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Abstract

We prove existence of a global attractor A
(λ) under minimal assumptions for a gen-

eral class of parameterized delay differential equations without uniqueness and posed
in potentially different state spaces. Secondly, we establish the upper semicontinuity
of the attractors with respect to the parameter λ.

Key words: Delay differential equations without uniqueness, multi-valued
semiflows and attractors, upper semicontinuity of attractors.

1 Introduction

Delay differential equations (DDE for short) are of major interest in many
fields of science. They appear in Biology, Economics, Physics, Chemistry, etc.
There are many interesting questions concerning the qualitative behaviour
of DDE, although most of attention has been paid to stability properties.
Even when such results do not hold, it is still useful the study their long-time
behaviour, and in particular the existence of attractors. There exists a wide
literature on this topic, see for instance [6,7] and the references therein.
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A middle step between autonomous and non-autonomous models are DDE
with parameters, which arise, for instance, when dealing with approximations
or (singular) perturbations of the original model.

The aim of this paper is twofold:

First, we will prove the existence of global attractors for a general class of
parameterized DDE which includes fixed, variable, and distributed delays.
Each equation is posed in a potentially different state space, and we only
make weak continuity assumptions on the right hand side which only allow us
to prove existence but no uniqueness.

Our second goal is to study the behaviour of these attractors when varying
the parameter. There are many results on upper semicontinuity in the liter-
ature about attractors for dynamical systems, and their perturbations and
approximations (e.g. cf. [3,10] among many others). We obtain an upper semi-
continuity result here w.r.t. to the parameter although, as commented before,
we deal in principle with different state spaces.

The structure of the paper is as follows. In Section 2 we study the existence
and estimates of solutions for a general class of parameterized delay differential
equations. A multi-valued semiflow is then established, and the existence of an
attractor for each value of the parameter is proved. In Section 3 we establish
an embedding of all the problems in a common state space, and obtain a new
family of attractors, which we relate with that obtained previously. Finally,
we prove the upper semicontinuity of these attractors with respect to the
parameter.

2 A general class of parametric DDEs

Let us introduce some notation which will be used all through the paper.

For a given metric space (X, d), P (X), C(X), and K(X) will denote the class
of all nonempty, nonempty and closed, and nonempty and compact subsets
of X respectively. BX(a, r) will denote the open ball of X with center a and
radius r. In addition, denote the Hausdorff semidistance by

H∗
X(A, B) = sup

x∈A
d(x, B)

for any subsets A, B ∈ C(X).

In Rd (d ∈ N), we denote by | · | the Euclidean norm. And for any T > 0
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we will denote by (CT , ‖ · ‖T ) the Banach space C([−T, 0]; Rd) with the norm
‖ϕ‖T = supt∈[−T,0] |ϕ(t)|. The usual notation for delay function will be a sub-
script: xt(s) = x(t + s) where it has sense.

Hypothesis 1 Let Λ ⊂ R be a closed interval, and suppose that positive
numbers 0 < T∗ < T ∗, and functions τ, ρ ∈ C(Λ; [T∗, T ∗]) (which will drive
the delay effects) are given.

Consider also the functions F0, F1 ∈ C(Rd; Rd), and b : [−max
Λ

τ, 0]×R
d → R

d,

measurable w.r.t. its first variable and continuous w.r.t. the second variable,
m0, m1 ∈ L1((−max

Λ
τ, 0); R+), and α, β > 0, and k1, k2 ≥ 0, such that

|b(s, x)| ≤m1(s)|x| + m0(s), ∀x ∈ R
d, a.e. s ∈ [−max

Λ
τ, 0],

〈x, F0(x)〉≤−α|x|2 + β, ∀x ∈ R
d,

|F1(x)|2 ≤ k2
1 + k2

2|x|2, ∀x ∈ R
d.

For convenience we introduce the following notation

Mρ,τ
λ = max{ρ(λ), τ(λ)}, mi = max

Λ

∫ 0

−τ(λ)
mi(s)ds for i = 0, 1. (1)

Under the above assumptions, consider (for each λ ∈ Λ) the functional

f(λ, ·) : CMρ,τ
λ

→ R
d

given by

f(λ, ϕ) = F0(ϕ(0)) + F1(ϕ(−ρ(λ))) +
∫ 0

−τ(λ)
b(s, ϕ(s))ds,

and the family of DDE

x′(t) = f(λ, xt) = F0(x(t)) + F1(x(t − ρ(λ))) +
∫ 0

−τ(λ)
b(s, x(t + s))ds. (2)

Remark 2

(i) Thanks to the continuity assumptions for F0, F1, b, τ and ρ, and using the
dominated convergence theorem, it is not difficult to check that f(λ, ·) is a
continuous functional.

(ii) The results presented here can be extended to more general functionals de-
pending on the parameter and/or different delay terms. However, for clarity
in the presentation, we prefer to restrict to this case.

When necessary we will denote with superscript (λ) the parametric depen-
dence of the problem. However, if no confusion is possible, we will just use
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the notation x for any solution instead of x(λ) since the estimates that we will
obtain are uniform in λ (which is one of our main goals).

2.1 Semiflows and attractors for DDE(λ)

Local existence of solutions is well know (cf. [7]) for finite delay differential
equations provided the right hand side is a continuous functional, as observed
in Remark 2(i). With a priori estimates from the following result we will obtain
global (and not only local) solutions but no uniqueness.

The following notion from Dynamical Systems Theory will be necessary (cf.
[17] and the references therein).

Definition 3 A multi-valued map G : R+×X → P (X) is called a multi-valued
semiflow if

a) G(0, ·) = Id (identity map)

b) For any pair t1, t2 ≥ 0 and for all x ∈ X,

G(t1 + t2, x) ⊂ G(t1,G(t2, x)), where G(t, A) =
⋃
a∈A

G(t, a).

When the above inclusion is an equality, it is said that the multi-valued semi-
flow is strict.

Lemma 4 Assume that Hypothesis 1 holds, and consider a local solution x
to (2), defined on an interval [0, Tx). Then, there exist positive constants A,
B, and δ such that x satisfies for all t < Tx :

eδt|x(t)|2 ≤ |x(0)|2 +
∫ t

0
eδs(A + B‖xs‖2

Mρ,τ
λ

)ds. (3)

Proof. From the equation, we easily obtain

4
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1

2

d

dt
|x(t)|2 ≤−α|x(t)|2 + β +

(
k2

1 + k2
2|x(t − ρ(λ))|2

)1/2 |x(t)|

+〈x(t),
∫ 0

−τ(λ)
b(s, x(t + s))ds〉

≤−α|x(t)|2 + β +
1

2ε

(
k2

1 + k2
2|x(t − ρ(λ))|2

)
+

ε

2
|x(t)|2

+
ε̄

2
|x(t)|2 +

m2
0

2ε̄
+ |x(t)|

∫ 0

−τ(λ)
m1(s)|x(t + s)|ds

≤−α|x(t)|2 + β +
1

2ε

(
k2

1 + k2
2|x(t − ρ(λ))|2

)
+

ε

2
|x(t)|2

+
ε̄

2
|x(t)|2 +

m2
0

2ε̄
+ ‖x(t)‖2

τ(λ)m1,

where ε and ε̄ are positive constants to fix later, and mi were defined in (1).

We deduce

1

2

d

dt
|x(t)|2 ≤ −

(
α − ε

2
− ε̄

2

)
|x(t)|2 + β +

k2
1

2ε
+

k2
2

2ε
‖xt‖2

ρ(λ) +
m2

0

2ε̄
+ m1‖xt‖2

τ(λ).

Take δ ∈ (0, 2α) such that ε + ε̄ = 2α − δ and write

A = 2β +
k2

1

ε
+

m2
0

ε̄
and B =

k2
2

ε
+ 2m1,

so we rewrite the above inequality as

d

dt
|x(t)|2 ≤ −δ|x(t)|2 + A + B‖xt‖2

Mρ,τ
λ

. (4)

Multiplying (4) by eδt we arrive to (3).

The next step in order to construct a multi-valued semiflow is clear. This
proposition-definition follows from standard continuation results (cf. [7, Ch.2]).

Proposition 5 Assume Hypothesis 1 holds. Then, the set

D(ψ) = {x : x is a global solution of (2) with x0 = ψ}

is nonempty, and the following multi-valued map is a multi-valued semiflow,

G
(λ) : R+ × CMρ,τ

λ
→ P (CMρ,τ

λ
)

(t, ψ) �→ G(t, ψ) = {xt : x ∈ D(ψ)}.

The following two notions will be useful for our purpose.

5
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Definition 6 A multi-valued semiflow G : R+×X → P (X) is called pointwise
dissipative if there exists a bounded set B ⊂ X that attracts the dynamics
starting at all single points, i.e.

lim
t→+∞ H∗(G(t, x), B) = 0 ∀x ∈ X.

It is called asymptotically compact if for any bounded set B ⊂ X and any
sequence {tn} with tn → +∞, any sequence {ψ(n)}n with ψ(n) ∈ G(tn, B),
possesses a converging subsequence in X.

The following result was stated in [17] for complete metric spaces, but it really
does not need the completeness.

Theorem 7 [cf. [17, Th.3]] Let X be a metric space, and G be a pointwise
dissipative and asymptotically compact multi-valued semiflow on X. Suppose
that G(t, ·) : X → C(X) is upper semicontinuous for any t ≥ 0. Then G has
a compact global attractor A, that is, a compact invariant set, G(t)A = A for
all t ≥ 0, that attracts all bounded sets:

lim
t→+∞H∗(G(t, B),A) = 0 ∀B bounded.

It is minimal among all closed sets attracting each bounded set.

We can establish now our main result in this section. For this, we borrow and
adapt some ideas from Wang & Xu [18] and Ball [1] already used in [5] for
infinite delay. This will lead to the starting estimates for Theorem 8 below,
which improves the analogous result in [4]. Note that the additional condition
(5) means that the dissipativity of F0 dominates the effects of the other terms
in the equation (2).

Theorem 8 Assume the conditions in Hypothesis 1. If the following inequal-
ity holds,

α > k2 + m1, (5)

then there exist constants A, B, and δ as in Lemma 4 satisfying δ > B.
Moreover, the semiflow G(λ) is pointwise attracted by the set

B
(λ)
0 = {ψ ∈ CMρ,τ

λ
: ‖ψ‖2

Mρ,τ
λ

≤ K =
A

δ − B
},

that is, lim
t→+∞H∗

C
M

ρ,τ
λ

(G(λ)(t, ϕ), B
(λ)
0 ) = 0 for all ϕ ∈ CMρ,τ

λ
.

Proof. We start checking that it is posible to consider two constants δ and B
in Lemma 4, which additionally satisfy δ > B.

To take the smallest posible value of B =
k2
2

ε
+ 2m1 in Lemma 4, we put the

biggest possible divisor ε. Recall that we imposed the relation ε + ε̄ = 2α− δ,

6
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so we arrive to analyze the positive character of the function “δ−B” given by

g(δ) = δ − 2m1 − k2
2

2α−δ
. This function is defined over the open interval (0, 2α).

Since lim
δ→2α

g′(δ) < 0, it is clear that we must impose

lim
δ→0

g′(δ) > 0. (6)

(Otherwise, max g = g(0) < 0). The condition for (6) is 2α > k2. In this case,
the maximum of g is 2(α−m1 − k2), therefore the first part of the theorem is
proved.

Now, we proceed to prove the second statement in the theorem. Thanks to the
first part, it has sense to consider the value K = A

δ−B
. We divide this proof in

three steps.

Step 1: For any R ≥ 1, BC
M

ρ,τ
λ

(0,
√

RK), is positively invariant for the semi-

flow G(λ) associated with equation (2).

If not, there must be an initial datum ψ with ‖ψ‖2
Mρ,τ

λ
< RK and a solution

x of (2) with x0 = ψ and a first time t1 such that ‖xt1‖2
Mρ,τ

λ
= RK, i.e.

|x(t1)|2 = RK.

But from (3) we deduce that

|x(t1)|2 < e−δt1RK +
∫ t1

0
e−δ(t1−s)(A + BRK)ds

= e−δt1RK +
A + BRK

δ
(1 − e−δt1).

Observe that
A + BRK

δ
≤ R(A + BK)

δ
= RK,

which is a contradiction with |x(t1)|2 = RK.

Step 2: The closed ball B
(λ)
0 = B̄C

M
ρ,τ
λ

(0,
√

K) attracts any solution of (2).

Consider a solution x(·) with initial data ψ with ‖ψ‖2
Mρ,τ

λ
= d ≥ K (otherwise,

the claim holds by Step 1).

Thanks to Step 1 we have that |x(t)| ≤ d for all t ≥ 0. Therefore, lim sup
t→+∞

|x(t)|2 =

σ exists. Therefore,

7
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∀ε > 0 ∃ T1(ε) > 0 such that |x(t)|2 ≤ σ + ε ∀t ≥ T1(ε),

⇒ ‖xt‖2
Mρ,τ

λ
≤ σ + ε ∀t ≥ T1(ε) + Mρ,τ

λ . (7)

Take now T2(ε) such that

e−δtd +
A + Bd

δ

(
e−δT2(ε) − e−δt

)
≤ ε ∀t ≥ T2(ε). (8)

So, for any t ≥ T2(ε)+T1(ε)+max(ρ(λ), τ(λ)), from (3), splitting the integral
in two parts,

|x(t)|2 ≤ e−δt|x(0)|2 +
∫ t−T2(ε)

0
e−δ(t−s)(A + B‖xs‖2

Mρ,τ
λ

)ds

+
∫ t

t−T2(ε)
e−δ(t−s)(A + B‖xs‖2

Mρ,τ
λ

)ds,

applying (8) to the first two terms in the sum (thanks to Step 1), and (7) to
the last term, we obtain for all t ≥ T2(ε) + T1(ε) + max(ρ(λ), τ(λ)) :

|x(t)|2 ≤ ε +
A + B(σ + ε)

δ

(
1 − e−δT (ε)

)
. (9)

Passing to the limit as ε goes to zero, we deduce that

σ = lim sup
t→+∞

|x(t)|2 ≤ A + Bσ

δ
,

in other words, σ ≤ A
δ−B

= K, which proves the claim.

Step 3: We prove now the general result: the semiflow G
(λ) is pointwise dis-

sipative, i.e. for any fixed initial data ψ, the set G(λ)(t, ψ) (possibly not a

singleton) is attracted by B
(λ)
0 .

Firstly let us denote (for an arbitrary η > 0)

B
(λ)
0,η = {ψ ∈ CMρ,τ

λ
: ‖ψ‖2

Mρ,τ
λ

≤ K + η}.

We claim that B
(λ)
0,η is absorbing for G(t, ψ) (since this will be proved for η > 0

arbitrarily small, we will obtain the main statement from this step).

We proceed by a contradiction argument. Assume that there exist a sequence
of times tn → +∞, and solutions x

(n)
tn with the same initial data x

(n)
0 = ψ such

that x
(n)
tn �∈ B0,η.

Therefore, by the first step, we deduce that x
(n)
t �∈ B

(λ)
0 for all 0 ≤ t ≤ tn.

Besides this, we know that solutions are uniformly bounded since it is so for

8
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the (unique) initial datum. So, by the Ascoli-Arzelà Theorem and a diagonal
procedure argument, we obtain the existence of a function y ∈ C([0, +∞); Rd)
and a subsequence (relabelled the same) such that

x(n)|[0,T ] → y|[0,T ] in C([0, T ]; Rd), ∀T > 0.

In particular, extending y to [−Mρ,τ
λ , 0] by ψ (denote this function again by

y), we have that xn
t → yt for all t ≥ 0. By standard arguments (cf. [7]) we

deduce that y is solution of the problem, but on the other hand it satisfies

‖yt‖2
Mρ,τ

λ
≥ K + η, ∀t ≥ 0.

This is a contradiction with the result of the second step since B
(λ)
0 attracts

any solution, in particular y.

Remark 9 Condition (5), which will be sufficient to ensure the existence of
attractors (see Theorem 11 below), improves Theorem 35 in [4] in the au-
tonomous case. Even in the easiest situation 2m1eh ∼ 1 in [4], i.e. when one
is forced to put λ ∼ 2m1e, comparing (26) there with (5) here, our condition
is less restrictive.

The following result is an immediate consequence of the Ascoli-Arzelà Theo-
rem, and its proof is similar to [4, Prop.10] or [5, Prop.2].

Proposition 10 Consider T > 0 and a functional h : CT → R
n continuous,

bounded (i.e. maps bounded sets onto bounded sets), and such that the DDE
x′(t) = h(xt) generates a semiflow G. If G satisfies the following boundedness
condition,

∀R > 0, ∃M(R) > 0, such that G(t, BCT
(0, R)) ⊂ BCT

(0, M(R)),

then G has compact values, is upper semicontinuous and asymptotically com-
pact.

We can combine the above result with Theorem 7 and Theorem 8 to conclude
the existence of attractors for the semiflows {G(λ)}λ∈Λ defined in Proposition
5.

Theorem 11 Assume that Hypothesis 1 and (5) hold. Then, for each λ ∈ Λ,
(2) generates a multi-valued semiflow G

(λ) : R+ × CMρ,τ
λ

→ P (CMρ,τ
λ

), which
has compact values and is upper semicontinuous.

Moreover, it possesses a global attractor A(λ), which satisfies a uniform bound
(for all λ) on the Euclidean projected space Rd :

‖ψ‖2
Mρ,τ

λ
≤ K, ∀ψ ∈ A

(λ), (10)

where the constant K is given in Theorem 8.

9
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Proof. By Theorem 8 we know that each G(λ) is pointwise dissipative. More-
over, Step 1 gives the uniform boundedness condition in Proposition 10 to
ensure compact values for G(λ), upper semicontinuity, and asymptotic com-
pactness.

The hypotheses of [17, Th.3] are satisfied, so we obtain the desired attractor
A

(λ).

For the second statement, we follows the proof of Theorem 3 in [17]. Take any
value ε > 0. The attractor A(λ) coincides with the ω−limit (in G(λ)) of the

inflated ball BC
M

ρ,τ
λ

(B
(λ)
0 , ε). Observe that, by Step 1, this set BC

M
ρ,τ
λ

(B
(λ)
0 , ε)

is positively invariant, so

A
(λ) ⊂ BC

M
ρ,τ
λ

(B
(λ)
0 , ε).

The proof can be finished by taking into account the definition of B
(λ)
0 =

BC
M

ρ,τ
λ

(0,
√

K). Observe that we have a uniform bound K = A
δ−B

in the Eu-

clidean projected space, which is independent of λ (see Lemma 4 and Theorem
8).

3 Upper semicontinuous dependence of the attractors on the pa-
rameter

Our aim now is to show an upper semicontinuous dependence on λ for the
attractors A(λ) obtained in Theorem 11. Observe that each A(λ) lives in a
potentially different state space.

Therefore, in order to compare the obtained attractors A
(λ) to our parametric

problem (2), we need to do some adaptations.

First, a common state space is required for all the problems, independent of
the parameter. We can achieve this by extending the multi-valued semiflows
G(λ) : R+ × CMρ,τ

λ
→ P (CMρ,τ

λ
).

The following result achieves this goal, and moreover, it ensures the existence
of new attractors and establishes their relation with the obtained in the pre-
vious section.

Theorem 12 Assume that Hypothesis 1 holds. Then, for each λ ∈ Λ, there
exists a multi-valued semiflow Ĝ(λ) : R+ × CT ∗ → P (CT ∗) that extends the
multi-valued semiflow G(λ) constructed in Proposition 5 in the following sense:

Ĝ
(λ)(t, ϕ)

∣∣∣
[−Mρ,τ

λ
,0]

= G
(λ)(t, ϕ|[−Mρ,τ

λ
,0]) ∀(t, ϕ) ∈ R+ × CT ∗ .

10
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Moreover, the semiflow Ĝ(λ) possesses a global attractor Â(λ), which is related
with the attractor A(λ) obtained in Theorem 11 in the following way:

Â
(λ) :=

{
ψ ∈ CT ∗ :∃ entire trajectory Φ̄

(λ)
t of G

(λ) in A
(λ) (11)

with ψ(s) = φ̄(s) ∀s ∈ [−T ∗, 0]

}
,

where φ̄(t) is the projection in Rd of the entire solution Φ̄
(τ)
t defined by φ̄(t)

:= Φ̄
(τ)
t (0) for all t ∈ R.

Proof. For the first claim, we simply have to observe that it is possible to
extend the definition of f(λ, ·) to CT ∗ . In other words, it is enough to consider
an analogous DDE to (2) but instead of f(λ, xt), with right hand side f̂(λ, ·) ∈
C(CT ∗ ; Rd) defined as

f̂(λ, φ̂) = f(φ̂|[−Mρ,τ
λ

,0]) ∀φ̂ ∈ CT ∗ .

Actually, it is not difficult to check that

f̂ ∈ C(Λ × CT ∗ ; Rd) (12)

(see Remark 2(i)). The new parametric DDE

x′(t) = f̂(λ, xt) (13)

is settled as that in the above section, therefore we can apply Theorem 11 to
ensure the existence of semiflow Ĝ

(λ) and attractor Â
(λ) ∈ K(CT ∗). Therefore,

the second claim is proved.

Finally, the characterization (11) is a consequence of Theorem 14 given below.

Remark 13 An abstract construction of an extended semiflow from a given
one acting on delay phase spaces and without an explicit DDE can be done,
see [12, Th.6] for a proof in the single-valued case.

Theorem 14 Suppose that a multi-valued semiflow G(τ) : R+ × Cτ → P (Cτ )
has a global attractor A(τ) and that there exists an extended multi-valued semi-
flow

Ĝ(τ) : R+ × CT → P (CT )

in the sense given in Theorem 12. Then, Ĝ(τ) has a global attractor Â(τ), and
it has the following characterization:

11
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Â(τ) :=

{
ψ ∈ CT ∗ : ∃ entire trajectory Φ̄

(τ)
t of S(τ) in A(τ)

with ψ(s) = φ̄(s) ∀s ∈ [−T ∗, 0]

}
,

where φ̄(t) is the projection in Rd of the entire solution Φ̄
(τ)
t defined by φ̄(t)

:= Φ̄
(τ)
t (0) for all t ∈ R.

Proof. The proof follows analogously to the proof of Theorem 7 in [12]. Al-
though there the statement is single-valued, the arguments follow the same
course changing distance there by Hausdorff semidistance here.

Now we give the main result of this section, a comparison of the attractors
Â(λ) obtained in Theorem 12 [all of them living in the same phase space CT ∗ ].

Theorem 15 Assume that Hypothesis 1 holds. Then, the multi-valued map

Λ � λ �→ Â
(λ) ∈ K(CT ∗)

is upper semicontinuous, i.e. given λ0 ∈ Λ,

H∗
CT∗ (Â(λ), Â(λ0)) → 0 as λ → λ0.

Proof. Consider the set
K =

⋃
λ∈E(λ0)

Â
(λ),

where E(λ0) ⊂ Λ is a neighborhood of λ0. Denote by K its closure in CT ∗.

By the characterization in Theorem 12 of Â(λ) and the estimate (10), K is
bounded in CT ∗ . Moreover, by (12) and the Ascoli-Arzelà Theorem, K is a
compact set of CT ∗.

Now, using the invariance of the attractors under their own semiflows, the
definition of K, and a basic property of the Hausdorff semidistance, we arrive
at the following inequality:

H∗
CT∗ (Â(λ), Â(λ0)) = H∗

CT∗ (Ĝ(λ)(t, Â(λ)), Â(λ0))

≤H∗
CT∗ (Ĝ(λ)(t,K), Â(λ0))

≤H∗
CT∗ (Ĝ(λ)(t,K), Ĝ(λ0)(t,K)) + H∗

CT∗ (Ĝ(λ0)(t,K), Â(λ0)).

As long as the second term in the last line is sufficiently small, which can be
ensured provided that t is large enough, it only remains to prove that for an
arbitrary t ≥ 0 one can obtain

H∗
CT∗ (Ĝ(λ)(t,K), Ĝ(λ0)(t,K)) → 0 as λ → λ0. (14)

12
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We proceed by a contradiction argument. Suppose it is not so: then there
exists ε > 0 and a sequence {λ(n)}n≥1 ⊂ Λ with limn→∞ λ(n) = λ0, such that

sup
x∈Ĝ(λ(n))(t,K)

d(x, Ĝ(λ0)(t,K)) ≥ ε ∀n. (15)

Fixing any positive value ε′ ∈ (0, ε), for each n, there exists x(n) ∈ Ĝ(λ(n))(t, y(n))
with y(n) ∈ K, such that

d(x(n), Ĝ(λ0)(t,K)) ≥ ε′.

By definition, there exists a solution x̃(n) to the problem

x̃(n)(s) = y(n)(0)+
∫ s

0

[
F0(x̃

(n)(r)) + F1(x̃(n)(s − ρ(λ(n))))

+
∫ 0

−τ(λ(n))
b(v, x̃(n)(v + s))dv

]
dr ∀s ∈ [0, t], (16)

x̃
(n)
0 = y(n),

with x(n)(θ) = x̃(n)(t + θ) for all θ ∈ [−T ∗, 0]. Since K is compact, there exists
a converging subsequence (which we relabel the same) y(n) → y ∈ K.

Now we recall the positive invariance for any G(λ) of any bounded ball proved
in Step 1 in Theorem 8. Applying this for the extended semiflows Ĝ(λ), and
since K is bounded, we can deduce that all the solutions x̃(n) remain uniformly
bounded. On other hand, the continuity of the map f̂ defined in (12) gives
an upper bound of the derivatives of x̃(n). In summary, we have that {x(n)}n

is relatively compact. Now it is standard to continue the argument: extract
a convergent subsequence (which we relabel the same) x(n) → x ∈ CT ∗, and
passing to the limit in (16) using the dominated convergence theorem, we
conclude that

x(n) → x ∈ Ĝ
(λ0)(t, y) ⊂ Ĝ

(λ0)(t,K),

which contradicts (15).

Remark 16 Observe that, although an upper semicontinuous condition on
the semiflows w.r.t. the parameter like (C1) in [16, Th.2, p.408] is not possible
here in a general bounded absorbing set U , it is possible to circumvent this
difficulty.

The crucial point is to weaken the above condition. Instead of considering a
general bounded absorbing set U as done in [16, Th.2], the upper semicontinuity

result uses the compact set K =
⋃

λ∈E(λ0) Â(λ).
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approximations of attractors for logistic differential-integral equations with
infinite delay, submitted.

[3] T. Caraballo, J. A. Langa, On the upper semicontinuity of cocycle attractors
for non-autonomous and random dynamical systems, Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal. 10(4) (2003), 491–513.
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