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DEDICATED TO PROF. JOSÉ REAL ON HIS 60TH BIRTHDAY
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Abstract. In this paper, the existence of weak solutions is established for

a phase-field model of thermal alloys supplemented with Dirichlet boundary
conditions. After that, the existence of global attractors for the associated

multi-valued dynamical systems is proved, and relationship among these sets is

established. Finally, we provide a more detailed description of the asymptotic
behaviour of solutions via the omega-limit sets. Namely, we obtain a charac-

terization –through the natural stationary system associated to the model– of

the elements belonging to the omega-limit sets under suitable assumptions.

1. Introduction

In recent years the phase-field methodology has achieved considerable impor-
tance in the modelling and numerical simulation of a range of phase transitions
and complex growth structures like dendrites occurring during solidification (see,
for instance, [24]). There exists a wide literature devoted to phase-field modelling of
various phase transition phenomena, from the classical phase-field system of Cagi-
nalp [7] to problems with constraints leading to variational inequalities (cf. [15] and
the references therein). Phase-field models have also been used to describe the evo-
lution in time of diffusive phase interfaces in solid materials, in which martensitic
phase transformations driven by configurational forces take place. In such models,
partial differential equations of linear elasticity were coupled with a degenerate par-
abolic equation of second order for the phase-field (cf. [2]). In addition, we remark
that the method has been extended to multi-phase systems by introducing a multi-
phase approach, see [13] for an isothermal phase-field model of ternary two-phase
diffusion couples.

In this paper we study an initial boundary value problem of a model describing a
binary mixture with thermal properties and a phase transition. Phase-field models
for binary alloys were proposed in [9, 8] and its derivation is based on thermody-
namic principles. These models include as a special case the phase-field equations
for a pure material introduced by Caginalp [7].
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With several simplifications and idealization, it is possible to obtain the “sim-
plest” phase-field-alloy model which retains the key characteristics of an alloy. It
involves the following highly nonlinear parabolic system of three partial differential
equations with three independent variables: phase-field, solute concentration, and
temperature

αε2φt − ε2∆φ =
1
2

(φ− φ3) + β(θ − θAc− θB(1− c)) in Q,

CV θt +
l

2
φt = ∇ · [K1(φ)∇θ] in Q,

ct = K2(∆c+M∇ · [c(1− c)∇φ]) in Q,

0 ≤ c ≤ 1 in Q,

(1)

where Q = Ω × (0,∞), being Ω an open connected bounded subset of RN with
N = 2 or 3, and with smooth boundary ∂Ω. The order parameter (phase-field) φ
is the state variable characterizing the different phases; the function θ represents
the temperature; the concentration c ∈ [0, 1] denotes the fraction of one of the
two materials in the mixture. The parameter α > 0 is the relaxation scaling; the
parameter β ≥ 0 is given by β = ε[s]/(3σ), where ε > 0 is a measure of the interface
width, σ the surface tension and [s] the entropy density difference between phases;
CV > 0 is the specific heat; the constant l > 0 is the latent heat; θA and θB
are the respective melting temperatures of each of the two materials in the alloy;
K2 > 0 is the solute diffusivity; M is a constant related to the slopes of solidus and
liquidus lines; and K1 denotes the thermal conductivity. This physical parameter
is assumed, as in [18, 5, 20], to be a function depending on the order parameter φ.

In the previous paper [5] global existence of weak solutions for such model was
proved under Neumann boundary conditions.

Several results are available on the asymptotic behaviour in time of phase-field
models for pure materials; concerning with Neumann boundary conditions, we can
cite [6, 10, 17, 18, 25] among others. In particular, Laurençot [18] was able to
describe the omega-limit sets of singletons in a precise way. More exactly, they
also are singletons, namely, stationary points of the problem. However, there exists
obvious differences between his model and that in [5], that do not allow the same
treatment; in particular, an energy decay result was known explicitly in [18], but
not for the alloy model in [5].

The asymptotic behaviour of the dynamical systems related to problem (1) ful-
filled with Neumann boundary conditions was investigated in [20] in the framework
of the theory of attractors. The Neumann boundary conditions require Poincaré-
Wirtinger inequality in estimates and lead to a result of existence of attractor in a
level-set formulation, similarly to the results in [6].

Besides the above comments concerning to phase-field models with Neumann
boundary conditions, we must cite that there exist many references in the literature
involving phase-field models with Dirichlet boundary conditions, see for instance
[4, 1, 22, 14].
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However, as commented before, in the literature there exist more involved studies
on the structure of omega-limit sets, and even for single trajectories, for this kind
of problems. Most of the results on stability and asymptotic convergence towards
stationary solutions uses in an essential way the fact that there exists a natural
energy functional that plays the role of a Lyapunov functional for the solutions.
Nevertheless, it is not clear wether system (1) possesses a global Lyapunov func-
tional (as in [18]) or, more specifically, if it satisfies a  Lojasiewicz-Simon property
(as in [1]).

Our goal in this paper is two-fold: on the one hand, we aim to study existence of
solutions to problem (1) fulfilled with Dirichlet boundary conditions. On the other
hand, we analyze deeply the long-time behaviour of the problem. The choice of
Dirichlet boundary conditions will show to provide a more dissipative structure, in
contrast with the results in [20]. Firstly, we prove the existence of global attractors
for the two natural associated dynamical systems (depending on the regularity of
the initial data) and the relationship among them. As far as uniqueness of solution
for the considered system is unknown, we must use multi-valued dynamical systems
for our approach. Secondly, and following some ideas from [18], we describe more
precisely the elements belonging to the omega-limit sets. Due to the troublesome
nonlinearities on the system, we are able to perform the analysis of the omega-limit
sets under suitable assumptions.

It is convenient to rewrite the system by performing a change of variables in (1).
Namely, we introduce the enthalpy variable u = CV (θ − θB) + l

2φ. We fulfill the
system with homogeneous Dirichlet boundary conditions in the three unknowns φ,
u, and c, and complete it with initial conditions, leading to the following problem

αε2φt − ε2∆φ =
1
2

(φ− φ3) +
β

CV
(u− l

2
φ) + β(θB − θA)c in Q,

CV ut = ∇ · [K1(φ)∇u]− l

2
∇ · [K1(φ)∇φ] in Q,

ct = K2(∆c+M∇ · [c(1− c)∇φ]) in Q,

0 ≤ c ≤ 1 in Q,

φ = 0, u = 0, c = 0 on ∂Ω× (0,∞),

φ(0) = φ0, u(0) = u0, c(0) = c0.

(2)

Observe that in this way we are assuming that the original variable θ, which is the
controlled temperature on ∂Ω, has the constant value θB .

We assume that K1 is a (globally) Lipschitz continuous function and there exist
positive constants k1, k1 such that

0 < k1 ≤ K1(r) ≤ k1 ∀ r ∈ R. (3)

This condition will be assumed all through this paper.

The paper is organized as follows. In Section 2 we establish existence and reg-
ularity properties of weak solutions to problem (2). In Section 3 we recall briefly
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some abstract results concerning multi-valued dynamical systems and the study of
their long-time behaviour, in particular, on existence of global attractors. These
results will be used later, in Section 4, for the above problem. Namely, absorbing,
compact, and continuity properties of the associated semiflows are established. In
particular, we deduce that the global attractors in the two natural phase-spaces of
the problem, which are (L2)3 and H1

0 × (L2)2, coincide thanks to the regularizing
property of the model. Some other results related to omega-limits are also explored
in this paragraph. Section 5 is devoted to a more involved study of the structure
of the omega-limits. Actually, we improve some estimates that lead to identify the
limiting problem (which is the natural stationary system associated to the model)
satisfied by any element in an omega-limit.

2. Existence of solutions

Let us firstly introduce some notation which will be used hereafter all through
the paper.

We will denote by (·, ·) and | · | the inner product and its associated norm in
L2(Ω) or in (L2(Ω))N . Otherwise, the norm in other spaces will be fully specified.
The duality product between H1

0 (Ω) and H−1(Ω) will be denoted by 〈·, ·〉.
The first eigenvalue of −∆ with Dirichlet boundary conditions will be denoted

by λ1, so that we have the Poincaré inequality |f |2 ≤ λ−1
1 |∇f |2 for any f ∈ H1

0 (Ω).
We define the concept of weak solution to system (2).

Definition 1. We say that the triplet (φ, u, c) is a weak solution to system (2) in
(0, T ) for T > 0, if

(i) φ∈L2(0, T ;H1
0 (Ω))∩C([0, T ];L2(Ω))∩L4(0, T ;L4(Ω)), φt∈L2(0, T ;H−1(Ω))

+L4/3(0, T ;L4/3(Ω)), φ(0) = φ0,
(ii) u ∈ L2(0, T ;H1

0 (Ω)) ∩ C([0, T ];L2(Ω)), ut ∈ L2(0, T ;H−1(Ω)), u(0) = u0,
(iii) c ∈ L2(0, T ;H1

0 (Ω)) ∩ C([0, T ];L2(Ω)), ct ∈ L2(0, T ;H−1(Ω)), c(0) = c0,
0 ≤ c ≤ 1 a.e. in Ω× (0, T ),

and satisfies the equations

αε2

∫ T

0

〈φt(t), η(t)〉dt+ ε2

∫ T

0

(∇φ(t),∇η(t))dt

=
1
2

∫ T

0

(φ(t)− φ3(t), η(t))dt+
β

CV

∫ T

0

(u(t)− l

2
φ(t), η(t))dt

+β(θB − θA)
∫ T

0

(c(t), η(t))dt,

for any η ∈ L2(0, T ;H1
0 (Ω)) ∩ L4(0, T ;L4(Ω)),

CV

∫ T

0

〈ut(t), η(t)〉dt+
∫ T

0

(K1(φ(t))∇u(t),∇η(t))dt

=
l

2

∫ T

0

(K1(φ(t))∇φ(t),∇η(t))dt,
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for any η ∈ L2(0, T ;H1
0 (Ω)), and∫ T

0

〈ct(t), η(t)〉dt+K2

∫ T

0

(∇c(t),∇η(t))dt

+K2M

∫ T

0

(c(t)(1− c(t))∇φ(t),∇η(t))dt = 0,

for any η ∈ L2(0, T ;H1
0 (Ω)).

Additionally, we will say that (φ, u, c) : Q → R3 is a global solution to system
(2) if its restriction to (0, T ) is a weak solution for any T > 0.

We state now a result on existence of weak solutions to problem (2).

Theorem 2. Let be given (φ0, u0) ∈ (L2(Ω))2, and c0 ∈ L2(Ω; [0, 1]), i.e., c0 ∈
L2(Ω) such that 0 ≤ c0(x) ≤ 1 a.e. in Ω. Then there exists at least one weak
solution (φ, u, c) to system (2) in (0, T ) for any T > 0.

If in addition φ0 ∈ H1
0 (Ω), then, for any solution (φ, u, c) in (0, T ), one has that

φ ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1
0 (Ω)), φt ∈ L2(0, T ;L2(Ω)),

and φ satisfies the first equation in (2) a.e. in Ω× (0, T ).

Proof. Let us fix T > 0. The existence of weak solution to (2) can be related to an
auxiliary problem. To this end, let Π be the function

Π(r) =


0 if r < 0,
r if 0 ≤ r ≤ 1,
1 if r > 1,

and consider the following problem

αε2φt − ε2∆φ =
1
2

(φ− φ3) +
β

CV
(u− l

2
φ) + β(θB − θA)c in Ω× (0, T ),

CV ut = ∇ · [K1(φ)∇u]− l

2
∇ · [K1(φ)∇φ] in Ω× (0, T ),

ct = K2(∆c+M∇ · [Π(c)(1−Π(c))∇φ]) in Ω× (0, T ),

φ(0) = φ0 u(0) = u0, c(0) = c0 in Ω× (0, T ),

φ = 0, u = 0, c = 0 on ∂Ω× (0, T ).

(4)

A weak solution to this auxiliary problem is that given in Definition 1, but with the
natural modification, according to the new third equation in (4). Namely, c must
satisfy now∫ T

0

〈ct(t), η(t)〉dt+K2

∫ T

0

(∇c(t),∇η(t))dt

+K2M

∫ T

0

(Π(c(t))(1−Π(c(t)))∇φ(t),∇η(t))dt = 0,

for any η ∈ L2(0, T ;H1
0 (Ω)).

Let us split the proof into three steps.
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Step 1. Assume that (φ, u, c) is a weak solution of (4), and that 0 ≤ c0 ≤ 1
a.e. in Ω. Then, 0 ≤ c ≤ 1, therefore Π(c) = c, and so this triplet is indeed a weak
solution for (2).

First, we prove that if c0 ≤ 1 a.e. in Ω, then c(t) ≤ 1 for all t ∈ [0, T ] and a.e.
in Ω. Let us consider the positive part of (c− 1), namely (c− 1)+ = max(c− 1, 0).
According to [11], we have that

∇(c− 1)+ =

{
∇c if c− 1 ≥ 0,
0 otherwise.

Multiplying the third equation in (4) by (c−1)+(s)χ(0,t)(s) and integrating in (0, t),
we have

1
2
|(c− 1)+(t)|2 +K2

∫ t

0

|∇(c− 1)+(s)|2ds

=
1
2
|(c0 − 1)+|2 −K2M

∫ t

0

∫
Ω

Π(c(s))(1−Π(c(s)))∇φ(s)∇(c− 1)+(s)dxds.

Since c0 ≤ 1, one has that |(c0 − 1)+| = 0. Moreover, if c < 1, it follows that
∇(c− 1)+ = 0 and, if c ≥ 1, we have that Π(c) = 1 and thus, 1−Π(c) = 0. So the
last integral vanishes and we can conclude that

|(c− 1)+(t)|2 ≤ 0 ∀ t ∈ [0, T ].

Therefore, (c − 1)+(t) = 0 for all 0 ≤ t ≤ T and a.e. in Ω, which implies that
c(t) ≤ 1 for all 0 ≤ t ≤ T and a.e. in Ω.

Next, we prove that if c0 ≥ 0 a.e. in Ω, then c(t) ≥ 0 for all t ∈ [0, T ] and a.e. in
Ω. For this we consider the negative part of c, namely c− = max(−c, 0). Observe
that now we have that (see [11])

∇c− =

{
0 if c ≥ 0,
−∇c otherwise.

Multiplying the third equation in (4) by −c−(s)χ(0,t)(s), after integration in (0, t)
we obtain

1
2
|c−(t)|2 +K2

∫ t

0

|∇c−(s)|2ds

=
1
2
|c−0 |2 +K2M

∫ t

0

∫
Ω

Π(c(s))(1−Π(c(s)))∇φ(s)∇c−(s)dxds.

Similarly as before, since c0 ≥ 0 we have that |c−0 | = 0. Moreover, if c ≥ 0 the last
integral vanishes and, if c < 0, we have that Π(c) = 0, thus, the last integral also
vanishes. Therefore, we deduce

|c−(t)|2 ≤ 0 ∀ t ∈ [0, T ].

Hence, c−(t) = 0 for all 0 ≤ t ≤ T and a.e. in Ω, which implies that c(t) ≥ 0 for all
0 ≤ t ≤ T and a.e. in Ω.

This proves the claim in Step 1. So, in order to obtain the existence of solutions,
we only have to check the following claim.
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Step 2. There exists at least one weak solution to (4).

We apply the classical Faedo-Galerkin method. Let us sketch the main ideas.
First, we introduce the Galerkin approximations. Let {wn}n∈N be a Hilbert basis of
L2(Ω) composed by eigenfunctions of the operator −∆ with homogeneous Dirichlet
boundary conditions, V k = span{w1, .., wk}, and P k be the orthogonal projection
from L2(Ω) onto V k.

For each m ∈ N, we consider the approximate problem of finding

φm(t) =
m∑
j=1

φmj(t)wj , um(t) =
m∑
j=1

umj(t)wj , cm(t) =
m∑
j=1

cmj(t)wj

satisfying

αε2(φmt , wj) + ε2(∇φm,∇wj)

=
1
2
(
φm − (φm)3, wj

)
+

β

CV

(
um − l

2
φm, wj

)
+ β(θB − θA)

(
cm, wj

)
,

CV (umt , wj) +
(
K1(φm)∇um,∇wj

)
=
l

2
(
K1(φm)∇φm,∇wj

)
,

(cmt , wj) +K2(∇cm,∇wj) +K2M
(
Π(cm)(1−Π(cm))∇φm,∇wj

)
= 0,

(5)

for 1 ≤ j ≤ m, and

φm(0) = Pmφ0, um(0) = Pmu0, cm(0) = Pmc0. (6)

Problem (5)-(6) is in fact an initial value problem for a system of 3m ordinary
differential equations. Since the non-linear terms are locally Lipschitz continuous
functions, the above problem has a unique solution (φm, um, cm) defined on some
maximal time interval [0, Tm) with 0 < Tm ≤ T. Next, we derive some estimates
which show in particular that all solutions are well-defined in [0, T ].

Multiplying the first equation in (5) by φmj(t) and summing from j = 1 to m,
we deduce that for all t ∈ (0, Tm)

αε2 d

dt
|φm|2 + 2ε2|∇φm|2

= |φm|2 − ‖φm‖4L4(Ω) +
2β
CV

(um, φm)− βl

CV
|φm|2 + 2β(θB − θA)(cm, φm)

≤ −‖φm‖4L4(Ω) + C1

(
|φm|2 + |um|2 + |cm|2

)
, (7)

where C1 is a constant independent of m.
Multiplying the second equation in (5) by umj(t) and summing from j = 1 to

m, we obtain

1
2
d

dt
|um|2 +

1
CV

(K1(φm)∇um,∇um) =
l

2CV
(K1(φm)∇φm,∇um)

≤ k1

2CV
|∇um|2 +

k
2

1l
2

8CV k1

|∇φm|2,

and using again (3) we have that

1
2
d

dt
|um|2 +

k1

2CV
|∇um|2 ≤ k

2

1l
2

8CV k1

|∇φm|2. (8)
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Multiplying the third equation in (5) by cmj(t) and summing from j = 1 to m,
gives

1
2
d

dt
|cm|2 +K2|∇cm|2 = −K2M

(
Π(cm)(1−Π(cm))∇φm,∇cm

)
≤ K2

2
|∇cm|2 +

K2M
2

2
|∇φm|2, (9)

where we have used that 0 ≤ Π(cm)(1−Π(cm)) ≤ 1.
Now, adding (7), (8) multiplied by 4CV ε

2k1

k
2
1l

2
, and (9) multiplied by ε2

K2M2 , we
arrive at

d

dt

(
αε2|φm|2 +

2CV ε2k1

k
2

1l
2
|um|2 +

ε2

2K2M2
|cm|2

)
+‖φm‖4L4(Ω) + ε2|∇φm|2 +

2ε2k2
1

k
2

1l
2
|∇um|2 +

ε2

2M2
|∇cm|2

≤ C1

(
|φm|2 + |um|2 + |cm|2

)
,

for any m ≥ 1.
It follows from Gronwall Lemma that

|φm(t)|2 + |um(t)|2 + |cm(t)|2 ≤ C2(T ) ∀t ∈ [0, Tm), ∀m ≥ 1.

So we can take Tm = T and we infer from the above estimates, after integration in
time, that∫ T

0

(
‖φm(s)‖4L4(Ω) + |∇φm(s)|2 + |∇um(s)|2 + |∇cm(s)|2

)
ds

≤ C3

(
|φ0|2 + |u0|2 + |c0|2

)
+ C2(T ),

where C3 > 0 is independent of m.
From the uniform estimates obtained above, we deduce that there exist functions

ξ ∈ L4/3(0, T ;L4/3(Ω)) and (φ, u, c) ∈ L2(0, T ; (H1
0 (Ω))3)∩L∞(0, T ; (L2(Ω))3) with

φ ∈ L4(0, T ;L4(Ω)), and that from the sequence {(φm, um, cm)}m we can extract a
subsequence (cf. e.g., [19]), relabelled the same, such that

(φm, um, cm) ⇀ (φ, u, c) weakly in L2(0, T ; (H1
0 (Ω))3),

(φm, um, cm) ∗⇀ (φ, u, c) weakly-star in L∞(0, T ; (L2(Ω))3),

φm ⇀ φ weakly in L4(0, T ;L4(Ω)),

(φm)3 ⇀ ξ weakly in L4/3(0, T ;L4/3(Ω)).

From the first equation in (5), {φmt }m is bounded in L2(0, T ;H−1(Ω))+L4/3(0, T ;
L4/3(Ω)); and from the second and third equations in (5) it follows that the se-
quences {umt }m and {cmt }m are bounded in L2(0, T ;H−1(Ω)).

Then, by taking into account that H1
0 (Ω) is compactly embedded into L2(Ω), we

conclude (up to a subsequence) that

(φm, um, cm)→ (φ, u, c) strongly in L2(0, T ; (L2(Ω))3) and a.e. in Ω× (0, T ),

and, by using [19, Lem.1.3, p.12], one obtains that ξ = φ3.
Hence we can pass to limit in (5)-(6), noting that K1 and Π are bounded Lips-

chitz continuous functions (cf. [20] for similar arguments) and find out that there
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exists at least one weak solution for (4) in (0, T ), which was the claim of Step 2.

Step 3. Regularity of the solution.

Finally, if φ0 ∈ H1
0 (Ω) we observe that the sequence {φm0 = Pmφ0}m converges

to φ0 in H1
0 (Ω). This allows us to obtain another estimate for {φm}m. Multiplying

the first equation in (5) by λjφmj , where λj is the eigenvalue associated to wj , and
summing from j = 1 to m, we deduce that

αε2

2
d

dt
|∇φm|2 + ε2|∆φm|2 +

3
2

∫
Ω

(φm)2|∇φm|2dx+
βl

2CV
|∇φm|2

= −1
2

(φm,∆φm)− β

CV
(um,∆φm)− β(θB − θA)(cm,∆φm)

≤ 1
4ε2
|φm|2 +

β2

C2
V ε

2
|um|2 +

β2(θB − θA)2

ε2
|cm|2 +

3ε2

4
|∆φm|2 in (0, T ).

From (2) and the above inequality, we deduce that the sequence {φm}m is bounded
in L2(0, T ;H2(Ω))∩L∞(0, T ;H1

0 (Ω)). In the limit we obtain the desired regularity
for φ. The proof is then complete. �

Remark 3. From the above result, it is clear that by a recursive procedure of con-
catenation on intervals, for instance, of the form (T, 2T ), (2T, 3T ), etc, there exist
global solutions to (2) for any initial datum (φ0, u0, c0) ∈ (L2(Ω))2 × L2(Ω; [0, 1]).

As a consequence of the previous result we have a regularizing effect in the
problem.

Proposition 4. Any global solution (φ, u, c) of (2) with initial datum (φ0, u0, c0) ∈
(L2(Ω))2 × L2(Ω; [0, 1]) satisfies

φ ∈ C((0,∞);H1
0 (Ω)) ∩ L2(ε, T ;H2(Ω)) ∀ ε, T such that 0 < ε < T,

and moreover, (φ, u, c) satisfies the first equation in (2) a.e. in Q.

Proof. Since the first component, φ, of any solution (φ, u, c) to (2), satisfies φ ∈
L2(0, T ;H1

0 (Ω)), we may consider a positive time τ < T (almost sure) such that
φ(τ) ∈ H1

0 (Ω), whence the solution in [τ, T ] becomes more regular.
The uniqueness of solution for the first equation, with u and c fixed, concludes

the proof. �

3. Abstract results for multi-valued dynamical systems

In this section we summarize some basic results on the existence of global at-
tractors for multi-valued dynamical systems. In order to do that, firstly we recall
some basic definitions on multi-valued dynamical systems and the study of their
long-time behaviour (we refer to [21] for a more detailed exposition on this topic).

For a given metric space (X , d), we will denote by P (X ), B(X ), C(X ), and
K(X ) the classes of nonempty subsets of X , nonempty and bounded subsets of X ,
nonempty and closed subsets of X , and nonempty and compact subsets of X respec-
tively. We will denote by distX (·, ·) the Hausdorff semidistance between elements
of P (X ), given by distX (A,B) = supa∈A infb∈B d(a, b).
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Definition 5. A multi-valued map G : R+ × X → P (X ) is called a multi-valued
semiflow on (X , d), and will be denoted by (X , {G(t)}t≥0), if

(a) G(0, ·) = Id (identity map),
(b) for any pair t1, t2 ≥ 0 and for all x ∈ X ,

G(t1 + t2, x) ⊂ G(t1,G(t2, x)), where G(t, A) =
⋃
a∈A
G(t, a).

When the above inclusion is an equality, it is said that the multi-valued semiflow is
strict.

We say that a multi-valued map F : X → P (X ) is upper semicontinuous if for
every x ∈ X and every neighborhood M of F (x), there exists a neighborhood N of
x such that F (y) ⊂M for any y ∈ N.

We recall several important concepts in the study of a (multi-valued) dynamical
system.

Definition 6. Let be given a multi-valued semiflow (X , {G(t)}t≥0).
(a) A bounded set B0 ⊂ X is said to be absorbing for the semiflow if for any

B ∈ B(X ), there exists a time T (B) ≥ 0 such that G(t, B) ⊂ B0 for all
t ≥ T (B).

(b) The semiflow is said asymptotically compact if for any B ∈ B(X ) and any
sequence {tn}n with tn → ∞, any sequence {xn}n, with xn ∈ G(tn, B),
possesses a converging subsequence in X .

(c) The omega-limit of a set B ⊂ X , denoted by ω(B), can be defined as follows:

ω(B) =
{
x ∈ X :∃{tn}n ⊂ R+, {bn}n ⊂ B, {xn}n ⊂ X ,

tn →∞, xn ∈ G(tn, bn), x = lim
n→∞

xn in X
}
.

(d) A global attractor A ⊂ X is a compact set, which is invariant, i.e., G(t,A) =
A for all t ≥ 0, and that attracts all bounded sets, that is,

lim
t→∞

distX (G(t, B),A) = 0 ∀B ∈ B(X ).

Remark 7. Let be given a multi-valued semiflow (X , {G(t)}t≥0).
(a) For a subset B ∈ P(X ), the set ω(B) can be described as (cf. [21, Lem.1]):

ω(B) =
⋂
t≥0

⋃
s≥t

G(s,B)
X
.

(b) In case that a global attractor exists, we have the following consequences:
(i) It is unique. Moreover, it is minimal among all closed sets attracting

each bounded set.
(ii) For any ε > 0, the set B0,ε = {x ∈ X : d(x,A) ≤ ε} is absorbing.

(iii) For any B ∈ B(X ), ω(B) is a nonempty compact subset of X and it
is the minimal closed set that attracts B. Indeed, the global attractor

can be characterized as A =
⋃

B∈B(X )

ω(B)
X
.

(iv) If B0 ∈ B(X ) is absorbing for the semiflow, then A = ω(B0).

For our purpose, it will be enough to consider the next result (cf. [21, Th.3,
Rmk.8]).
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Theorem 8. Let (X , d) be a metric space, and (X , {G(t)}t≥0) be an asymptotically
compact strict multi-valued semiflow with a bounded absorbing set. Suppose also that
G(t, ·) : X → C(X ) is upper semicontinuous for any t ≥ 0. Then (X , {G(t)}t≥0)
possesses the global attractor A.

Remark 9. Observe that when a multi-valued semiflow (X , {G(t)}t≥0) possesses a
bounded absorbing set and there exists a time T > 0 such that for any B ∈ B(X ),
the set G(T,B) is relatively compact in X , then, the semiflow is asymptotically
compact.

4. Global attractors for a phase-field model

In this section we study the existence of multi-valued semiflows for problem (2),
and associated attractors. To this end, we check that sufficient conditions of the
preceding paragraph are fulfilled. The proofs are similar to the case of Neumann
boundary conditions (for details see [20]). However, for the sake of completeness,
some of them are included (or sketched) here.

Let us introduce D(φ0, u0, c0) the set of global solutions to (2) with initial con-
ditions (φ0, u0, c0) ∈ (L2(Ω))2 × L2(Ω; [0, 1]). This set is well-defined thanks to
Theorem 2 and Remark 3.

We define

G(t, φ0, u0, c0) = {(φ(t), u(t), c(t)) : (φ, u, c) ∈ D(φ0, u0, c0)},

which is well defined by the continuity in time of solutions. Indeed, Theorem 2
combined with Proposition 4 allows to construct two multi-valued semiflows, with
the same map, but from different suitable metric spaces into themselves.

Proposition 10. The following pairs define two strict multi-valued semiflows:(
(L2(Ω))2 × L2(Ω; [0, 1]), {G(t)}t≥0

)
,

and (
H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]), {G(t)}t≥0

)
.

Next result provides estimates for the solutions with non-regular and regular
data. These estimates will allow to obtain absorbing properties for the respective
multi-valued semiflows.

Let us also observe that any global solution satisfies that c ∈ [0, 1] a.e. in Q, so
c ∈ L∞(Q), and therefore estimates for this third variable are not necessary.

Proposition 11. Consider a triplet (φ0, u0, c0) in any of the phase-spaces of Propo-
sition 10. Then, the following estimates hold for any global solution (φ, u, c) to
problem (2).

(a) There exist positive constants C4 and C5 such that if φ0 ∈ L2(Ω), then

αε2

2
|φ(t)|2 +

2CV ε2k1

k
2

1l
2
|u(t)|2

≤

(
αε2

2
|φ0|2 +

2CV ε2k1

k
2

1l
2
|u0|2

)
e−C5t +

C4

C5
∀t ≥ 0.
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(b) There also exist positive constants C6, C7, and C8, such that if φ0 ∈ H1
0 (Ω),

then

αε2

2
|φ(t)|2 +

2CV ε2k1

k
2

1l
2
|u(t)|2 +

αC6ε
2

2
|∇φ(t)|2

≤

(
αε2

2
|φ0|2+

2CV ε2k1

k
2

1l
2
|u0|2+

αC6ε
2

2
|∇φ0|2

)
e−C7t+

C8

C7
∀t ≥ 0.

Proof. We split the proof in two parts, concerning the two claims in the statement.

Step 1: Claim (a). Multiplying the first equation in (2) by φ and applying
twice the Young inequality with δ an arbitrary positive constant to be fixed later,
we obtain

αε2

2
d

dt
|φ|2 + ε2|∇φ|2 +

1
2

∫
Ω

(φ4 − φ2)dx+
βl

2CV
|φ|2

=
∫

Ω

(
β

CV
uφ+ β(θB − θA)cφ

)
dx

≤ δ|u|2 +
1
4
‖φ‖4L4(Ω) +

β4|Ω|
16C4

V δ
2

+
1
4
|φ|2 + |β(θB − θA)c|2

≤ δ|u|2 +
1
4
‖φ‖4L4(Ω) +

1
4
|φ|2 + C3 a.e. t > 0,

where

C3 =
β4|Ω|

16C4
V δ

2
+ 2β2(θ2

B + θ2
A)|Ω|.

Arranging terms, we arrive at

αε2

2
d

dt
|φ|2 +ε2|∇φ|2 +

1
4

∫
Ω

(φ4−3φ2)dx+
βl

2CV
|φ|2 ≤ δ|u|2 +C3 a.e. t > 0. (10)

Now, multiplying the second equation in (2) by u and using assumption (3) of
boundedness for K1, we obtain

CV
2

d

dt
|u|2 + k1|∇u|2 ≤

k
2

1l
2

8k1

|∇φ|2 +
k1

2
|∇u|2 a.e. t > 0.

So, arranging terms and multiplying by 2ε2k1

k
2
1l

2
we conclude

2CV ε2k1

k
2

1l
2

d

dt
|u|2 +

2ε2k2
1

k
2

1l
2
|∇u|2 ≤ ε2

2
|∇φ|2 a.e. t > 0, (11)

which added to (10) gives

d

dt

(
αε2

2
|φ|2 +

2CV ε2k1

k
2

1l
2
|u|2
)

+
ε2

2
|∇φ|2

+
1
4

∫
Ω

(φ4 − 3φ2)dx+
βl

2CV
|φ|2 +

2ε2k2
1

k
2

1l
2
|∇u|2 ≤ δ|u|2 + C3 a.e. t > 0.
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By the Poincaré inequality, taking δ = k2
1ε

2λ1

k
2
1l

2
above, and combined with the in-

equality x4 − 3x2 ≥ x2 − 4 for all x ∈ R, we can deduce

d

dt

(
αε2

2
|φ|2 +

2CV ε2k1

k
2

1l
2
|u|2
)

+
ε2

2
|∇φ|2

+
(

1
4

+
βl

2CV

)
|φ|2 +

ε2k2
1λ1

k
2

1l
2
|u|2 ≤ |Ω|+ C3 =: C4 a.e. t > 0. (12)

Now the statement in Claim (a) can be obtained after an estimate from below
and by choosing

0 < C5 = min
{

1
αε2

(
1
2

+
βl

CV

)
,
k1λ1

2CV

}
.

Step 2: H1-estimate for φ. By using the extra regularity obtained in second
part of Theorem 2, we will obtain another estimate for φ that complements the
obtained in Claim (a) to conclude Claim (b).

Multiplying the first equation in (2) by −∆φ (this is formally, and must be done
rigourously by using the Galerkin approximations as in the proof of Theorem 2),
we obtain

αε2

2
d

dt
|∇φ|2 + ε2|∆φ|2 +

3
2

∫
Ω

φ2|∇φ|2dx+
1
2

∫
Ω

φ∆φdx+
βl

2CV
|∇φ|2

= − β

CV

∫
Ω

u∆φdx− β(θB − θA)
∫

Ω

c∆φdx a.e. t > 0.

By using again the Young inequality and the fact that c ∈ [0, 1], we deduce

αε2

2
d

dt
|∇φ|2 +

ε2

2
|∆φ|2 +

βl

2CV
|∇φ|2

≤ β2

C2
V ε

2
|u|2 +

β2(θB − θA)2|Ω|
ε2

− 1
2

∫
Ω

φ∆φdx

≤ β2

C2
V ε

2
|u|2 +

β2(θB − θA)2|Ω|
ε2

+
ε2

4
|∆φ|2 +

1
4ε2
|φ|2 a.e. t > 0.

In particular, neglecting one term in the left hand side, multiplying the result by a
suitable constant C6 to be fixed later on, and adding to (12), it yields

d

dt

(
αε2

2
|φ|2 +

2CV ε2k1

k
2

1l
2
|u|2 +

αC6ε
2

2
|∇φ|2

)

+
(

1
4

+
βl

2CV
− C6

4ε2

)
|φ|2 +

(
ε2k2

1λ1

k
2

1l
2
− β2C6

C2
V ε

2

)
|u|2 +

(
ε2

2
+
βC6l

2CV

)
|∇φ|2

≤ C4 +
β2

ε2
C6(θB − θA)2|Ω| =: C8 a.e. t > 0.

Now, it is easy to conclude the statement in Claim (b) by choosing

0 < C6 < min

{
ε2

(
1 +

2βl
CV

)
,
C2
V ε

4k2
1λ1

β2k
2

1l
2

}
,
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and then

C7 = min

{
1
αε2

(
1
2

+
βl

CV
− C6

2ε2

)
,

k
2

1l
2

2CV ε2k1

(
ε2k2

1λ1

k
2

1l
2
− β2C6

C2
V ε

2

)
,

βl

αCV ε2
+

1
αC6

}
.

�

As an immediate consequence of Proposition 11 and from the fact that c takes
values in [0, 1], we have the following result.

Corollary 12. The multi-valued semiflows(
(L2(Ω))2 × L2(Ω; [0, 1]), {G(t)}t≥0

)
,

and (
H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]), {G(t)}t≥0

)
.

have bounded absorbing sets in their respective phase-spaces.

We give another result that will be useful for the analysis of the compact prop-
erties of the semiflows, and also for the study of their long time behaviour.

Proposition 13. Let be given T > 0 and a bounded set B from (L2(Ω))2 ×
L2(Ω; [0, 1]). Then, G(T,B) is bounded in H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]).

Proof. It is a consequence of Step 2 in Proposition 11, and analogous arguments to
those in [20, Prop.16]. �

Remark 14. From the above result, observe that any absorbing set for the semi-
flow (H1

0 (Ω) × L2(Ω) × L2(Ω; [0, 1]), {G(t)}t≥0) is also absorbing for the semiflow
((L2(Ω))2 × L2(Ω; [0, 1]), {G(t)}t≥0).

Now we establish a compactness property for the semiflows.

Lemma 15. Consider any sequence {(φn, un, cn)}n of global solutions of (2) with
respective initial data {(φn0 , un0 , cn0 )}n ⊂ (L2(Ω))2×L2(Ω; [0, 1]), and satisfying that
(φn0 , u

n
0 , c

n
0 ) ⇀ (φ0, u0, c0) weakly in (L2(Ω))3. Let us also fix a value t∗ > 0. Then,

c0 ∈ L2(Ω; [0, 1]) and there exist a subsequence {(φµ, uµ, cµ)}µ and a global solution
of (2) (φ, u, c) with initial datum (φ0, u0, c0), such that

(a) the following convergences hold for all T > 0:

(φµ, uµ, cµ) ⇀ (φ, u, c) weakly in L2(0, T ; (H1
0 (Ω))3),

(φµt , u
µ
t , c

µ
t ) ⇀ (φt, ut, ct) weakly in L2(0, T ;H−1(Ω))+L4/3(0, T ;L4/3(Ω))

×(L2(0, T ;H−1(Ω)))2,

(b) (φµ(t∗), uµ(t∗), cµ(t∗))→ (φ(t∗), u(t∗), c(t∗))
strongly in H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]).
(c) If moreover φn0 ⇀ φ0 weakly in H1

0 (Ω), then one also has for all T > 0 that

(φµ, uµ, cµ) ⇀ (φ, u, c) weakly in L2(0, T ;H2(Ω)× (H1
0 (Ω))2),

(φµt , u
µ
t , c

µ
t ) ⇀ (φt, ut, ct) weakly in L2(0, T ;L2(Ω)× (H−1(Ω))2).

Proof. Observe that proceeding analogously as for the estimates of the Galerkin
approximations in Theorem 2, we may obtain uniform estimates for the sequence
{(φn, un, cn)}n. These estimates allow to conclude claims (a) and (c).

Claim (b) can be proved by using an energy method making the most of the con-
tinuity of the solutions, and some inequalities obtained in the proof of Proposition
11. For more details in a close result we refer to [20, Lem.17]. �
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A direct consequence from the previous results is the following

Corollary 16. The semiflows associated to problem (2) given in Proposition 10,
are asymptotically compact in their respective metrics.

Using the above result, combined with Lemma 15, we deduce some properties
for the multi-valued map G.

Corollary 17. The multi-valued semiflow (X, {G(t)}t≥0), where X can be H1
0 (Ω)×

L2(Ω)×L2(Ω; [0, 1]), or (L2(Ω))2×L2(Ω; [0, 1]), possesses the following properties:

(a) It has compact values, i.e., G : R+ ×X → K(X).
(b) For each fixed t ≥ 0, G(t, ·) : X → K(X) is upper semicontinuous.

Proof. Claim (a) follows from Lemma 15 applied to a singleton. Claim (b) is not
difficult to prove by contradiction, using again Lemma 15. �

As a consequence of the above results, we are able to establish the existence of
global attractors for the considered semiflows, analogously as in [20, Th.22].

Theorem 18. The multi-valued semiflows ((L2(Ω))2×L2(Ω; [0, 1]), {G(t)}t≥0) and
(H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]), {G(t)}t≥0) possess global attractors A1 and A2 re-
spectively. Moreover, they coincide: A1 = A2.

Proof. The existence of attractors is a consequence of Corollaries 12, 16, and 17,
and by applying Theorem 8.

The equality ofA1 andA2 is a consequence of the following facts. Both attractors
are compact (and therefore bounded) in their respective topologies, and invariant
for their respective semiflows.

Since the injection ofH1
0 (Ω) into L2(Ω) is continuous, A2 is bounded in (L2(Ω))2×

L2(Ω; [0, 1]), and then it holds

lim
t→∞

dist(L2)3(G(t,A2),A1) = 0,

but G(t,A2) = A2, and so this means that

dist(L2)3(A2,A1) = 0.

So, A2 ⊂ A1.
For the other inclusion, observe that for any positive time T > 0, by Proposition

13, G(T,A1) is bounded in H1
0 (Ω)× L2(Ω)× L2(Ω; [0, 1]). Then it holds

lim
t→∞

distH1
0×(L2)2(G(t, G(T,A1)),A2) = 0,

but G(t, G(T,A1)) = A1, and so this means that

distH1
0×(L2)2(A1,A2) = 0.

Thus, A1 ⊂ A2 and the proof is completed. �

Actually, we may complete the above result with a more detailed description
of the relation of omega-limit sets in both semiflows. For brevity, let us denote
by ω1(·) and ω2(·) the omega-limit sets in the spaces (L2(Ω))2 × L2(Ω; [0, 1]) and
H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1]) respectively.
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Corollary 19. For any bounded sets B1 ∈ B((L2(Ω))2 × L2(Ω; [0, 1])) and B2 ∈
B(H1

0 (Ω)× L2(Ω)× L2(Ω; [0, 1])), the following equalities hold

ω1(B1) = ω2(G(t, B1)) ∀ t > 0,

ω1(B2) = ω2(B2).

Proof. All the omega-limit sets in the statement are well-defined by Theorem 18
and Remark 7 (b)(iii).

Observe that by Proposition 13, and since ω1(B1) = ω1(G(t, B1)) for any t > 0,
then the first equality is a consequence of the second. So, we only have to prove
that ω1(B2) = ω2(B2).

In order to do that, firstly observe that the inclusion to the right is trivial by
the continuous injection of H1

0 (Ω) into L2(Ω).
For the opposite, consider sequences {bn}n ⊂ B2, {tn}n ⊂ (0,∞) with tn ↑

∞, and {(φ(tn), u(tn), c(tn))}n, with (φ(tn), u(tn), c(tn)) ∈ G(tn, bn) such that
(φ(tn), u(tn), c(tn))→ (φ∞, u∞, c∞) in (L2(Ω))3.

Secondly, observe that G(tn, B2) = G(tn − t1, G(t1, B2)) for all n ≥ 2, G(t1, B2)
is bounded in H1

0 (Ω) × L2(Ω) × L2(Ω; [0, 1]) by Proposition 13, and so, by Corol-
lary 16, there exists a converging subsequence {(φ(tn′), u(tn′), c(tn′))} to some
element (φ̃∞, ũ∞, c̃∞) ∈ ω2(B2). By uniqueness of the limit, one deduces that
(φ∞, u∞, c∞) = (φ̃∞, ũ∞, c̃∞) and so the inclusion ω1(B2) ⊂ ω2(B2) holds. �

Remark 20. An alternative proof of the equality of the attractors in Theorem 18
follows from Remark 14, Remark 7 (iv), and the above result.

5. Structure of the omega-limit sets

As mentioned in the Introduction, because of the strong coupling of the model,
the convergence of solutions towards the equilibria is difficult to determine using
standard methods. However, we show that under suitable assumptions any weak
solution converges to an equilibrium.

More precisely, in this section we obtain a characterization of the elements be-
longing to the omega-limit sets of both semiflows given in Proposition 10. Actually,
by the regularizing effect of the problem, we have seen (cf. Corollary 19 above)
that they are related.

In order to achieve a more complete description of the omega-limit sets we will
use one technique employed in [16] (see also [18]). To this end, we improve some
estimates obtained previously for the solutions.

Proposition 21. Assume that the following relation among the coefficients in the
model holds,

ε2λ1 >

(
β2k

2

1l
2

2C2
V ε

2k2
1λ1

+
2β2M2(θB − θA)2

ε2λ1
+ 1− βl

CV

)+

, (13)

where (·)+ denotes the positive part, i.e., (·)+ = max{·, 0}.
Then, there exists a constant C such that the following inequality holds for any

global solution (φ, u, c) of (2) with initial datum (φ0, u0, c0) ∈ H1
0 (Ω) × L2(Ω) ×
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L2(Ω; [0, 1]) :

|φ(t)|2 + |u(t)|2 + |c(t)|2 + |∇φ(t)|2

+
∫ t

0

(|∇φ(s)|2 + |φt(s)|2 + |∇u(s)|2 + |∇c(s)|2)ds ≤ C(φ0, u0, c0) ∀t ≥ 0.

The constant C only depends on the norms of (φ0, u0, c0), but is independent of t.

Proof. We will obtain now several inequalities using different test functions in the
system (2).

We begin by taking φ as test function in the first equation in (2) and applying
the Young inequality with arbitrary positive constants c1 and c2 to be fixed later.
So we obtain

αε2

2
d

dt
|φ|2 + ε2|∇φ|2 +

1
2

∫
Ω

(φ4 − φ2)dx+
βl

2CV
|φ|2

≤ β2

2c1C2
V

|u|2 +
c1
2
|φ|2 +

β2(θB − θA)2

2c2
|c|2 +

c2
2
|φ|2 a.e. t > 0. (14)

By multiplying the first equation in (2) by φt and applying again the Young in-
equality, we also have

αε2|φt|2 +
ε2

2
d

dt
|∇φ|2 +

1
2
d

dt

(∫
Ω

(
φ4

4
− φ2

2

)
dx

)
+

βl

4CV
d

dt
|φ|2

≤ β2

αC2
V ε

2
|u|2 +

β2(θB − θA)2

αε2
|c|2 +

αε2

2
|φt|2 a.e. t > 0. (15)

By multiplying the third equation in (2) by c, and since c ∈ [0, 1], one deduces
similarly as above that

1
2
d

dt
|c|2 +K2|∇c|2 ≤

K2M
2

2
|∇φ|2 +

K2

2
|∇c|2 a.e. t > 0.

So, arranging terms and multiplying by ε2

2K2M2 , we arrive at

ε2

4K2M2

d

dt
|c|2 +

ε2

4M2
|∇c|2 ≤ ε2

4
|∇φ|2 a.e. t > 0. (16)

Recall that taking u as test function in the second equation in (2), using the
boundedness of K1, arranging terms and multiplying by 2k1ε

2

k
2
1l

2
we have previously

obtained inequality (11).
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By multiplying (15) by a constant c3 > 0 to be fixed later on, and adding to
(14), (11), and (16), we conclude

d

dt

((αε2

2
+
lc3β

4CV

)
|φ|2 +

CV ε
2k1

k
2

1l
2
|u|2 +

ε2

4K2M2
|c|2 +

c3ε
2

2
|∇φ|2

)

+
c3
2
d

dt

(∫
Ω

(
φ4

4
− φ2

2

)
dx

)
+
ε2

2
|∇φ|2 +

βl

2CV
|φ|2 +

1
2

∫
Ω

φ4dx

+
αc3ε

2

2
|φt|2 +

ε2k2
1

k
2

1l
2
|∇u|2 +

ε2

4M2
|∇c|2

≤
( β2

2c1C2
V

+
β2c3
αC2

V ε
2

)
|u|2 +

(β2(θB − θA)2

2c2
+
β2c3(θB − θA)2

αε2

)
|c|2

+
(c1 + c2 + 1)

2
|φ|2 a.e. t > 0. (17)

Now, we rearrange coefficients using the Poincaré inequality suitably, in such a
manner that positive terms and positive coefficients remain in the left hand side
and the right hand side be zero.

But for that, before to use the Poincaré inequality, we must care about two
possible cases for the coefficients of |φ|2 and, if necessary, of |∇φ|2. These two
possibilities can be abbreviated into one expression using the positive part function
(·)+, which appears below.

Thus, denoting for short by di > 0, i = 1, . . . , 4, to the coefficients in the first
four derivatives in (17), depending on c3, and by the above arguments, we arrive at

d

dt
(d1|φ|2 + d2|u|2 + d3|c|2 + d4|∇φ|2) +

c3
2
d

dt

(∫
Ω

(
φ4

4
− φ2

2

)
dx

)
+
αc3ε

2

2
|φt|2 +D1|∇u|2 +D2|∇c|2 +D3|∇φ|2 ≤ 0 a.e. t > 0, (18)

where

D1 =
ε2k2

1

k
2

1l
2
−
(

β2

2c1C2
V

+
β2c3
αC2

V ε
2

)
λ−1

1 ,

D2 =
ε2

4M2
−
(
β2(θB − θA)2

2c2
+
β2c3(θB − θA)2

αε2

)
λ−1

1 ,

D3 =
ε2

2
−
(
c1 + c2 + 1

2
− βl

2CV

)+

λ−1
1 . (19)

Now, from (13) it is possible to choose ci > 0, i = 1, . . . , 3, such that Dj > 0 for
j = 1, . . . , 3. For clarity, the proof of this fact is postponed to an auxiliary result
(cf. Lemma 22 below). So, once we have fixed such ci > 0, and denoting

d5 = min{αc3ε2/2, D1, D2, D3} > 0,
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from (18), integrating in time and using the inequality x4 − 2x2 ≥ x2 − 9/4 for all
x ∈ R, we conclude(

d1 +
c3
8

)
|φ|2 + d2|u|2 + d3|c|2 + d4|∇φ|2

+d5

∫ t

0

{
|∇φ|2 + |φt|2 + |∇u|2 + |∇c|2

}
ds

≤ d1|φ0|2 +
c3
8
‖φ0‖4L4(Ω) + d2|u0|2 + d3|c0|2 + d4|∇φ0|2 +

9
32
c3|Ω| ∀t ≥ 0,

whence the claim follows. �

Lemma 22. Condition (13) is equivalent to the possibility of choosing positive
values {ci}3i=1, such that {Di}3i=1, given in (19), are positive.

Proof. First at all, observe that c3 appears in D1 and D2 in a proportional way,
which means that we can take c3 > 0 as small as desired, and we have the result
provided that c1 and c2 are chosen such that

R1 =
ε2k2

1

k
2

1l
2
− β2

2c1C2
V λ1

,

R2 =
ε2

2M2
− β2(θB − θA)2

c2λ1
,

R3 = ε2λ1 −
(
c1 + c2 + 1− βl

CV

)+

are positive.

Assume that (13) holds. We must prove that it is possible to choose c1, c2 > 0
such that Ri > 0 for i = 1, . . . , 3.

Observe that R1 and R2 are strictly increasing functions in relation to c1 and c2
respectively. Moreover, there exist positive values c∗1 and c∗2 such that Ri = 0, and
therefore Ri > 0 if and only if ci > c∗i , for i = 1, 2.

Then, for any choice ci > c∗i , since the positive part function is non-decreasing,
we have that (

c∗1 + c∗2 + 1− βl

CV

)+

≤
(
c1 + c2 + 1− βl

CV

)+

.

From this inequality and condition (13), it holds that for sufficiently close values
ci > c∗i , i = 1, 2, then R3 is positive, as we desired to prove.

Let us prove the opposite implication. Assume that there exist values c1, c2 > 0
such that Ri > 0 for i = 1, . . . , 3. We must prove that (13) holds.

Using again the monotonicity of the positive part function (·)+, the proof is
analogous to the above, but going back into the steps. �

A direct consequence of the Proposition 21 is the following.

Corollary 23. Under the assumptions of Proposition 21, there exists a constant
C > 0, only depending on the norms of φ0, u0, and c0, such that any global solution
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(φ, u, c) with such initial datum satisfies

‖φt‖L2(0,∞;L2(Ω)) + ‖φ‖L∞(0,∞;H1
0 (Ω)) + ‖u‖L2(0,∞;H1

0 (Ω))

+‖u‖L∞(0,∞;L2(Ω)) + ‖c‖L2(0,∞;H1
0 (Ω)) ≤ C,

‖ut‖L2(0,∞;H−1(Ω)) + ‖ct‖L2(0,∞;H−1(Ω)) ≤ C.

Proof. First estimate is an immediate consequence of Proposition 21. Second esti-
mate follows from the above and second and third equations in (2). �

We have the following description of the omega-limit set of trajectories which
contains the solutions of the steady state system naturally associated to the evolu-
tion problem.

Theorem 24. Assume that (13) is satisfied. Then, for any B ∈ B((L2(Ω))2 ×
L2(Ω; [0, 1])) and any (φ∞, u∞, c∞) ∈ ω1(B), it holds that

φ∞ ∈ H4(Ω) ∩H1
0 (Ω), u∞ ∈ H2(Ω) ∩H1

0 (Ω), c∞ ∈ H3(Ω) ∩H1
0 (Ω),

and they satisfy

−ε2∆φ∞ =
1
2

(φ∞ − φ3
∞) +

β

CV
(u∞ −

l

2
φ∞) + β(θB − θA)c∞ in Ω,

∇ · [K1(φ∞)∇u∞] =
l

2
∇ · [K1(φ∞)∇φ∞] in Ω,

−K2(∆c∞ +M∇ · [c∞(1− c∞)∇φ∞]) = 0 in Ω,

0 ≤ c∞ ≤ 1 in Ω.

(20)

Proof. By Corollary 19, it is clear that we may assume that B ∈ B(H1
0 (Ω)×L2(Ω)×

L2(Ω; [0, 1])). Let (φ∞, u∞, c∞) ∈ ω2(B) and tn →∞ such that

(φ(tn), u(tn), c(tn))→ (φ∞, u∞, c∞) in H1
0 (Ω)× (L2(Ω))2. (21)

For n ≥ 1 and t ∈ (0, 1) we define

φn(t) = φ(tn + t), un(t) = u(tn + t), cn(t) = c(tn + t).

From Corollary 23 we infer some uniform estimates for the sequences {φn}n,
{un}n, and {cn}n. More precisely, there exists a constant C > 0 such that for all
n ≥ 1 :

‖φnt‖L2(0,1;L2(Ω)) + ‖φn‖L∞(0,1;H1
0 (Ω)) + ‖un‖L2(0,1;H1

0 (Ω)) + ‖un‖L∞(0,1;L2(Ω))

+ ‖cn‖L2(0,1;H1
0 (Ω)) + ‖unt‖L2(0,1;H−1(Ω)) + ‖cnt‖L2(0,1;H−1(Ω)) ≤ C. (22)

Next, we identify the limit of φn, un, and cn as n goes to ∞. We observe that
for each t ∈ [0, 1], by Hölder inequality,

|φn(t)− φ(tn)| =
∣∣∣ ∫ tn+t

tn

φt(s)ds
∣∣∣

≤
(∫ ∞

tn

|φt(s)|2ds
)1/2

,

and the right hand side converges to zero as n → ∞ by Corollary 23. Similarly,
we have that un(t) and cn(t) converge to u(tn) and c(tn), respectively, in H−1(Ω)
uniformly in t ∈ [0, 1].

Now, we write

|φn(t)− φ∞| ≤ |φn(t)− φ(tn)|+ |φ(tn)− φ∞|,
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and using (21) we conclude that

φn → φ∞ in C([0, 1];L2(Ω)).

In a similar way, we prove that

(un, cn)→ (u∞, c∞) in C([0, 1]; (H−1(Ω))2).

We also have the following bounds∫ 1

0

|φnt(s)|2ds =
∫ tn+1

tn

|φt(s)|2ds

≤
∫ ∞
tn

|φt(s)|2ds,

∫ 1

0

‖unt(s)‖2H−1(Ω)ds ≤
∫ ∞
tn

‖ut(s)‖2H−1(Ω)ds,

and ∫ 1

0

‖cnt(s)‖2H−1(Ω)ds ≤
∫ ∞
tn

‖ct(s)‖2H−1(Ω)ds,

so that

φnt → 0 in L2(0, 1;L2(Ω)),

(unt, cnt)→ 0 in L2(0, 1; (H−1(Ω))2).

Moreover, from (22) and the Aubin-Lions lemma (e.g., cf. [19]), there exist
subsequences of {φn}n, {un}n, and {cn}n (which we still denote the same) satisfying

φn
∗
⇀ φ∞ weakly-star in L∞(0, 1;H1

0 (Ω)),

φn → φ∞ a.e. (0, 1)× Ω,

(un, cn) ⇀ (u∞, c∞) weakly in L2(0, 1; (H1
0 (Ω))2),

(un, cn) ∗⇀ (u∞, c∞) weakly-star in L∞(0, 1; (L2(Ω))2),

(un, cn)→ (u∞, c∞) strongly in L2(0, 1; (L2(Ω))2).

Finally, we prove that φ∞, u∞ and c∞ satisfy (20). To this end, consider

% ∈ D(0, 1) with
∫ 1

0

%(s)ds = 1 and ζ ∈ D(Ω).

Multiplying the first equation in (2) by %(t− tn)ζ(x), and integrating in (0, tn + 1),

αε2

∫ tn+1

0

〈φt(t), ζ〉%(t− tn)dt+ ε2

∫ tn+1

0

(∇φ(t),∇ζ)%(t− tn)dt

=
1
2

∫ tn+1

0

(φ(t)− φ3(t), ζ)%(t− tn)dt+
β

CV

∫ tn+1

0

(u(t)− l

2
φ(t), ζ)%(t− tn)dt

+β(θB − θA)
∫ tn+1

0

(c(t), ζ)%(t− tn)dt.
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By using the change of variable s = t− tn,

αε2

∫ 1

0

〈φnt(s), ζ〉%(s)ds+ ε2

∫ 1

0

(∇φn(s),∇ζ)%(s)ds

=
1
2

∫ 1

0

(φn(s)− φ3
n(s), ζ)%(s)ds

+
β

CV

∫ 1

0

(un(s)− l

2
φn(s), ζ)%(s)ds+ β(θB − θA)

∫ 1

0

(cn(s), ζ)%(s)ds.

From the above convergences, and by [19, Lem.1.3, p.12], passing to the limit as
n→∞ we obtain

ε2

∫ 1

0

%(s)ds(∇φ∞,∇ζ)

=
1
2

∫ 1

0

%(s)ds(φ∞ − φ3
∞, ζ) +

β

CV

∫ 1

0

%(s)ds(u∞ −
l

2
φ∞, ζ)

+β(θB − θA)
∫ 1

0

%(s)ds(c∞, ζ).

Thus, first equation in (20) is satisfied.
Similarly, multiplying by the same function in the second equation in (2) and

integrating, it yields

CV

∫ 1

0

〈unt(s), ζ〉%(s)ds+
∫ 1

0

(K1(φn(s))∇un(s),∇ζ)%(s)ds

=
l

2

∫ 1

0

(K1(φn(s))∇φn(s),∇ζ)%(s)ds.

Since K1 is Lipschitz continuous, we have that

K1(φn)→ K1(φ∞) strongly in L2(0, 1;L2(Ω)),

and passing to limit we obtain that second equation in (20) holds.
Next, since 0 ≤ cn ≤ 1 and cn → c∞ in L2(0, 1;L2(Ω)), by the Dominated Con-

vergence Theorem, it follows that cn(1−cn) converges to c∞(1−c∞) in Lp(0, 1;Lp(Ω))
for any p ∈ [1,∞), and also 0 ≤ c∞ ≤ 1. Proceeding analogously as before in the
concentration equation in (2), we can pass to the limit in∫ 1

0

〈cnt(s), ζ〉%(s)ds+K2

∫ 1

0

(∇cn(s),∇ζ)%(s)ds

+K2M

∫ 1

0

(cn(s)(1− cn(s))∇φn(s),∇ζ)%(s)ds = 0,

and deduce that third equation in (20) is satisfied.

Finally, concerning the regularity of the triplet (φ∞, u∞, c∞), let us observe that
they belong not only to H1

0 (Ω) × L2(Ω) × L2(Ω; [0, 1]). By elliptic regularity and
bootstrapping in (20), it is not difficult to deduce that φ∞, and later u∞ and c∞,
gain the regularity claimed in the statement. The proof is then complete. �

Remark 25. If the function K1 is more regular, the regularity of the elements in
the omega-limit can be improved, again by a bootstrapping argument as above.
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Remark 26. The above result identifies the possible cluster points of any single
solution, but it does not indicate whether this limit set is properly a singleton. This
last question may be answered by the study of the set of stationary states. Indeed,
the answer is positive if, for instance, one can show that the number of solutions to
(20) is discrete, or the system satisfies some kind of  Lojasiewicz-Simon property.
None of these properties seem to be easy to obtain here. In fact, they do not hold
in several examples (cf. [3, 12]).
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