1− ρ∗)1/2
+

(2−1λ1)1/2‖f‖∗
ν − λ−1

1 L1

. (4.6)
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Then there is a unique stationary solution u∗ of (4.2) and every solution of (1.2)
converges to u∗ exponentially fast as t → +∞, that is, there exist two positive
constants C and λ, such that for all u0 ∈ H and φ ∈ L2(−h, 0; V ), the solution u
of (1.2) with f(t) ≡ f satisfies for all t ≥ 0 :

|u(t)− u∗|2 ≤ Ce−λt
(
|u0 − u∗|2 + ‖φ− u∗‖2L2(−h,0;V )

)
. (4.7)

Proof. Consider u the solution of (1.2) for f(t) ≡ f , and denote u∗ ∈ V the sta-
tionary solution to (4.2), which existence and uniqueness is ensured by Theorem
4.1. Set w(t) = u(t)− u∗, and observe that

d
dt

(w(t), v)+ν((w(t), v))+b(u(t), u(t), v)−b(u∗, u∗, v) = (G(u(t−ρ(t))), v)−(G(u∗), v).

Since

b(u(t), u(t), w(t))− b(u∗, u∗, w(t))
= b(u∗, w(t), u∗)− b(u(t), w(t), u(t))
= b(u∗, w(t), u∗)∓ b(u(t), w(t), u∗)− b(u(t), w(t), u(t))
= −b(w(t), w(t), u∗)− b(u(t), w(t), w(t))
= −b(w(t), w(t), u∗),

we can obtain the following estimation (here λ and δ are fixed positive values to be
determined later on):

d
dt

(eλt|w(t)|2) = λeλt|w(t)|2 + eλt d
dt
|w(t)|2

= λeλt|w(t)|2 + 2eλt(−ν‖w(t)‖2 − b(u(t), u(t), w(t))
+b(u∗, u∗, w(t)) + (G(u(t− ρ(t)))−G(u∗), w(t)))

≤ eλt
(
λ|w(t)|2 − 2ν‖w(t)‖2 + 2b(w(t), w(t), u∗)

+2L1|w(t− ρ(t))||w(t)|)
≤ λ−1

1 eλt(λ + δL1 − 2νλ1)‖w(t)‖2 + 2eλt|b(w(t), w(t), u∗)|
+(δλ1)−1L1eλt‖w(t− ρ(t))‖2. (4.8)

Using again that |b(w(t), w(t), u∗)| ≤ (2λ1)−1/2‖w(t)‖2‖u∗‖ and taking into account
the estimate we proved in Step 3 of Theorem 4.1 for the stationary solution, ‖u∗‖ ≤
‖f‖∗/(ν − λ−1

1 L1), we have

|b(w(t), w(t), u∗)| ≤ (2λ1)−1/2‖f‖∗
ν − λ−1

1 L1

‖w(t)‖2.

Substituting this last inequality into (4.8) it follows that

d
dt

(eλt|w(t)|2) ≤ λ−1
1 eλt

(
λ + δL1 − 2νλ1 +

(2λ1)1/2‖f‖∗
ν − λ−1

1 L1

)
‖w(t)‖2

+(δλ1)−1L1eλt‖w(t− ρ(t))‖2,
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and so for all t ∈ [0, T ]

eλt|w(t)|2 ≤ |w(0)|2 + (δλ1)−1L1

∫ t

0

eλs‖w(s− ρ(s))‖2ds

+λ−1
1

(
λ + δL1 − 2νλ1 +

(2λ1)1/2‖f‖∗
ν − λ−1

1 L1

) ∫ t

0

eλs‖w(s)‖2ds.

We concentrate momentarily in the delay term on the right hand side. Observing
that the function φ(t) := t− ρ(t) is strictly increasing, that ρ takes values on [0, h],
and so φ−1(η) ≤ η + h, we can apply the change of variable η = s− ρ(s) = φ(s) :

∫ t

0

eλs‖w(s− ρ(s))‖2 ds =
∫ t−ρ(t)

−ρ(0)

eλτ−1(η)‖w(η)‖2 1
1− ρ′(φ−1(η))

dη

≤ eλh

1− ρ∗

∫ t

−h

eλη‖w(η)‖2 dη.

Combining the above two inequalities we obtain

eλt|w(t)|2 ≤ |w(0)|2 + (δλ1)−1L1
eλh

1− ρ∗

∫ t

−h

eλs‖w(s)‖2 ds

+λ−1
1

(
λ + δL1 − 2νλ1 +

(2λ1)1/2‖f‖∗
ν − λ−1

1 L1

) ∫ t

0

eλs‖w(s)‖2ds.

Observe the coefficients of the integral
∫ t

0
eλs‖w(s)‖2ds. Let us note that δ∗ =

(1 − ρ∗)−1/2 is the minimum of the map δ 7→ δ + 1/(δ(1 − ρ∗)). Then, thanks to
(4.6) there exists λ > 0 small enough such that

λ + δ∗L1 − 2νλ1 +
(2λ1)1/2‖f‖∗
ν − λ−1

1 L1

+
L1eλh

δ∗(1− ρ∗)
≤ 0.

Thus, we deduce that

eλt|u(t)− u∗|2 ≤ |u0 − u∗|2 +
λ−1

1 L1eλh

1− ρ∗

∫ 0

−h

eλη‖w(η)‖2dη,

whence (4.7) is satisfied with C = max
{

1,
λ−1

1 L1eλh

1− ρ∗

}
.

Remark 4.3. The above result has been given with g1 as in Case 1 of Section
3 to simplify the notation. Other types of delay could be used, for example one
could consider an autonomous case with distributed delay by removing in Case 2
the dependence of G on its first variable.

Conclusions and final comments
Existence, uniqueness and stability results have been established under different
conditions –essentially viscosity is asked to be large enough–. One may wonder
about results under weaker assumptions, where uniqueness or stability may not be
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ensured. This leads us to consider additional concepts from the theory of dynamical
systems, namely attractors, both the classical (forward) one, and the ’pullback’ def-
inition that is well-suited to non-autonomous systems (see Caraballo & Real 2004
and Kloeden & Schmalfuß 1997).
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