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Resonant behavior of a Poisson process driven by a periodic signal
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The statistical properties of the residence times of a periodically modulated Poisson process
(time-dependent shot noise) on a line segment are analyzed. They show the characteristic features
of a resonant behavior, which is similar in many aspects to the stochastic resonance taking place in
systems confined in monostable or multistable potentials. The dependence of the mean residence
time on both the frequency of the periodic stimulus and its amplitude is studied in detail. The
behavior of this parameter also displays the efFects associated with the interplay between noise and
deterministic modulation.

PACS number(s): 05.40.+j, 82.20.Mj

I. INTRODUCTION

The study of the efFects which appear as a consequence
of the interaction of noise and periodic stimuli has at-
tracted a considerable interest over the past decade or
so. The best known and understood phenomenon is the
so-called stochastic resonance, which consists in the en-
hancement of the response to a small periodic signal by
noise in a nonlinear system [1,2]. In fact, most of the
treatments to date deal with nonlinear systems, where
the cooperative e8'ects of the coupling between determin-
istic and random dynamics were expected to be interest-
ing. Nevertheless, it has been shown that similar and
partially unexpected cooperative features also appear in
linear systems. In particular, Fletcher, Havlin, and Weiss
[3] have described the response of a one-dimensional ran-
dom walker on a line connecting two traps to a sinu-
soidally time-dependent stimulus. They show that the
mean residence time as a function of the &equency of the
field goes through a minimum. More recently, Bulsara,
Lowen, and Rees [4] have considered a periodically mod-
ulated Wiener process with an absorbing boundary. The
behavior they obtain for the response bears a great re-
semblance to stochastic resonance, although major diKer-
ences exist in the physical characterization of their model
and of bistable systems. It is interesting to notice that
the works reported in both papers, Ref. [3] and Ref. [4],
were motivated by the modeling of biological processes,
namely, pulse field electrophoresis [5] in the former and
the response of sensory neurons in the latter [6].

In the present paper we study the response properties
to periodic external stimuli of a very simple model. It
is a one-dimensional random walk model, like the two
mentioned above. In fact, many of the cooperative ef-
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fects we will discuss are very similar to the behaviors
previously reported [3,4,7], although some significant dif-
ferences also occur. The theory of erst-passage times in
stationary one-dimensional random walks is now well es-
tablished and exact expressions have been worked out for
their statistical properties [8,9]. Nevertheless, the meth-
ods developed do not apply in general when an external
time-dependent field is present. For this reason, Fletcher
et aI,. use numerical and perturbative techniques to study
the mean first-passage time in their model. On the other
hand, Bulsara et al. consider a continuous infinite ran-
dom walk with only one absorbing boundary, and they
are able to construct the exact solution of the Fokker-
Planck equation for the distribution function of the vari-
able by means of the method of images.

Let us also point out for completeness that the mean
residence time in a line segment presents as well a res-
onantlike behavior when the state of the lattice fluctu-
ates [10]. In this case, it has a minimum as a function
of the correlation time characterizing the fluctuations.
This phenomenon has been termed resonant activation
[ll]. The main difFerence a priori with the resonant ef-
fects mentioned above, which are the ones studied here,
is the absence of any external deterministic force in the
resonant activation. The latter is due to the interaction
of two noise contributions.

The model we will deal with is a sinusoidally modu-
lated Poisson process, in which the walker can move in
only one direction. Therefore the residence time in a fi-
nite segment can be defined by means of only one absorb-
ing boundary. The simplicity of the model permits us to
solve exactly the associated master equation and to study
its response properties analytically, without introducing
any approximation. This allows a better understanding
of the origin of the resonant efFects which are observed.
In particular, we will analyze in detail the relevant role
played by the initial phase of the periodic stimulus, a
point that has not been addressed up to now. The model
can be useful to describe a wide variety of phenomena
in very diverse areas. For instance, it is possible that
the voltage of a membrane controlling some neural firing
events [12] monotonically increases in time until reaching
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a threshold value at which the firing event occurs. If the
successive increases of the voltage are assumed to take
place at biased random moments, our model can be used
to describe its evolution.

The presentation is organized as follows. In the next
section the model is formulated and exact explicit ex-
pressions are given for the first-passage time distribu-
tion function (FPTDF) and the mean first-passage time
(MFPT). The structure of the FPTDF is analyzed in
Sec. III, where it is seen to present many of the charac-
teristic features that have been studied in noisy bistable
systems in the presence of deterministic modulation. The
MFPT is discussed in Sec. IV. It is shown to exhibit a
resonantlike behavior when considered as a function of
the frequency of the external stimulus. The shape of the
function strongly depends on the initial phase of the stim-
ulus. This parameter also plays an important role in de-
termining the behavior of the MFPT when the amplitude
of the external perturbation is varied. In some cases, the
MFPT makes transitions &om a monotonic decrease with
increasing amplitude of the sinusoidal term to a mono-
tonic increase with this parameter as the &equency of the
signal changes. Finally, in the last section, we summarize
some of the main conclusions of this work. Also, a brief
reference is made to the power spectral density which is
obtained when a simple deterministic mechanism of rein-
jection for the walker is introduced. Its properties bear
again a great resemblance to those found in bistable mod-
els.

f(t) = ~(t)pN(t)

and the mean first passage time is

OO N

dt tf (t) = ) dt p„(t).
0 n=O

(5)

Use of Eq. (2) yields

7 = ) dt I'(N + 1 —n, I(t)), (6)
p-(o)

I' %+1—n o

where I'(n, x) is the incomplete gamma function [13].
Now we particularize for a sinusoidally oscillating exter-
nal field and take

c1(t) = p + e sin(ddt + Q).

The parameter e measures the amplitude of the periodic
stimulus and it is restricted to the interval 0 & e & p.
Besides, we also consider the specific initial condition

p„(0) = b„,e. (8)

Then, the FPTDF reads

the random process we are considering, the walker never
returns to a site after leaving it. Thus the first-passage
time distribution function f(t) is simply

II. THE MODEL
with

f(t) = II(t)l" -"'
N! (9)

The model we will consider is a continuous-time ran-
dom walk on a one-dimensional lattice. The walker is
restricted to move in a given direction and it is submit-
ted to a time-dependent external field. The probability
p„(t) of finding the random walker at site n at time t
obeys the master equation

0
(t) = (t) [p — (t) — (t)l

E
I(t) = pt ——[cos(mt+ P) —cosP] . (10)

For given values of the parameters, I(t) is an increasing
function of t. Although Eq. (9) provides an exact explicit
expression for f (t), and will be used in most of the cal-
culations, it is convenient for future use to consider also
the linear stimulus approximation. Expansion of Eq. (9)
to first order in e gives

where the transition rate a(t) is non-negative for all
times. This equation can be easily solved using, for in-
stance, the method of the generating function [8] and the
general solution reads

f l(t) = fo(t) 1+ —
~
sin(~t+4)

pE

+
~

[cos(mt+ P) —cosP]
~~t

where
-(t) = ): „"„, ,

[I(t)]"-" -"'
n' =—oo

(2)
fo(t) =

, (pt) (12)

with

t

I(t) = dt' n(t')
0

is the FPTDF for the Poisson process in absence of the
periodic stimulus. The corresponding linear approxima-
tion for the MFPT can be derived by linearizing Eq. (6)
or by introducing Eq. (11) into Eq. (5). The result is

In what follows we will be concerned with a walker which
is initially in the line segment (0, N). Therefore for n )
N the sum in Eq. (2) extends &om n' = 0 to n' = N.
Our main interest will be in the properties of the arrival
times to site N + 1. Because of the Poisson nature of

cos P—
cos N + 1 arctan —+

N+1

('+-.:) '
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Here Tp 1s 'tile MFPT foI' the dlstI'lblltloI1 fp('t) 1.e. Tp ——

(N+ 1)p

III. FIRST-PASSAGE TIME DISTRIBUTION
FUNCTION

The temporal behavior of the FPTDF depends on the
value of the &equency of the perturbation. We have car-
ried out an asymptotic analysis of Eq. (9) in the limit
of large ¹ The results remain qualitatively valid for
N not too small. In Appendix A we give some details
of the calculations and here we merely present the main
conclusions. At large &equencies, uN / p of the order
of unity or larger, the FPTDF is given by

f(t) = N —1/2 1
ir (t) exp — [I(t) —N]

27r 2N

exp
(t —t )'

20

where

N1/2

p + e sin((dt~ + P)

and t is the time at which the function

h(t) = exp — [I(t) —N]
1 2

2N

The dominant region of the distribution is determined by
the condition I(t) O(N), which leads to t O(ro). In
this region, the FPTDF presents a series of peaks due to
the a(t) factor. For lower frequencies, uNI/2p 1 « 1,
Eq. (14) reduces to the Gaussian form

1
t) ——— 2~l + ——

(8 2
(21)

where l is a positive integer. More precisely, Eq. (21)
holds in the limit

itI —t
i
« 1.

~~N (22)

A proof of this is sketched in Appendix B. In practice,
Eq. (21) provides a good approximation for all the peaks
which show up in the relevant part of the FPTDF, as is

by Figs. 1 and 2. In Fig. 1 the FPTDF computed &om
Eq. (9) is shown for N = 50, p = 1, s = 0.3, P = vr/2, and
u = 2. Also plotted are Eq. (14) and fo(t). The function
f(t) oscillates around fo(t), in agreement with the above
discussion. In Fig. 2 the values of the parameters are the
same with the only difference that now it is u = 0.01.
The curves presented correspond to Eqs. (9), (15), and
(12), respectively. The differences between the exact and
the asymptotic expression disappear on the scale of the
figures if one takes N = 100.

The multipeaked structure of the FPTDF follows di-
rectly &om the presence of noise and has been extensively
studied in the case of modulated noisy bistable systems
[2]. Very recently, Bulsara, Lowen, and Rees [4] found
the same structure in a periodically driven continuous
random walk with an absorbing boundary. In fact, their
model is similar to ours in the sense that the presence
of a positive drift guarantees that the walker will reach
the boundary for all values of the parameters, contrary to
what happens, for instance, in bistable models of stochas-
tic resonance [2].

The exact location of the peaks of the FPTDF is a
quite complicated function of all the system parameters.
Nevertheless, the position, t~, of those peaks located in
the vicinity of t is given by

is maximum, i.e. , it is the solution of the equation
I(t ) =Nor

pldt~ —t [cos((dt~ + f) —cos Q] = ldN)

which, in general, has to be solved by means of graphical
or numerical methods. Therefore f(t) consists now of a
single peak located at t = t . Finally, in the range of
very low frequencies, defined by AN@ (( 1, the solution
of Eq. (18) is

N
p+ csin/ (19)

and Eq. (16) simplifies to

p + ssl n$

tm
N1/2 (2O) 15

t/To

20

We notice that in this very low &equency limit the
FPTDF does not depend on the &equency of the stimu-
lus.

When N is not asymptotically large, the separation
of the &equency scales is not well defined, but the three
ranges discussed above are clearly identified as illustrated

FIG. 1. FPTDF versus normalized tiIne t/Tp, where
Ts ——2vr/u. For all curves it is N = 50, p = 1, &u = 2,
and @ = z./2. For the dashed curve it is s = 0, Eq. (12), and
for the other two e = 0.3. The solid curve has been plotted
using the exact expression, Eq. (9), and the point curve using
the asymptotic expression, Eq. (14).
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where

A =%+1— (27)

and

LL

C3

CL

C)

6 cosB=N —1— + et). (28)

0.04 0.06 0.08

t/To

0. 1 0.12
I ——L

It happens that the right hand side of Eq. (26) is smaller
than e for some values of the parameters, indicating that
in those cases the maximum cannot be observed in the
parameter region in which the model is defined. Prom
the analysis of Eqs. (25) and (26) it can be easily proved
that

FIG. 2. FPTDF versus time for the same values of the
parameters as in Fig. 1, with the only differences that now it
is ~ = 0.01 for all curves and the point curve corresponds to
Eq. (15).

(29)

and this allows the determination of the boundary value
t~ of t~ for which the maximum of the peak will be
reached upon varying p in the interval e ( p ( oo. By
making p, l = e in Eq. (26) one gets

the case, for instance, in Fig. 1. Of course, when t
—(2vrk+ 2

—P), with k a positive integer, there is a peak
at t and it is the highest one of the distribution.

If the FPTDF is considered as a function of the con-
stant part p of the transition rate for an arbitrary given
time t, it is found by direct difFerentiation of Eq. (9) that

where

and

/ + (/2 + 8D) i/2

4642

C = (2N + 1)a —2e cos P

(30)

(ln fp)' =-
cl in f 1 Nt

gP 0!
(23) D = e'ld cos P.

(ln f„)"—:8 lnf 1

t9p o.'
Nt2
I2 (24)

These equations indicate that (ln f„)' has two vertical
asymptotes at p = pi and p = p2, defined by a.(pi, t) = 0
and I(p2, t) = 0, respectively. Except at these singu-
larities, (ln f„) is a monotonic decreasing function of p.
Furthermore, (ln fz)' tends to t as p goes to i—nfinity. As
a consequence, (ln f„)' has a zero for some critical value

p = p, inside the interval max(pi, p2) ( p, ( oo. For
this value, f(t) presents a maximum as p is increased.
We have shown above that the location of the peaks in-
side the relevant region is approximately independent of
p. It follows that the heights of the peaks will go through
a maximum as functions of p. The critical value p E at
which the peak located at t~ presents its maximum will
verify the equation

So, the maximum can be reached for those peaks such
that t~ ( t~. In Fig. 3 we plot the height of the peaks
corresponding to l = 3, 4, and 5, respectively, for a partic-
ular set of system parameters given in the figure caption.
For them it is tM ——102.5, which leads to M = 32.62,
i.e., the above discussion predicts that the last peak going

I(p, l tl) + tl (per, tlL) [lN I(p, l tl)I —0. (25)

1 A+ (B'+ 4N)'L'
2ti

(26)

This is a second degree equation for p ~. One of the
solutions is always smaller than e and, therefore, must
be eliminated. The other one is FIG. 3. FPTDF peak heights versus p for N = 20, m = 2,

e = 0.2, and P = n j2. From left to right the curves correspond
to peak numbers I = 5, l = 4, and L = 3.
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through a maximum is the one located at t = t32. This is
very close to the exact value obtained numerically, which
is t = f33 as seen from the results presented in Fig. 4.
Notice that when a peak reaches its maximum height, it
does not mean that it is the highest one of the FPTDF
for that value of p.

The above resonant effect in the peak heights of the
FPTDF is well known in noisy bistable dynamical sys-
tems, as well as in Wiener processes with drift and an
absorbing boundary [4]. Moreover, in the latter, an an-
tiresonant behavior of the FPTDF was pointed out by
Bulsara, Lowen, and Rees in Ref. [4]. The height of the
maximum of the distribution presents a minimum as a
function of noise. A similar effect does not take place in
our model. For e = 0 this can be seen by differentiation
of Eq. (12). The height of the distribution is a monotonic
increasing function of p. The same happens for e & 0, as
can be shown in the following way. For a given value of
p, we can set the &equency such that a particular peak l
is the highest of the distribution. This amounts to taking
the value of w = w~ such that the enveloping of the peaks
of f (t) has its maximum at t = ti. The equation of the
enveloping, f(t), is obtained by making cos(cut + P) = 0
and sin(ut + P) = 1 in the expression of f(t) Usin. g
Eq. (9) one gets

gin f(t) N —pt ——'cosP
Bt pt+ —' cosP

=p (33)

O

C3

0.2 0.25 0.3 0.35

FIG. 4. FPTDF peak heights versus p for the same values
of the parameters as in Fig. 3. From left to right the curves
correspond to peak numbers l = 35, l = 34, and l = 33.

Therefore f (t) will have a maximum at t = ti if the fre-
quency is

p I' 7r
~r = —

~

2vrl+. ——P+ —cosP
~

.
N ( 2 p

Changing p leads to FPTDF's which all present their
maximum at the l peak, and the height of this maximum,
f „(p), is obtained by substituting the values of t& and
wi in Eq. (9). The result is

IV. RESONANT BEHAVIOR OF THE MEAN
FIRST-PASSAGE TIME

In this section we are going to study the behavior of the
MFPT w as a function of the several parameters defining
the model. We will consider first the dependence on the
frequency &u. From Eqs. (6) and (8) one gets

~(0) = ~((u = 0) = 1+ —' singp
(36)

and

~(oo) = lim 7(ur) = ~o, (37)

as expected. It is also obtained that

f Ow) (N+ 1)(N+ 2)ecosg
(8(u) 0 2(p+ using)s

(38)

It is clear that if the initial slope of w(u) is negative and
w(0) ( ~(oo), there must be at least a minimum at some
frequency u*, which, in general, will depend on N, e, p,
and P. On the other hand, if the initial slope is positive, it
is also possible for 7 (w) to present a minimum, but there
must be a maximum before it, i.e., at lower &equencies.
For the case of negative initial slope and w(0) ) w(oo) no
conclusion emerges from Eqs. (36)—(38).

Equation (38) shows that the sign of the izntial slope
of w(u) is determined by the value of the initial phase
P of the sinusoidal perturbation. The same parameter
also determines whether w(0) is larger or smaller than
7(oo). For 0 & P ( vr/2 the MFPT always presents a
minimum. As mentioned in the Introduction, a similar
effect was noticed by Fletcher, Havlin, and Weiss [3] for
a random walker that diffuses on a line connecting two
traps, and they referred to u* as a resonant frequency.
Their numerical study was restricted to the value P = 0
and they did not discuss the relevance of the initial phase
of the perturbation. Of course, the structure of Eq. (6)
shows that 7 as a function of u can present not only a
first minimum but also a series of peaks. Their origin
can be further easier understood if we consider the linear
in e approximatioii of the MFPT given by Eq. (13). The
secondary peaks will be appreciable if the cosine term has
time to oscillate before it becomes very small due to the
(1+sr /p ) ~ factor, i.e. , if N is large enough for lixed
values of all the other parameters. This is illustrated in
Fig. 5, where we have plotted 7 /(N + 1) for N = 10 and
N = 50. In each of the cases two values of the amplitude,
e = 0.1 and e = 0.3, have been considered. In all curves

P+~ w —Nf „(p) = N e
N!

which is independent of the particular peak / chosen.
Since the right hand side of Eq. (35) is a znonotonic in-
creasing function of p, we get neither a resonant behavior
nor an antiresonant one. Prom this point of view its be-
havior is different &om both bistable systems and the
Wiener process discussed in Ref. [4].
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f I
[

& t
]

I I & &
[

I I I I where a is of the order of unity. Use of Eqs. (5), (15),
and (18) yields

cos((d 'r + Q) —cos f + id T SII1(ld 7 + Q) = 0 (40)

and

p~* + e7 ' sin(u*r* + P) = N, (41)

LA
CI3

where ~* = w(~'). The balance of Eq. (40) shows that

~* - a' N. (42)

K3

o 0
I I I I I I I I I I I I L i I I I I I

0.2 0.3 0.4 0.5

FIG. 5. MFPT divided by N + 1 versus frequency of the
stimulus for e = 0.1 (solid curves) and e = 0.3 (point curves).
For the two upper curves, showing two minima, it is N = 50,
while for the two curves presenting only one minimum it is
N = 10. For all curves p = 1, and P = 0.

The above asymptotic dependencies on N of ~* and 7*
seem to be quite general for the resonant behavior of
the MFPT for random walks on a line segment [3,10].
Substitution of Eqs. (39) and (42) into Eqs. (40) and
(41) leads to

cos(aa' + P) —cos P + aa' sin(aa' + P) = 0

and

pa' + ea' sin(aa' + P) = 1. (44)

it is P = 0 and p = l.
For P = m/2, the MFPT has an absolute minimum at

u = 0, as shown in Fig. 6 for three choices of e. The
existence of this minimum has a trivial explanation. For
P = vr/2 the transition rate cr(t) takes its greatest possi-
ble value at t = 0 and, therefore, the minimum MFPT
corresponds to the limit in which o. remains constant in
time.

We have also investigated the asymptotic interval
length dependence of the &equency u* at which the first
maximum (or minimum) of the MFPT appears. From
the asymptotic expressions for f (t) obtained in Appendix
A and discussed in Sec. III it follows that the first sta-
tionary points of f (t) appear for

aN

Prom this couple of equations one can determine a and
a' from the values of p, e, and P. Figures 7 and 8 plot
~* and w*, respectively, as functions of N for several val-
ues of e. The curves have been obtained by numerical
integration of Eq. (6) and for all of them it is P = 0
and p = 1. The figures clearly confirm the asymptotic
behaviors of Eqs. (39) and (42). Moreover, if the slopes
for large K are compared with the solutions of Eqs. (43)
and (44), an excellent agreement is obtained. The dis-
crepancies are within the numerical errors. Of course,
upon solving Eqs. (43) and (44) one has to choose, for
each value of e, the solution leading to the smallest pos-
itive values of a and a'. It is also worth mentioning that
the equations show that the resonant f'requency u* is a

I
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X
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X
CO

I

C3

X

I t i & i I » I l~

I

C3

X
I

1.5X10 2X10
I

2.5X10

0.2 0.3 0.4

FIG. 6. MFPT divided by N + 1 versus frequency of the
stimulus for e = 0.1 (solid curve) and e = 0.3 (point curve).
For the two curves it is N = 50, p = 1, and P = ~.

FIG. 7. Resonant frequency u* versus the inverse of the
size of the lattice segment for several values of the amplitude
e. Prom top to bottom the curves correspond to e = 0.05, 0.2,
0.4, 0.6, and 0.9. For all curves it is P = 0 and p = 1.
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monotonic increasing function of the bias parameter e,
while w* decreases with the same parameter.

Now let us examine the ~ dependence of the MFPT.
From Eq. (13) we have

FIG. 8. (First) minimum MFPT v* plotted as a function
of the size of the lattice segment for several values of the
amplitude e. From top to bottom the curves correspond to
e = 0.9, 0.6, 0.4, 0.2, and 0.05. For all curves it is P = 0 and

p 1 0

The transition of the MFPT, &om being a decreas-
ing function of the amplitude of a periodic cosine signal
to increase with this parameter as the &equency of the
signal varies, has been noticed by Gitterman and Weiss
[7] for a random walk between two trapping points, i.e. ,
the same system as in Ref. [3], but with a difFerence of
vr/2 in the initial phase of the signal. In our model, the
lowest &equency at which the transition takes place is
~ = p tan N &, but transitions &om one regime to theN+1 ~

other occur at all &equencies u = ptan N z, with k a
positive integer. The behavior of w(e) is quite difFerent
for P = 0. The right hand side of Eq. (45) is in this case
negative for all values of the &equency u and no tran-
sition appears. This shows the important role that the
initial phase of the external periodic stimulus also plays
in determining the dependence of the MFPT on the am-
plitude of the perturbation.

Since we have discussed only the initial slope of the
function w(e), no information can be obtained about
whether it is a monotonic function. We have analyzed
numerically Eq. (6), and it turns out that, for those val-
ues of P for which transitions appear, there is a frequency
range near the transition &equency where 7. shows a non-
monotonic behavior as e is increased. An example of the
described behavior is given in Fig. 9.

All the results presented in this work have been re-
stricted to the specific initial condition given in Eq. (8),
but they remain qualitatively the same for other choices.
In particular, if the uniform initial condition

(B~ t

4 ~') .=o

cos N+ 1 arctan —+ —cosN+1("-.:) '

(45)

&-(0) =
N

1
N+1 ~; (49)

Therefore the initial slope of w(e) will depend, among
other factors, on the initial phase P of the stimulus. Con-
sider first the specific value P = 7r/2, so that

&Br)
0 ~e) .=o

sin N+ 1 arctan-
p

N+1("-:) ' (46)

For fixed N and p, the right hand side of this equation
will be positive or negative depending on the argument
of the sine function, that is to say, on the value of the
&equency. For u in the intervals

(2k + 1)m 2(k+ 1)vr
ptan ( u ( ptanN+1 + (47)

k = 0, 1, 2, . . . , II:q, with kq the largest integer number
equal to or smaller than (1V —3)/4, i.e. , ki ——[(K—3)/4],
the initial slope uf w(e) is positive, i.e. , w is an increasing
function of e for small e. On the other hand, for

0,2 0.6 0.8

2k~ (2k+ 1)~
p tan N+1 (u (ptan N+1 (48)

k = 0, 1, 2, . . . , k2, with k2 ——[(N —1)/4], 7 (e) is a de-
creasing function for small e.

FIG. 9. MFPT versus the amplitude e for cu = 0.210,
0.2115, and 0.213 (top to bottom) around the second tran-
action. For the three curves it is N = 29, p = 1, and P = vr/2.
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is considered, the main change in the behavior of the
MFPT is that all the curves shown become smoother
and, for instance, the peaks in Fig. 5 for K = 50 disap-
pear. Nevertheless, the asymptotic dependencies given
by Eqs. (39) and (42) and the existence of transition fre-
quencies as discussed above remain valid.

sition, resetting also the periodic stimulus to its initial
value [4,14]. In this case, the crossing times are indepen-
dent of one another and have the same distribution. As a
consequence, the global random walk becomes a renewal
process. An important property of renewal processes is
that the power spectral density (PSD) of the response can
be easily obtained from the FPTDF through the relation

V. DISCUSSION AND CQNCLUDINC
REMARKS S(n) = 1bl(nil+1R I+X(n)

),2~) ~ 1 —y(B)
(50)

The objective in this paper has been to study the sta-
tistical properties of the residence time on a line seg-
ment for a Poisson random walk with a periodic time-
dependent transition rate. The simplicity of the model
allows us to solve the master equation governing its evo-
lution and to obtain an exact explicit expression for
the probability distribution of the residence times. The
structure of the latter shows many of the features which
are considered as characteristic of resonant behavior and,
in particular, of the phenomenon of stochastic resonance
in bistable systems. Nevertheless, the deep physical dif-
ferences between the model considered here and bistable
models prevent us &om trying to establish any funda-
mental relationship between both phenomena. First, in
our model the boundary is always reached, in contrast
with bistable models of stochastic resonance, where the
amplitude of the perturbation is too small to produce by
itself crossing of the potential barrier. In fact, the ampli-
tude of the modulation does not play an important role
in determining the resonant behavior of our system. Sec-
ondly, in Poisson processes noise and drift are controlled
by the same parameter and, therefore, no competition
between them is possible. This also makes a relevant dif-
ference with the random walk model studied by Bulsara,
Lowen, and Rees [4].

The mean residence time exhibits a resonant behav-
ior too, in the sense that some coherence is induced in
the motion of the system, tending to reduce the time it
takes the walker to reach the boundary. When the mean
time is considered as a function of the &equency of the
stimulus it can go through a minimum. However, this
phenomenon is strongly influenced by the initial value
of the perturbation. In particular, when the perturba-
tion is maximum at the initial time it is evident that the
minimum mean residence time will appear in the limit of
zero &equency. Another interesting property which has
been analyzed is the existence of a transition in the be-
havior of the mean residence time regarded as a function
of the amplitude of the stimulus, passing &om being an
increasing function to a decreasing function of the same
parameter.

In this paper we have focused on the statistics of single
escape events &om the line segment, without introducing
any reinjection mechanism of the walker into it. Such a
mechanism is necessary if we want to model firing events
taking place when the walker reaches the end of the seg-
ment, as might happen, for instance, in sensory neurons
[12]. The simplest possibility is to consider a determin-
istic instantaneous reset of the walker to its starting po-

where

A detailed analysis of Eq. (50) for our model will be pre-
sented in a future paper. Here we only comment on some
of the relevant conclusions which come &om it. The PSD
corresponding to the &equency of the applied periodic
stimulus u, i.e. , the function S(A = w) presents a series
of peaks which are approximately located at the &equen-
cies

2kvrp

N (52)

0.5

FIG. 10. Power spectral density S(cu) versus the dimen-
sionless variable J) = ~" for u = 1 (solid curve), u = 0.75
(point curve), and u = 0.5 (dashed curve). For all curves it
is N = 50, P = s'/2, and e = 0.2.

with k a positive integer. The height of the peaks is a
quite fast monotonic decreasing function of k, so that
the PSD presents a clear global maximum at ~ = ~q. In
practice, for values of N not too large only a few peaks
can be resolved on the scale of the highest one, i.e. , of
the first.

Now we consider the eKect of changing p while keep-
ing constant the value of the modulation &equency. As
shown in Fig. 10 for three diferent values of ~, the PSD
has a resonant behavior. There is again a series of max-
ima located near



RESONANT BEHAVIOR OF A POISSON PROCESS DRIVEN BY. . . 6079

although their amplitudes decrease rapidly with increas-
ing k, and a well de6ned absolute maximum appears for
p = ur N/27r. Besides, the height of a given maximum, i.e.,
for fixed k, is a monotonic increasing function of u. The
above behavior of the output signal strength is qualita-
tively similar to what is observed in stochastic resonance
in bistable systems, although, as we have already pointed
out, the physical mechanisms responsible for both phe-
nomena are diferent.

keeping only the lowest order, yields

N1/2
g(s) = @'(s)e

27r
(A8)

where the Stirling approximation for N! has been used.
This expression is a valid approximation to Eq. (A7) for
all values of s for which g(s) is not exponentially small.
It is trivially checked that g(s) as given by Eq. (A8) is
normalized to 1. To see whether it is possible to simplify
further g(s), consider the expansion
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APPENDIX A: ASYMPTOTIC ANALYSIS
OF THE FPTDF

When this is introduced into Eq. (A8) and the terms of
the resulting series are analyzed, it is seen that if

In this appendix we are going to study the asymptotic
behavior of the FPTDF given by Eq. (9) in the limit of
large N. We introduce the dimensionless variable Eq. (A8) can be approximated by

(A10)

and the dimensionless function

(A1)
(s) = Nl/2 (e —e~)2

2ue2

/2vro,
(A11)

4(s) = s ——[cos(s+ P) —cosP].
p

From Eq. (9) we can write the distribution function for
the s variable as

2= u)2N

[p+ e sin(s + ttt)]
(A12)

(A3)

For e in the interval [0,p), C'(s) is a monotonic increasing
function of s, while Cy (s) is periodic with period 27r. The
function

(A4)

has a maximum whose location s is given by the equa-
tion

4(s ) =
p

cos(s + P) —cos P —s sin P (A13)

and Eq. (A5) leads to

and s is the solution of Eq. (A5). Upon writing Eq.
(All) we have used the fact that, in the limit defined

by Eq. (A1D), it is o, 0 (, ) « 2e eod, therefore,

we can substitute 4'(s) by ill'(s ) in Eq. (A8). In this
discussion we have assumed that e is not very close to
p. Finally, one more simplification can be carried out if

« 1. Then. , Eq. (A5) implies that s « 1 and we

have

Define

(A6)

~N
p+ csin' (A14)

so that the maximum value of h(s) corresponds to iIJ(s) =
1, and rewrite g(s) in the form

In this same limit, Eq. (A12) reduces to

P ~N @y ( )
—N [@(e]—in @(e)]

N! ~ (A7) O8 =2= ~2N

(p+ esinttt)2
(A15)

Up to this point everything is exact and no approxima-
tion has been introduced. Assume now that N is very
large. Expansion of 4'(s) —ln@(s) around ill(s) = 1,

Returning to the original variable t, the expressions in
Eqs. (14)—(20) are obtained.
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APPENDIX 8: LOCATION OF THE PEAKS
OF THE FPTDF

whose solutions are (we restrict ourselves to the maxima
of the sine function)

We start from Eq. (A7), i.e. , st ——2vrl + ——P,
(p) VC

2 (»o)

where

g(s) =, % 4'(s):-(s), (») l = 1, 2, . . . . If we write 8I,
——8& + xs& +, where(o) (&)

x = pp/e, it is obtained from Eq. (B8) that

:-(s) = exp (—iV [@(s)—ln @(s)]) . (B2) ,
"=

i
1+ —

I C(,' ')
P)

(B11)

8 ln g(s)
Os

4"(s) cl ln =(s)
4'(s) cps

+

DifFerentiation of Eq. (Bl) yields

(B3)
py

(B12)

and it is [sI [
& 2. The condition which sI must verify

in order to be a good approximation to 8~ is x &( 1, or

Since C'(s) ) 0 for all s, the stationary points of g(s)
will be given by the roots of the equation It is easily seen that this also implies that the peaks are

well de6ned, in the sense that

(B4) [ « Isi+, —st
(o) (o) (o) (B13)

or, using Eq. (A2), Let us try to make this condition more transparent. Us-
ing the definition of:-(s), Eq. (B2), we have

cos(s+ P) + —
[
1+ —sin(s+ P) ~

= 0. (B5)
p f e . i clln=(s)

) Bs
cjln "(s)

08
4 (s)p t' (uNi
C (s)(u E

(B14)

Let us now assume we are in a region of 8 where

8 ln =(s)
7)

where p is some positive parameter, and de6ne

(B6)

As 4(s ) = uiV/p and 4(s) is a monotonic increasing
function of s, it follows that [4(s) —

[
monotonically

increases when one moves away &om 8 in either of the
two directions. For s inside the interval [s —A, s +A],
it is

0ln =(s)
Y08

with [((s)] & 1 for the values of s under consideration.
In terms of this new function Eq. (B5) reads

2

Oln (8) ( + p) cg N2

1 —(1+ „-').'~ (B15)

cos(s + P) + —
~

1 + —sin(s + P) [ ((s) = 0.PP t'

p
(B8) if (1+—') "~ & 1. By using this result, Eq. (B12) becomes

Consider the equation

cos(s + P) = 0, (BO)

s, —s

which is equivalent to Eq. (22).

(B16)
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