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Universidad de Sevilla, Apdo. de Correos 1160,

41080 Sevilla, Spain

pedro@numer.us.es

JAMES C. ROBINSON

Mathematics Institute, University of Warwick,

Coventry, CV4 7AL, UK

jcr@maths.warwick.ac.uk

Received
Revised

In a 1997 paper, Ball defined a generalised semiflow as a means to consider the solutions
of equations without (or not known to possess) the property of uniqueness. In parti-
cular he used this to show that the 3D Navier–Stokes equations have a global attractor
provided that all weak solutions are continuous from (0,∞) into L2. In this paper we
adapt his framework to treat stochastic equations: we introduce a notion of a stochastic
generalised semiflow, and then show a similar result to Ball’s concerning the attractor
of the stochastic 3D Navier–Stokes equations with additive white noise.
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1. Introduction

For certain deterministic differential equations, most notably the three-dimensional

Navier–Stokes equations, we can prove the existence of solutions but are unable

to prove their uniqueness. Nevertheless, if we still wish to consider such equa-

tions within the framework of a dynamical system there are various approaches

available.

In particular there have been various attempts to apply the theory of global

attractors to the 3D Navier–Stokes equations, despite the unresolved problem of

uniqueness. There are two results which require no additional hypotheses: Foias and

Temam [18] constructed a set, consisting of strong solutions, that attracts all weak

solutions in the weak topology of the natural phase space; and Sell [27] analysed

the induced single-valued flow on the phase space consisting of all solutions of the
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equation (an element of this space is a complete trajectory in the original phase

space), showing that this has a global attractor.

However, the two results that are nearest to the standard theory require the

assumption of (unproved) hypotheses: Foias and Temam [17] showed that the ex-

istence of globally defined strong solutions (which are then unique) automatically

implies the existence of a global attractor, while Ball [5] deduced the same result

assuming that the weak solutions trace out continuous trajectories in the phase

space.

Under this condition on the solutions, Ball recast the 3D Navier–Stokes equa-

tions as a generalised (multivalued) semiflow, and showed that this generalised

semiflow has a global attractor. Another general setting for such multivalued flows

has recently been developed by Melnik and Valero [24], and in the past by workers

in control theory (see Kloeden [21] for a summary).

In this paper we consider a stochastic version of the 3D Navier–Stokes equations:

as for the deterministic equations, existence is known, but the issue of uniqueness

is again unresolved (see Bensoussan and Temam [6], for example). Two of the

above treatments of the deterministic 3D equations have been extended to treat

the stochastic case: that of Foias and Temam [17] by Crauel and Flandoli [15]

(regularity implies the existence of an attractor) and that of Sell by Flandoli and

Schmalfuß [16] (an attractor in the “path space”). By working in a phase space

formed of solutions of the stochastic 3D Navier–Stokes equations (“the path space”),

Flandoli and Schmalfuß are able, despite the lack of uniqueness, to work with

single-valued cocycles of the standard sort (as discussed in Sec. 2). Following the

treatment of Ball [5] and insisting that we remain in the original phase space, we

are required in what follows to introduce a multivalued framework. It is this that

makes the problems of measurability and invariance of the attractor signfificantly

more involved. (For a more general framework for stochastic equations without

uniqueness see Caraballo et al. [7]).

We begin the paper with a brief summary in Sec. 2 of the standard random

dynamical systems framework in which the theory of random attractors can be

developed. In Sec. 3 we recall the definition of weak solutions of the stochastic

3D Navier–Stokes equations due to Flandoli and Schmalfuß [16]. We then intro-

duce in Sec. 4 the notion of a generalised stochastic semiflow, and prove that the

weak solutions of the 3D NSE form a stochastic semiflow if and only if they are

each continuous from (0,∞) into the natural phase space H . Section 5 develops

the general theory of attractors for stochastic generalised semiflows, and this is

then applied to the 3D NSE (under the continuity assumption on the solutions)

in Sec. 6.

While the applications to the stochastic 3D Navier–Stokes equations were the

motivating factor for our work, we believe that the main contribution of this pa-

per is to offer a workable definition of a stochastic generalised semiflow, and a

corresponding theory of global attractors.
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2. Single-Valued Random Dynamical Systems and

Their Attractors

We now recall the definition of a random dynamical system and a random attractor

(for more background on random dynamical systems see Arnold [3]). We cover only

the case of continuous time here.

Let (Ω,F ,P) be a probability space and {θt : Ω → Ω, t ∈ R} a family of

measure-preserving transformations such that (t, ω) 7→ θtω is measurable, θ0 = id,

and θt+s = θtθs for all s, t ∈ R. The flow θt together with the corresponding

probability space,

(Ω,F ,P, (θt)t∈R)

is called a (measurable) dynamical system.

Let (X, d) be a Polish space (a complete separable metric space) equipped with

its Borel σ-algebra B. A continuous random dynamical system (RDS) on X is a

measurable map

ϕ : R
+ × Ω ×X → X

(t, ω, x) 7→ ϕ(t, ω)x

such that P-a.s.

(i) ϕ(0, ω) = id on X

(ii) ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t, s ∈ R
+ (cocycle property)

(iii) ϕ(t, ω) : X → X is continuous.

The concept of a random attractor for such systems was first introduced by

Crauel and Flandoli [14] and Schmalfuß [28], with notable developments in Crauel

et al. [13]. This attractor is a random compact set that is invariant and attracting

“in the pullback sense”. In order to define these concepts more precisely we denote

by dist(·, ·) the Hausdorff semidistance in X ,

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b) .

A random compact set {K(ω)}ω∈Ω is a family of compact sets indexed by ω

such that for every x ∈ X the map ω 7→ dist(x,K(ω)) is measurable with respect to

F ; and we say that a random set A(ω) is attracting if for all deterministic bounded

sets B ⊂ X we have

lim
t→∞

dist(ϕ(t, θ−tω)B,A(ω)) = 0 P-almost surely .

Since ϕ(t, θ−tω)u0 can be interpreted as the position at time zero of the trajectory

which was at u0 at time −t, this pullback attraction is essentially attraction “from

t = −∞”.
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A random compact set A(ω) is said to be a random attractor for the RDS ϕ if

it is both attracting (as above) and invariant, that is

ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 P-a.s.

The standard result that provides the existence of random attractors is sim-

ilar to that from the deterministic theory (e.g. Babin and Vishik [4], Hale [19],

Ladyzhenskaya [22], Robinson [26], Temam [30]): the following elegant formulation

is due to Crauel [12].

Theorem 1. There exists a random attractor A(ω) iff there exists a compact

attracting set K(ω).

3. Weak Solutions of the Stochastic 3D Navier Stokes Equations

We will consider the Navier–Stokes equations with additive noise on a smooth

bounded open domain D ⊂ R
3:

∂u

∂t
− ν∆u+ (u · ∇)u+ ∇p− f = Ẇt in [0,∞) ×D ,

div u = 0 in [0,∞) ×D ,

u = 0 in [0,∞) × ∂D ,

u(0, x) = u0(x) x ∈ D ;

(3.1)

here ν is the kinematic viscosity, p the pressure, u the velocity field, f a time-

independent body forcing field, and Wt a two-sided Wiener process which we will

specify in more detail below. [Of course, the notation Ẇt is for convenience only,

the main PDE of (3.1) needing to be interpreted in an integral sense, see below.]

The presence of the stochastic term requires a modification of the deterministic

definition of a weak solution. In what follows we adopt the approach of Flandoli

and Schmalfuß [16], tailoring their presentation slightly to suit our purposes.

First we need to introduce some standard notation in order to treat the equation

in the usual way (see Constantin and Foias [9], for example): let V denote the space

of infinitely differentiable divergence-free three-dimensional vector fields on D with

compact support contained in D. By H we denote the closure of V in [L2(D)]3 and

by V its closure in [H1
0 (D)]3; for the corresponding norms we will use | · | and ‖ · ‖

respectively. We can define a bilinear operator B(u, v) : V × V → V ′, where V ′ is

the dual of V , via

〈B(u, v), z〉 =

3
∑

i,j=1

∫

D

zi(x)uj(x)
∂vi

∂xj
(x)dx ,

where 〈·, ·〉 denotes the pairing between V ′ and V .

If P is the orthogonal projection from [L2(D)]3 onto H (the “Leray projector”),

then the Stokes operator A is defined by Au = −P∆u. We write D(A) for the

domain of A; D(A) = [H2(D)]3 ∩ V , and denote by λ1 the first eigenvalue of A.
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We take the white noise processWt to be a two-sided Wiener process with values

in V that can be expressed as

Wt =

∞
∑

j=1

cjB
(j)
t wj ,

where {wj} is a complete set of eigenfunctions of A that are orthonormal in

V , B
(j)
t are mutually independent one-dimensional Brownian motions, and

∑∞
j=1

|cj |2 < ∞. Thus, in the notation of Sec. 2, the probability space (Ω,F ,P) is the

space (C0(R;V ),BC0(R;V ),P) (with P the appropriate product of one-dimensional

Wiener measures). The measure-preserving transformation θt can be represented

by its action on realisations of the Wiener process as the shift operator with an

appropriate adjustment to retain the condition that Wθtω(0) = 0:

W·(θtω) = Wt+·(ω) −Wt(ω) .

In order to deal with the problems due to the white noise term, we will essen-

tially make a substitution that allows us to consider the equation realisation-by-

realisation: to do this we will use the unique stationary solution of the auxiliary

Stokes equation

dz + [(A+ α)z]dt = dWt (3.2)

that is defined for all t ∈ R, namely the Ornstein–Uhlenbeck process

zα(t) =

∫ t

−∞

e(t−s)(−A−α)dWs ;

this is given more rigorously, P-a.s., by

zα(t, ω) = Wt(ω) −

∫ t

−∞

(A+ α)e(t−s)(−A−α)Ws(ω)ds (3.3)

(the inclusion of the parameter α will prove useful for our discussion of attractors,

although it is not necessary in the proof of the existence of solutions). Various

properties of zα are recalled as and when we need them below.

Definition 1. Given f ∈ [H−1(D)]3 and a realisation Wt(ω) of the Wiener process

that is continuous from [0,∞) into V , we say that u ∈ L2
loc[0,∞;H) is a weak

solution of the Navier–Stokes equation (3.1) with noise ω if

• u ∈ L∞
loc[0,∞;H) ∩ L2

loc[0,∞;V ),

• ∂
∂t (u−Wt) ∈ L

4/3
loc [0,∞;V ′),

• for a.e. t and t0 with t ≥ t0 > 0 and for t0 = 0, we have

V1(u, ω)(t) ≤ V1(u, ω)(t0) , (3.4)



August 15, 2003 15:46 WSPC/168-SD 00077
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where

V1(u, ω)(s) := e−
∫

s
0

(−λ1+2C∗|zα(r;ω)|8
L4)dr|u(s) − zα(s;ω)|2

−

∫ s

0

e−
∫ σ
0

(−λ1+2C∗|zα(r;ω)|8
L4 )dr

× 4

[

C2
B |zα(σ;ω)|4L4 +

α2

λ1
|zα(σ;ω)|2 + ‖f‖2

V ′

]

dσ

and

V2(u;ω)(t) ≤ V2(u;ω)(t0) , (3.5)

where

V2(u;ω)(s) := |u(s) − zα(s;ω)|2 +

∫ s

0

‖u(r) − zα(r;ω)‖2dr

−

∫ s

0

[2C∗|u(r) − zα(r;ω)|2|zα(r;ω)|8L4

+ 4C2
b |zα(r;ω)|4L4 + 4α2|zα(r;ω)|2/λ1 + 4‖f‖2

V ′ ]dr

• and for all t ≥ t0 ≥ 0 and all φ ∈ V

〈u(t) − u(t0), φ〉 +

∫ t

t0

〈A1/2u(s), A1/2φ〉ds+

∫ t

t0

〈B(u(s), u(s)), φ〉ds

= 〈Wt(ω) −Wt0(ω), φ〉 +

∫ t

t0

〈f, φ〉ds . (3.6)

The constants C∗ and CB are defined in Flandoli and Schmalfuß [16], and are

related to the constants occurring in two calculus inequalities.

Observe that if we drop all the terms involving Wt and zα then (3.4) and (3.5)

are consequences of the standard deterministic Leray energy inequality for weak

solution (see Constantin and Foias [9], for example). Flandoli and Schmalfuß show

that the definition is independent of α.

Almost every realisation of the Wiener process has trajectories that satisfy

Wt ∈ C0(R;V ), so certainly Wt ∈ C0([0,∞), V ) as required by the definition

of a weak solution above. Given this observation, Flandoli and Schmalfuß [16,

Proposition 2.2, p. 368] proved the existence of such weak solutions for the 3D

stochastic Navier–Stokes equations:

Proposition 1. For almost every ω, given u0 ∈ H and f ∈ [H−1(D)]3 there exists

a weak solution of the Navier–Stokes equation with noise ω such that u(0) = u0.

(We note here that we have taken f ∈ [H−1(D)]3, rather than the more usual

assumption that f ∈ V ′, in line with the results of Langa et al. [23]: although



August 15, 2003 15:46 WSPC/168-SD 00077

Attractors for the Stochastic 3D Navier–Stokes Equations 7

Definition 1 makes sense for f ∈ V ′, it is not possible to recover the pressure p in

any meaningful way unless f ∈ [H−1(D)]3. See Simon [29] for similar results for

the deterministic Navier–Stokes equations.)

4. Generalised Stochastic Semiflows and the 3D Stochastic NSE

Following Ball’s approach for deterministic semiflows without uniqueness [5] we now

give a definition of a generalised stochastic semiflow, and show that this is applicable

to the 3D Navier–Stokes equations with an additive noise, provided that we assume

that the solutions are continuous from (0,∞) into H .

4.1. Generalised stochastic semiflows

We recover Ball’s definition of a generalised semiflow if we remove from the following

all dependence on ω (and the corresponding references to Ω). In order for our

definition to make sense we impose the additional assumption that Ω is a Polish

space. Because the primary application of the theory of random dynamical systems

is to stochastic ordinary and partial differential equations, we believe that this does

not overly limit the applicability of the concept. Generally we would expect Ω to

be identified with the canonical (two-sided) Wiener space: in our application of

the definition to the stochastic 3D Navier–Stokes equations we identify Ω with the

space of all continuous paths from R into V , and say that ωn → ω if

Wt(ωn) →Wt(ω) in V

uniformly on compact subintervals of R.

Definition 2. A stochastic generalised semiflow (SGS) G on X with noise Ω is a

family of pairs

{(ϕ, ω)|ϕ : [0,+∞) → X, ω ∈ Ω}

(called solutions) satisfying the following assumptions:

(S1) Existence: P-a.s. in ω, for each z ∈ X there exists at least one (ϕ, ω) ∈ G with

ϕ(0) = z.

(S2) Translates of solutions are solutions: If (ϕ, ω) ∈ G and τ ≥ 0, then (ϕτ , θτω) ∈

G, where ϕτ (t) := ϕ(τ + t).

(S3) Generalised cocycle property: If (ϕ, ω) and (ψ, θtω) belong to G, with ψ(0) =

ϕ(t), then (φ, ω) ∈ G, where

φ(τ) :=

{

ϕ(τ) for 0 ≤ τ ≤ t ,

ψ(τ − t) for τ > t .

(S4) Upper semicontinuity with respect to initial data: if (ϕn, ωn) ∈ G with

ϕn(0) → z and ωn → ω, then there exists a subsequence (ϕn′ , ωn′) and a

pair (ϕ, ω) ∈ G with ϕ(0) = z such that ϕn′(t) → ϕ(t) for every t ≥ 0.
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Given a stochastic generalised semiflow it is possible to define a “generalised

cocycle” using the set of all attainable states,

Φ(t, ω)E = {ϕ(t) : (ϕ, ω) ∈ G, ϕ(0) ∈ E} . (4.1)

We now show that this has similar properties to the standard kind of cocycle

(cf. Sec. 2).

Proposition 2. Let G be a SGS, then P-a.s.

Φ(0, ω)E = E for all E ⊂ X (4.2)

and

Φ(t+ s, ω)E = Φ(t, θsω)Φ(s, ω)E for all t, s ∈ R+, E ⊂ X . (4.3)

Moreover, every Φ(t, ω) has compact values and is a multivalued upper semi-

continuous mapping, i.e. for every neighbourhood N of Φ(t, ω)x, there exists a

neighbourhood M of x such that Φ(t, ω)M ⊂ N.

Proof. Equality (4.2) is obvious by definition. In order to prove (4.3) consider x ∈

Φ(t+s, ω)E; then there exists (ϕ, ω) ∈ G such that x = ϕ(t+s) with ϕ(0) ∈ E. Now,

(ϕs, θsω) is an element of G by (S2): therefore x = ϕs(t), i.e. x ∈ Φ(t, θsω)ϕs(0)

and ϕs(0) = ϕ(s) ∈ Φ(s, ω)ϕ(0).

For the other inclusion, let x ∈ Φ(t, θsω)Φ(s, ω)E. Then there exists an element

z ∈ Φ(s, ω)E with x ∈ Φ(t, θsω)z, and so there exist pairs (ϕ, θsω) and (ψ, ω) in

G such that x = ϕ(t) with ϕ(0) = ψ(s) and ψ(0) ∈ E. We now use property (S3),

and consider

φ(τ) :=

{

ψ(τ) for 0 ≤ τ ≤ s ,

ϕ(τ − s) for s < τ .

Then (φ, ω) ∈ G and so x ∈ Φ(t+ s, ω)ψ(0) ⊂ Φ(t+ s, ω)E.

Since (S4) holds, it is obvious that every Φ(t, ω) has compact values. For the

upper semicontinuity it is easy to see (arguing by contradiction) that Φ(t, ω) is

ε-u.s.c. [for each x, for every ε > 0 there exists a δ > 0 such that the image under

Φ(t, ω) of the δ ball about x lies within an ε neighbourhood of Φ(t, ω)(x)]; since

Φ(t, ω) takes compact values this implies that it is upper semicontinuous (cf. Aubin

and Cellina [1]).

In order to prove the existence of a random attractor for such a generalised

stochastic semiflow, we will require a strengthening of the property (S4) which also

includes some compactifying properties of the generalised cocycle Φ(t, ω). We say

that G is a compactifying generalised stochastic semiflow (KSGS) if (S1–3) and

(S4∗) hold, where for (S4∗) we require the same as (S4) but when the initial data

converges only weakly:
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(S4∗) Upper semicontinuity with respect to weakly converging initial data: if

(ϕn, ωn) ∈ G with ϕn(0) ⇀ z and ωn → ω, then there exists a subsequence

(ϕn′ , ωn′) and a pair (ϕ, ω) ∈ G with ϕ(0) = z such that ϕn′(t) → ϕ(t) for

every t > 0.

4.2. A stochastic generalised semiflow for the 3D stochastic NSE

We denote by GSNS the set of all pairs (ϕ, ω), where ϕ is a weak solution of the

stochastic 3D Navier–Stokes equations associated to a realisation ω of the noise. We

have the following result, after Proposition 7.4 of Ball [5]. Note that the topology

on Ω is that discussed at the beginning of Sec. 4.1.

Proposition 3. The following are equivalent :

(i) GSNS is a compactifying stochastic generalised semiflow.

(ii) P-a.s. in ω, each weak solution u (associated with ω) is continuous from (0,∞)

to H.

(iii) P-a.s. in ω, each weak solution u (associated with ω) is continuous from [0,∞)

to H.

We note here that in the particular case of the stochastic 3D NSE, (S4) and

(S4∗) are equivalent.

Proof. (i) implies (ii). We follow the proof of Theorem 2.1 in Ball’s paper, which

combines a version of Lusin’s theorem with the properties of weak solutions to

deduce (ii) by contradiction.

More precisely, suppose that GSNS is a generalised stochastic semiflow on H ,

and let ω lie within the set of full measures given by (S1) such that there exists at

least one weak solution. Now choose ϕ to be any one of these weak solutions, and

let us assume that it is not continuous from (0,∞) → H . It follows that for some

finite time interval I = (a, a + δ), there exists a t0 ∈ J ≡ (a + δ/3, a+ 2δ/3) and

hj → 0+ such that

ϕ(t0 + hj) 6→ ϕ(t0) . (4.4)

We will deduce a contradiction from the above claim. In order to do that we will

show that all hj-shifts of ϕ are continuous almost everywhere and then use the

weak continuity of the solution.

Since ϕ ∈ C([0,∞);Hw) it is weakly measurable, and by Pettis’ theorem (see

p. 73 of Hille and Phillips [20]) ϕ is strongly measurable. Lusin’s theorem (see

Oxtoby [25] for example) can be applied to ensure the existence of a family of

closed sets Fj ⊂ J with meas(J \Fj) ≤ 1/j2 such that the restriction of ϕ to Fj is

continuous. We now define Ej = J ∩Fj ∩ (Fj −hj), where hj are the times in (4.4).
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Clearly meas(J \Ej) ≤ 2/j2, and so

meas

(

J \
⋃

n≥1

⋂

j≥n

Ej

)

= meas

(

⋂

n≥1

⋃

j≥n

(J \Ej)

)

≤ meas

(

⋃

j≥n0

(J \Ej)

)

≤
∑

j≥n0

2/j2 → 0 as n0 → ∞ ,

from which we deduce that almost every t ∈ J belongs to
⋃

n≥1

⋂

j≥n Ej , i.e. ϕ(·+

hj) is continuous and so ϕ(t+ hj) → ϕ(t) for almost every t ∈ J .

Now take t1 and t2 in J , with t1 < t0 < t2 and ϕ(ti + hj) → ϕ(ti) as j → ∞.

Since (ϕ(t1 + ·), θt1ω) ∈ GSNS and (ϕ(t1 + hj + ·), θt1+hjω) ∈ GSNS with

ϕ(t1 + hj + 0) → ϕ(t1) when hj → 0 ,

using (S4) we can deduce the existence of a subsequence and a pair (ψ, θt1ω) ∈ GSNS

with ψ(0) = ϕ(t1) and

ϕ(t1 + hµ + t) → ψ(t) for all t ≥ 0

when µ→ ∞.

In particular, ψ(t) = ϕ(t1 + t) for almost every t ∈ (0, a+2δ/3− t1). Using (S3)

we can guarantee that (φ, θt1ω) ∈ GSNS, where

φ(t) =

{

ϕ(t+ t1) 0 ≤ t ≤ t2 − t1 ,

ψ(t) t > t2 − t1 .

Since the weak solutions of the Navier–Stokes equations are weakly continuous,

the semi-flow has the property (in Ball’s terminology) of unique representatives,

namely that since (ϕ(t1 + ·), θt1ω) and (φ(·), θt1ω) coincide for almost every t ∈

(0,∞) we must have φ(t) = ϕ(t1 + t) for all t ≥ 0. In particular, we deduce that

ϕ(t0 + hµ) tends to φ(t0 − t1) = ϕ(t0) as µ → ∞, a contradiction.

(ii) implies (iii). Since each solution u is continuous from (0,∞) → H , we only have

to prove the continuity at t = 0. But it is straightforward given (3.5), taking t0 = 0,

to check that given any sequence tj → 0+:

|u(0) − zα(0, ω)| ≤ lim inf |u(tj) − zα(tj , ω)|

≤ lim sup |u(tj) − zα(tj , ω)| ≤ |u(0) − zα(0, ω)| .

From this, the continuity of zα and the weak convergence of u(t) to u(0) (following

from the weak continuity of solutions), we deduce (iii).

(iii) implies (i). Condition (S1) is ensured by Proposition 1 and (S3) is easy to

obtain; without (ii) or (iii) the translation property (S2) needs not hold, due to

violation of the energy inequality (cf. Ball [5]) although Eq. (3.6) is satisfied by

translates (cf. Lemma 5.1 in Flandoli and Schmalfuß [16]). However, assuming (iii),

each weak solution associated to (an appropriate) ω is continuous from [0,∞) → H ;
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hence Vi(u, ω)(t) (i = 1, 2) are continuous for all t ≥ 0 and therefore non-increasing,

from which (S2) follows.

So, we concentrate on proving (S4∗): take a sequence (un, ωn) ∈ GSNS such that

un(0) → z in H and Wt(ωn) → Wt(ω) uniformly on compact subintervals of R.

We have to prove that there exists a subsequence (uµ, ωµ) and (u, ω) ∈ GSNS with

u(0) = z and uµ(t) → u(t) for all t ≥ 0. (We will deal with a fixed time interval

[0, T ] and the result for [0,∞) will follow by a diagonal argument.)

Since we are concerned with solutions of the equation corresponding to various

different realisations of the noise (ωn), in order to apply Definition 1 we have to

use various different processes zα. Since these are given by

zα(t, ω) = Wt(ω) −

∫ t

−∞

(A+ α)e(t−s)(−A−α)Ws(ω)ds

(this was (3.3)) it follows that zα(t, ωn) converges uniformly on compact time in-

tervals to zα(t, ω) as n → ∞. Using this observation we can derive estimates for

un(t) − zα(t;ωn) that are uniform in n. By (3.4) we have

|un(t) − zα(t;ωn)|2 ≤ e
∫

t
0
(−λ1+2C∗|zα(s;ωn)|8

L4 )ds|un(0) − zα(0;ωn)|2

+

∫ t

0

e
∫

t
σ
(−λ1+2C∗|zα(s;ωn)|8

L4)ds

× 4

[

C2
B |zα(σ;ωn)|4L4 +

α2

λ1
|zα(σ;ωn)|2 + ‖f‖2

V ′

]

dσ .

Thus for some constant CT (α;ω) > 0

|un(·) − zα(·;ωn)|L∞(0,T ;H) ≤ CT (α;ω) for all n . (4.5)

On the other hand, from (3.5) we obtain

|un(t) − zα(t;ωn)|2 +

∫ t

0

‖un(s) − zα(s;ωn)‖2ds

≤ |un(0) − zα(0;ωn)|2 +

∫ t

0

[

2C∗|un(σ) − zα(σ;ωn)|2|zα(σ;ωn)|8L4

+ 4C2
B|zα(σ;ωn)|4L4 +

4α2

λ1
|zα(σ;ωn)|2 + 4‖f‖2

V ′

]

dσ ,

from whence, using (4.5), we obtain (adjusting the definition of CT if necessary)

‖un(·) − zα(·;ωn)‖L2(0,T ;V ) ≤ CT (α;ω) for all n .

Now it is standard to deduce that
∥

∥

∥

∥

d

dt
[un(·) − zα(·;ωn)]

∥

∥

∥

∥

L4/3(0,T ;V ′)

≤ CT (α;ω) for all n

(once more changing CT suitably).
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Applying well-known compactness results (see Constantin and Foias [9], for

example), we can ensure the existence of a subsequence (which we do not relabel)

and a function v ∈ C([0, T ];Hw) ∩ L2(0, T ;V ) such that, setting u = v + zα,

un(t) − zα(t;ωn) ⇀ u(t) − zα(t;ω) in H , ∀ t ∈ [0, T ] ,

un(t) − zα(t;ωn) ⇀ u(t) − zα(t, ω) in L2(0, T ;V ) ,

d

dt
[un(·) − zα(·;ωn)] ⇀

d

dt
[u(·) − zα(·;ω)] in L4/3(0, T ;V ′) ,

un → u in L2(0, T ;H) ,

un(t) → u(t) in H a.e. t ∈ (0, T ) .

(4.6)

Because of (3.2) and convergence in the above senses, it is easy to check that u(t)

satisfies (3.6) with initial data z = limweak un(0). Passing to the limit, inequality

(3.4) is also straightforward. Following Ball, writing (3.5) for each term in the

subsequence and then taking limits on the left using the weak lower semicontinuity

and on the right using (4.6) we obtain (3.5) for u(t) − zα(t;ω). Thus u is a weak

solution corresponding to noise ω, and so by assumption u is continuous into H ;

therefore V2(un, ωn)(·) and V2(u, ω)(·) are also continuous and, since each function

is decreasing and

V2(un, ωn)(·) → V2(u, ω)(·) a.e. t > 0 ,

we may ensure that the above convergence occurs for every t. This implies

that |un(t)| → |u(t)|, which along with the weak convergence of un(t) to u(t)

gives us the required strong convergence of un to u in H for every t > 0 and

(S4) holds.

5. Attractors for Generalised Stochastic Semiflows

Ball [5] proves the existence of a global attractor for a generalised semiflow if and

only if the semiflow is pointwise dissipative [there is a bounded set B0 such that

for any ϕ ∈ G, ϕ(t) ∈ B0 for all sufficiently large t] and asymptotically compact

[for any sequence ϕj ∈ G with ϕj(0) bounded, and for any sequence tj → ∞, the

sequence ϕj(tj) has a convergent subsequence]. We prove a similar result here for

a compactifying SGS, but the details are different since we also have to take into

account the random element.

Following the result for single-valued RDS of Crauel [12] (see Theorem 1, above)

we will give a necessary and sufficient condition for the existence of an attractor

for our generalised stochastic semiflow [the precise definition of an “attractor” in

this case is given just before Theorem 2, below], namely the existence of a compact

attracting set, i.e. a set K(ω) such that if D is a deterministic bounded set,

dist(Φ(t, θ−tω)D,K(ω)) → 0 as t→ ∞ ,

where Φ is the generalised cocycle defined in (4.1).



August 15, 2003 15:46 WSPC/168-SD 00077

Attractors for the Stochastic 3D Navier–Stokes Equations 13

The existence of such a compact attracting set (note that we do not require

to be measurable) implies (and motivates) the following concept: a generalised

semiflow is said to be asymptotically compact if P-a.s., for every bounded set D and

sequences tn → ∞ and xn ∈ Φ(tn, θ−tnω)D, there exists a subsequence in {xn}

which converges.

As a first step define the Ω-limit set of a fixed deterministic set D by

ΩD(ω) =
⋂

T>0

⋃

t>T

Φ(t, θ−tω)D .

We now prove some basic properties of these sets.

Lemma 1. Let G be an asymptotically compact SGS. For any non-empty closed

bounded deterministic set D, P-a.s. ΩD(ω) is non-void, compact and the minimal

closed set that attracts D:

lim
t→∞

dist(Φ(t, θ−tω)D,ΩD(ω)) = 0 . (5.1)

Moreover, it is negatively invariant, that is

ΩD(θtω) ⊆ Φ(t, ω)ΩD(ω) for all t ≥ 0 .

If D is also compact, then ΩD(ω) is measurable with respect to the P-completion

of F . The same result holds for weakly compact sets D provided that G is also a

compactifying SGS.

Proof. Let us first check that ΩD(ω) is non-void. Consider any element d ∈ D and a

sequence {tn} with tn → ∞. By (S1) there exist solutions (ϕn, θ−tnω) ∈ G such that

ϕn(0) = d; the asymptotic compactness implies that there is a subsequence {ϕµ(tµ)}

that converges to an element z ∈ ΩD(ω), and hence ΩD(ω) is non-void. The set

ΩD(ω) is obviously closed; we will see, by a Cantor diagonalization argument, that

it is also compact: given a sequence {yn} ⊂ ΩD(ω), there exist sequences tn → ∞

and pairs (ϕn, θ−tnω) ⊂ G with {ϕn(0)} ⊂ D and d(ϕn(tn), yn) < 1/n. Using

the asymptotic compactness again there exists a subsequence ϕµ(tµ) → z and so

yµ → z ∈ ΩD(ω).

We omit the proof of the attraction property of ΩD(ω) (by contradiction) and

of its minimality, since these follow closely the equivalent arguments from the

single-valued case.

First we prove the negative invariance of ΩD. To this end, consider y ∈ ΩD(θtω).

We have to check that y ∈ Φ(t, ω)ΩD(ω). Since y ∈ ΩD(θtω) there exist a se-

quence tn → ∞ and a sequence of pairs {(ϕn, θ−tn+tω)} ⊂ G with ϕn(0) ∈ D

such that yn = ϕn(tn) converges to y. Now, take n ≥ n0 such that tn ≥ t

for all n ≥ n0. Observe that xn = ϕn(tn − t) ∈ Φ(tn − t, θ−(tn−t)ω)D and,

using the cocycle property from Proposition 2, that yn ∈ Φ(t, ω)xn. Using the

asymptotic compactness property there is a subsequence (which we do not relabel)

xn → x ∈ ΩD(ω). On the other hand, yn = ϕtn−t
n (t) with ϕtn−t

n (0) = xn. By (S4)

there exist another subsequence (which we do not relabel) and a pair (ϕ, ω) ∈ G



August 15, 2003 15:46 WSPC/168-SD 00077
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with ϕ(0) = x and ϕtn−t
n (s) → ϕ(s) for all s ≥ 0. In particular, with s = t we see

that ϕtn−t
n (t) = yn → ϕ(t), and so y = ϕ(t) ∈ Φ(t, ω)x ⊂ Φ(t, ω)ΩD(ω).

We now prove that ΩD(ω) is measurable if D is compact. As a first step, observe

that for every such set D the map Φ(·, ·)D : (0,∞) × Ω 7→ K(H) (the compact

subsets ofH) is measurable w.r.t. the completion of B(0,+∞)⊗F using the product

measure of the measure on Borel subsets of (0,∞) and P.

Indeed, by Theorem A.2 in Bensoussan and Temam [6] (see also Theorem III.30

in Castaing and Valadier [8], Theorem 8.1.4 in Aubin and Frankowska [2], or

Proposition 2.4 in Crauel [10]) it is enough to check that Φ(·, ·)D has closed graph,

i.e. given (ϕn, ωn) ∈ G such that ϕn(0) ∈ D, ωn → ω, tn → t > 0 and ϕn(tn) → y,

we must have y ∈ Φ(t, ω)D.

Using the compactness of D there is a subsequence (which we relabel) with

ϕn(0) → z ∈ D. It follows using (S4) that for a further sequence (which again

we do not relabel) there exists a pair (ϕ, ω) ∈ G such that ϕn(t) → ϕ(t) for all

t > 0. Theorem 2.2 in Ball [5] now shows that this convergence is in fact uniform

on compact subintervals of (0,∞), from whence ϕn(tn) → ϕ(t) ∈ Φ(t, ω)D, proving

the required measurability of Φ.

From this observation the measurability of ΩD(ω) for compact D is a conse-

quence of the Projection theorem (cf. Castaing and Valadier [8], Theorem III.23;

see also [7, 14]).

The same argument applies unchanged if D is weakly compact and G is a KSGS,

since then the weak convergence of ϕn(0) ⇀ z ∈ D is sufficient, using (S4∗), to

obtain a pair (ϕ, ω) ∈ G such that ϕn(t) → ϕ(t) for all t > 0.

By taking the union of all possible Ω-limit sets,

A(ω) =
⋃

D bounded

ΩD(ω) , (5.2)

we obtain, as proved below, the minimal invariant compact random set that attracts

all bounded sets (in the sense of (5.1)). We term this set the global attractor.

Theorem 2. A compactifying generalised stochastic semiflow has a global attractor

A(ω) if and only if it has a compact attracting set K(ω). In this case A(ω) is given

by (5.2).

Proof. The condition is clearly necessary. We now prove that the condition is

sufficient, noting that the existence of a compact attracting set implies that the

SGS is asymptotically compact. Since A(ω) is closed, compactness follows since it

must be a subset of the compact attracting set K(ω).

The negative invariance of A(ω) is similarly straightforward, given the results

of Lemma 1:

A(θtω) =
⋃

D

ΩD(θtω) ⊂ Φ(t, ω)
⋃

D

ΩD(ω)

⊂ Φ(t, ω)
⋃

D

ΩD(ω) = Φ(t, ω)A(ω) ;
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the first inclusion follows from the negative invariance of ΩD(ω), while the final

equality is valid since Φ(t, ω) is upper semicontinuous (Proposition 2) and the upper

semicontinuous image of a compact set is once again compact, and therefore closed.

Taking the countable sequence of weakly compact sets Bn = BH(0, n), we can

write

A(ω) =
⋃

n

ΩBn(ω) ,

and so A is clearly measurable since each of the ΩBn(ω) is measurable because G

is a KSGS.

A straightforward proof of the positive invariance of A(ω) is not possible without

the strong assumption of lower semicontinuitya of the solutions with respect to their

initial data. Instead we borrow the following nice argument due to Crauel [10, 11]

and extended by Caraballo et al. [7]. This proves the positive invariance using the

negative invariance, maximality, and measurability of A.

Consider a fixed t ∈ R+. We will prove that the set A′(ω) = Φ(t, θ−tω)A(θ−tω)

is a negatively invariant random compact set, and consequently, A′(ω) ⊂ A(ω),

from which the result follows.

To prove that A′(θsω) ⊂ Φ(s, ω)A′(ω) for s ∈ R+, by the definition of A′, it

suffices to show that

Φ(t, θs−tω)A(θs−tω) ⊂ Φ(s, ω)Φ(t, θ−tω)A(θ−tω) . (5.3)

Using the negative invariance of A(ω), we have A(θs−tω) ⊂ Φ(s, θ−tω)A(θ−tω).

Applying Φ(t, θs−tω) to this last inclusion, and using the cocycle property (4.3) of

Φ (Proposition 2), inclusion (5.3) follows.

Since P-a.s., A(θ−tω) is a compact set, and Φ(t, θ−tω) is u.s.c. and has compact

values, A′(ω) is also compact.

For the measurability of A′(ω) (again with respect to F0, the P-completion of F)

we suppose that t > 0 (if t = 0, it is trivial since A′(ω) = A(ω) is measurable).

By Theorem 8.1.4 (Characterisation theorem) in Aubin and Frankowska [2], we

have to check that for every closed set C ⊂ H , the set M = {ω|A′(ω) ∩ C 6= ∅}

belongs to F0. It is easy to see that M = θ−t{ω|(ω,A(ω)) ∩ M1 6= ∅}, where

M1 = {(ω, x)|Φ(t, ω)x ∩ C 6= ∅}.

Since Φ(t, ·)(·) is u.s.c. [this follows from (S4)], it is immediate that M1 is closed

in Ω×H [here make the most of the topological structure we have imposed upon Ω].

On the other hand, the map ω 7→ (ω,A(ω)) is measurable, because it is the compo-

sition of the Carathéodory identity map on Ω×H , and the closed measurable map

ω 7→ A(ω). Thus M ∈ F0 as desired.

We note here that, although for technical reasons (in order to avoid having to

deal with the universal sigma algebra), we have used the P-completion of F , it is

aA multivalued map F is said to be lower semi-continuous in x if for every y ∈ F (x) and every
sequence xn → x, there exist values yn ∈ F (xn) with yn → y.
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possible (cf. Lemma 2.7 in Crauel [10]) to obtain a random compact set measurable

w.r.t. F which is equal to A(ω) P-a.s.

It is interesting that the following result (cf. Crauel [11]) also holds in this

multivalued case.

Proposition 4. For a KSGS with a global attractor, the maximal invariant set

that attracts all compact sets is also well defined, and is equal to A(ω) P-a.s.

Proof. Since A(ω) is a random compact set, it is possible to choose a non-

random compact set which contains A(ω) with a probability as high as wished

(cf. Proposition 2.15 in Crauel [10]). Denote by Kn a deterministic compact set

such that P({ω ∈ Ω|A(ω) ⊂ Kn}) > 1 − 1/n. By Theorem 2 and an adaptation

of the Recurrence theorem of Poincaré for negatively invariant compact random

sets in the multivalued case (cf. Caraballo et al. [7], Theorem 3), we deduce that

P({ω ∈ Ω|A(ω) ⊂ ΩKn(ω)}) > 1 − 1/n, and therefore A(ω) =
⋃

n ΩKn(ω), whence

follows the maximality of A(ω) among every negatively invariant random compact

set, and we are done.

6. Dissipativity and a Global Attractor for the 3D Stochastic NSE

For our particular example we can prove a stronger compactness condition than

the existence of a compact attracting set; instead we prove the existence of a com-

pact absorbing set, i.e. a compact set K(ω) such that P-a.s. for every bounded

deterministic set D there is a time TD(ω) such that

Φ(t, θ−tω)D ⊂ K(ω) , t ≥ TD(ω) .

Firstly, following Crauel and Flandoli [15], we prove the same result but with

K(ω) replaced by a bounded set B(ω). Taking u(0) ∈ D, and setting t0 = 0 in (3.4)

we obtain

|u(t) − zα(t; θ−tω)|2 ≤ e
∫

t
0
(−λ1+2C∗|zα(s;θ−tω)|8

L4 )ds|u(0) − zα(0; θ−tω)|2

+ 4

∫ t

0

e
∫ t

σ
(−λ1+2C∗|zα(s;θ−tω)|8

L4 )ds

[

C2
B |zα(σ; θ−tω)|4L4

+
α2

λ1
|zα(σ; θ−tω)|2 + ‖f‖2

V ′

]

dσ . (6.1)

We follow the idea given in step 5 in Crauel and Flandoli [15] among others. A

simple ergodic argument (see Crauel and Flandoli [15] or Lemma 7.2 in Flandoli

and Schmalfuß [16]) guarantees that

lim inf
α→∞

lim sup
τ→∞

1

τ

∫ τ

0

|zα(s; θ−τω)|8L4ds = 0 , (6.2)
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and hence for α sufficiently large there exists a t0(ω) such that for all t ≥ t0

2C∗ 1

t

∫ t

0

|zα(s; θ−tω)|8L4ds <
λ1

2
.

In particular, for almost every ω we have
∫ t

0

(−λ1 + 2C∗|zα(s; θ−tω)|8L4)ds ≤ −
λ1t

2
for t ≥ t0(ω) . (6.3)

A bound for the first term on the right-hand side of (6.1) holds since |u(0)| is

bounded by assumption, and

zα(0, θ−tω) = zα(−t, ω)

has polynomial growth (by Lemma 3.6(ii), p. 377 in Flandoli and Schmalfuß [16]

or (10) in Crauel and Flandoli [15]), i.e.

lim
t→−∞

|zα(t, ω)|jL4

|t|j
= 0 for j ∈ N .

The second term on the right-hand side of (6.1) does not depend on D, and we

need an estimate that is valid for all t ≥ 0. In order to do that, we transform it by

two changes of variables, σ − t = s and r − t = ρ, as follows:
∫ t

0

e
∫

t
σ
(−λ1+2C∗|zα(s;θ−tω)|8

L4 )ds

[

C2
B |zα(σ; θ−tω)|4L4 +

α2

λ1
|zα(σ; θ−tω)|2 + ‖f‖2

V ′

]

dσ

=

∫ 0

−t

e
∫

0

s
(−λ1+2C∗|zα(ρ;ω)|8

L4 )dρ

[

C2
B |zα(s;ω)|4L4 +

α2

λ1
|zα(s;ω)|2 + ‖f‖2

V ′

]

ds .

By continuity, polynomial growth and ergodic argument (6.2), (6.3) (with an-

other change of variables) for the process zα, we can proceed and finish the proof

exactly as in Crauel and Flandoli [15].

Thus, it follows that given u(0) in a bounded set, there exists a random variable

r(ω) and a time t1(ω, |u(0)|) such that

|u(t)| ≤ r(ω) for all t ≥ t1(ω, |u(0)|) .

Write B(ω) for the ball of radius r(ω) in H .

Now we recall (cf. Ball [5]), as observed at the end of Lemma 1, that the proof of

Proposition 3 also shows that GSNS is compact, i.e. given ω, a sequence of solutions

(ϕn, ω) ∈ GSNS with {ϕn(0)} bounded has a subsequence that converges for all

t > 0. In particular this means that Φ(1, ω) is compact, P-a.s., and so

K(ω) = Φ(1, θ−1ω)B(θ−1ω)

is a compact set. Due to its definition, K(ω) is absorbing, since

Φ(t+ 1, θ−1−tω)D = Φ(1, θ−1ω)Φ(t, θ−1−tω)D
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and so for all t ≥ t1(θ−1ω,D)

Φ(t+ 1, θ−1−tω)D ⊆ Φ(1, θ−1ω)B(θ−1ω) = K(ω) .

Application of Theorem 2 now yields a global attractor for the 3D stochastic

NSE:

Theorem 3. If weak solutions of the stochastic 3D Navier–Stokes equations are

continuous from (0,∞) into H, then the equations define a compactifying generalised

stochastic semiflow which has a global attractor.

7. Conclusion

We have extended the idea of a generalised semiflow due to Ball [5] to treat stochas-

tic systems, and shown that such a generalised semiflow has a global attractor if

and only if it has a compact attracting set.

These abstract ideas have been applied to the stochastic 3D Navier–Stokes equa-

tions, for which we have shown that, as in the deterministic case, continuity of

solutions into the natural phase space H implies the existence of a global attractor.
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