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Glassy behavior in a simple model with entropy barriers
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We study the dynamical behavior of a system with a variable number of particl&he empty state
n=0 is the ground state, while all the other statesO are degenerate in energy. In equilibrium, the mean
number of particles is equal to unity, independently of the temperature. The static properties are the same as for
the Backgammon model recently proposed by RiBtiys. Rev. Lett75, 1190(1995], while a variation of
the kinetics is considered. The elementary dynamical processes are the arrival and departure of a particle. The
rate of the departure process is constant, while the arrival rate is obtained from the detailed balance condition.
Thus, there is no energy barrier separating the groundstate Nevertheless, glassy behavior appears due to
the presence of effective entropy barriers. At low temperatures, the response functions are shown to obey
¢(t)=exd —(t/7)”]. In thermal cycles of cooling and reheating from low temperatures, the system shows
hysteresis, which follows from the trend of the system to approach the normal curve characterizing the heating
program.[S0163-182807)03710-1

[. INTRODUCTION time is due to the entropic contribution to free energy barri-
ers. These appear because of the small number of directions
The study of glassy behavior has been quite an active fielth phase space along which the energy decreases. Slow re-
in recent years. A review of the main features observed idaxation shows up because the system has to explore a wide
real glasses, and several microscopic models showing simphase space region before reaching the ground state.
larity with them, can be found in Refs. 1 and 2. In relaxation Because of the rules governing its dynamics, the model
experiments, the linear response functions show nonexpdias been referred to as the Backgamri®@) model. It can
nential behavior. In particular, a Kohlrausch-Williams-Watts be visualized in several different, although equivalent, ways.
(KWW) decay is usually found. In cooling experiments aHere we present one of them, while another one is discussed
laboratory glass transition, in which the properties definingn the final section. Suppose we have a two-dimensional lat-
the state of the system become frozen, is observed. The tratice with a particle at each site. Then, an external mechanism
sition is associated to a fast increase of the relaxation time ds introduced such that particles tend to aggregate in the di-
the temperature is lowered. During reheating, hysteresis efection perpendicular to the lattice. Particles remaining on
fects show up, with the system returning to equilibrium fol- the lattice have a larger energy than those which are aggre-
lowing a path which is different from the cooling one. A gate to them, so that the minimum energy is reached when
more detailed discussion of the rich phenomenology ofall particles form a unique aggregate at a given site. All sites
glasses is available in Refs. 3 and 4. and particles being equivalent, this state has a degeneration
There is a great variety of models trying to explain glassygiven by the number of site@®r particleg. The dynamics of
behavior. The simplest one is a two-level systéfiLS), the system is defined by means of a Markov process in which
where an energy barrier must be surpassed in order to geach particle can move to any other site, with transitions
from the excited to the ground statéIn some models, the rates given by Metropolis dynamics. Since the spatial ar-
increase of the relaxation time is associated to the introdudangement of the sites in the plane plays no role at all, the
tion of cooperativity in the dynamics of the systérbut  model is of a mean-field type. Mean-field approximations are
there is also an energy barrier separating the ground statet accurate to describe relaxation through energy barriers in
from the excited ones. This barrier plays an essential role imeal structural glasses, because of the nucleation processes
the divergence of the relaxation time at low temperatures. Otaking place in them. Nevertheless, as pointed out by Ritort,
the other hand, entropy is known to play an important role inthe effect of entropy barriers should not depend very strongly
the description of glassy behavior since the pioneering worlon the range of the interactions and the information obtained
by Adam and Gibb&. from this kind of model is expected to be relevant also in the
Recently, Ritort'° has proposed a model without energy case of short-ranged interactions.
barriers, in the sense that the system can always reach the In this work we introduce a model that keeps the main
ground state without any energy-activated process. The dyharacteristic of Ritort's model, namely the absence of en-
namical study of the model has focused on thermal cycles ofrgy barriers for transitions to the ground state, and allows an
cooling and reheating, and zero-temperature properties as agralytical treatment of the dynamics. We consider a system
ing. The system displays glassylike behavior, despite the alwith a variable nhumber of particles, in which the ground
sence of energy barriers, and the divergence of the relaxaticsiate has no particles,=0, while all the states witm>0
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are degenerate. The statics of this system is equivalent to the 1—e @

BG model with indistinguishable particlés.The dynamics C= 1-e a(1—e P9’ (2.2

is formulated by means of a master equation with transition

rates verifying the detailed balance condition. The equation Now, we assume that the bath is such that the equilibrium

can be exactly solved for constant temperature processegyerage number of particles is unity, independently of the
allowing the identification of the mechanisms leading to nontemperature, i.e.,

exponential relaxation and to the divergence of the relaxation

time. For cooling processes we show the relevance of the

relaxation modes of the master equation and of the energy (nYo=2>, np¥=1. 2.3
relaxation time to characterize the laboratory glass transition n=o

and the freezing temperature, respectively. Along heatingThis provides a relationship between the fugacity and the
the dynamical behavior of the model is understood from theemperature, namely

trend of the system towards a “normal” curv&ln particu-

lar, the hysteresis effect, which is so characteristic of glasses, a=In(1+e P?), (2.9

is directly related to the approach to this normal curve. The{N . . o .
existence of such a curve is a quite strong prediction of mod- e notice that expressions of this kind are typical when

els bases on a master equation formulation of the dynamic?.ass'ngdftrr?mI ?t C?”O”'Ca.' c(ijetscrlptlontlto a grgnd—ct%nonlcal
Whether there is a normal curve also for real structuraf€ @nd the latleris requirea to correctly reproduce thé num-

glasses remains an open question er of particles in the system. Using this relation, E2j2)

The results obtained will be compared to other previousIJ‘Educfas taC =exp(-a), and the equilibrium distribution can
considered models and, in particular, the one-dimensional® Wrtten
Ising model with Glauber dynamids.Let us mention that
the Ising model may be relevant in the context of structural
glasses, since it has been proved to accurately describe the
evolution of the configuration of a one-dimensional system

of particles with anharmonic and competing interactiths. The introduction of a bath verifying Eq2.4) has been

Although energy barriers exist in the model studied in Ref. timulated by the work carried out in Refs. 9-11, where two

13, glassy behavior appears in both cases for similar reasonvariations of the BG model are studied. In these models,

Probably, this is also the case for any model showing glass%rticles can occupy different “abacuses’r 1 N
havior lon i namics i ri m o . e
behavior, as long as its dynamics is described by & mastef, uo5 ' on e of the modefd® the particles are considered as

equation. e . L
: : distinguishable, in the other oHethey are treated as indis-
The plan of the paper is the following. In Sec. II the E’nguishable. This is the only difference between both mod-

model is formulated, and the master equation describing it s E e ddit ant. th f .
dynamics is solved for the constant temperature case. Rela%->: EXCepLior an addiive constant, the energy of a given
onfiguration is proportional to the number of occupied aba-

ation properties are considered in Sec. lll, focusing on thé ; o :

stretched exponential decay found at low temperatures. Segy;es.. There IS no limitation in the number of p.art|0tes

tion lIA is devoted to the study of the equilibrium time eing in a particular abacus except the one following from
the total number of particlesz,n,=N. Since all the aba-

autocorrelation function of the energy, while linear relax- ; . X
ation after a temperature perturbation is the subject of sefuses are equwalen_t, the average humber of particies in each
of them must be unity at equilibrium.

lIIB. Thermal cycles are studied in Sec. IV, and cooling Th del d ibed ab imics th iibri

processes are considered in Sec. IVA, where the laboratory '€ Toh N Bgscrl c? I a .°h"? r(?mlcs t ﬁ etﬂu' : ngrrl] proX—

glass transition is analyzed in detail. Section IV B deals with rties of the model with indistinguishable particles.

heating processes. The normal curve associated with a giv ief discussion of this is given in App_end_lx A.The |dez_i IS to

heating program is defined, and its relation to the observe cus on one of 'the abécuses’ conS|der|ng. .the rgmamder of
em as a bath in the limil—o. The condition given by

hysteresis effect is discussed. Finally, the main conclusion L .
of the paper are summarized in Sec. V. g. (2.4) guarantees that this limit is taken keeping the_ same
both the number of abacuses and the number of particles.

From Eg.(2.5 it is straightforward to obtain the equilib-

rium properties of the system, as functions of the tempera-
The model we consider has a variable number of particle§ire. The average energy is

n. This number completely specifies the state of the system. " e

The empty staten=0, has zero energy,=0, and all the E) — 2 (0)— ¢(1—pl®)= 2.6

states witm>0 are degenerate, with energy= €. The sys- (Edo “~ €nPy = €(1—py €1+e P2 '

tem is in contact with a heat and particle bath characterized i )

by a temperatur@ and fugacity;=exp(—a). Therefore, the ~and its fluctuations are given by

©

p=e", (2.59

p\V=g Bemantl) = n=1, (2.5

Il. THE MODEL

equilibrium probability of finding the system in stateis —gel2
2_/E2\ 2_ 2
pEO):Ce*BEnefan, (21) UE_<E >O <E>O € (1+efﬁe72)2' (27)

where B=(kgT) %, kg being Boltzmann’s constant. The Fluctuations in the number of particles are

constantC is determined from the normalization condition, ) ) 5 sel2
and it is given by an={(n%)o—{(n)5=2e" (2.9
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This quantity diverges in the low-temperature limit, whereing the system in an excited state far frors 1, which is the
most of the probability corresponds to the ground state. Duenly one from which the energy can decrease, is of the same
to the condition of the mean number of particles being equabrder asp; up ton=0(a"1). This reflects the equivalence
to unity, the probability distribution has a long tail as a func- of all the abacuses in the original BG model. The relaxation
tion of n. Therefore, there is an effective correlation lengthslows down because the random walk performed laynong
associated to the divergence of the fluctuations of the numbehe excited states contributing to the energy is symmetric,
of particles. Finally, the equilibrium entropy reads and it takes a very large time to the system to relax from
. statesn=0(a ™).
S _ Onp(@ = 2In(1 + e~ Be2 g Pel2 Very recently, some random walk models have been pro-
kg iz Pn P = n(1+e "5+ Beope- posed to mimic the zero-temperature dynamics of the BG
(2.9  model®*"To put our work in a proper context, it is impor-

. . e ) . tant to note that, first, we will study here the finite tempera-
This expression coincides with the entropy per abacus in thg,e kinetics of our model and, secondly, that we are using a

BG model with indistinguishable particles. It is free of the grand-canonical ensemble description. For this reason our
pathological behavior shown by the entropy in the case ofzndom walk is not symmetric, except in the lifit>0. Our
considering t_he particles as distinguishable, where it bez;y is not to propose a model that exactly reproduces the
comes negative at low temperatufes. o dynamics of the BG model. Instead, we want to retain its
Next, we proceed to formulate the kinetics of the model.yain features in a solvable model, in order to identify the

The elementary dynamical processes we will consider are th@yeyant mechanisms leading from entropy barriers to glassy
arrival or the departure of one particle, and therefore th§)onavior.

dynamical evolution of the system will be given by a one-  the solution of the master equation in the case of time
step procesS master equation, independent temperature can be obtained by using standard
procedured® The constantv in the transition rates will be
dpn used to set up the time scale, and thus it will be taken equal
W:rn+lpn+l+gnflpnfl_(rn"'gn)pnv (2-1() o P . ’ X a
to unity in the following. We look for the eigenvalues and

wherep,(t) is the probability that the system hasarticles ~ €igenvectors of the problem. The former are given by
at timet, r, is the transition rate from stateto staten—1 C a2

(loss of one particle andg,, is the transition rate from state M)=1+e “—2e ““cog, (219
n to staten+1 (gain of a particle Of course, the state

n=0 is a reflecting boundary, where q runs in the interval 0,7]. Besides, there is the

eigenvaluex =0, whose eigenvector is the equilibrium dis-
ro=0. (2.11) tribution give_n by Eq-(.2.5). AII-the eigenvaluea other than
N=0 are strictly positive, as it must be the case for a master
As we do not want to introduce any energy barrier ob-equation with transition rates verifying detailed balance. The
structing the relaxation of the system towards the groundgigenvector associated x{(q) is
state, we will take

1/2
rh=v, n>0, (2.12 fo(q)=(;) elfe 2cosy(q), (2.163

where v is a constant parameter with dimensions of fre-

guency. The transition rateg, are chosen in order to verify ve ta
the detailed balance condition, i.e., &la)=|—| e peratirmliZcogna+ n(q)], n=1.
2.16
go=ve P9, (2.133 (2160

Here 5(q) is a real function defined by
gr=ve % n>0. (2.13p

—ig—Be—al2_ ,—Be—a —a__ —al2
Since the ground state can be reached at any temperaturg? 7(a) = ¢ T pe=aT %ﬁﬁa +1+ew 2(97&,2 cosq,
from any other state without surmounting any energy barrier, e —¢€ +1l+e “—2e ““coy
possible divergence of the characteristic relaxation time and (2.17
glassy behavior can only appear in the model due to thg,q
presence of entropy barriers. In fact, glassy behavior is to be

expected, because at low temperatures 0 according to 7(0)=m/2. (.18
Eq. (2.4), and the leading behavior of the transition rates is
given by It has the propertyn(—q)=—»n(q)+ m. The eigenvectors
£.(q) verify the closure relation
gn=rp,=v, n>0, (2.143
go=ve P (2.14b pg°>+f dq%:@m. (2.19
0 m

One can argue where the model, as formulated here, incor-
porates the entropy barriers which are so evident in the origiBy using the above equation, any initial condition can be
nal BG model. At low temperatures, the probability of find- expressed as a sum over the eigenvectors,
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© m By making use of Eq(2.19 it is easy to see that
An(t=0)=pn(t=0)—p, =f0 dqg(q)éa(a),

7 Em(Q) _
(2:20 pya(n.tim,0)=p(”+ JO da- o n(@e ™,
with " (3.5
“AL(t=0)&.(q) sincep!®) corresponds to the null eigenvalue, afidq) to
Q(Q)ZmZO o (2.2)  \(q). Therefore, it is
- m
Now, it is trivial to write the time evolution of the deviation -
from equilibrium A ,(t) (E(OE(M)o= X €nempy”Phy’
n ' n,m=0
—pt—pO_ [7 ~tn@ . 4 _
An(t)=pn(t) =Py fo dgg(a)én(a)e - +n;_0 enemfo dgé(q)&nq(q)e ™M@
(2.22 T
This.proyides the general solution of the master. equgtion, for :<E>S+ J'quaz(q)equ). (3.6
the time independent temperature case. SN(@p is strictly 0

positive for allg, 0=q=<, A,(t) goes to zero in the infinite

time limit, as expected. where we have introduced the function

As already discussed, at zero temperature the model re- o
duces to a symmetric random walk with an absorbing bound- a(q)= 2 enén(0). (3.7
ary atn=0. Therefore, the probability distribution tends to a n=0

stationary state witlp,= &, o. The decay to this state is very Substitution of Eq(3.6) into Eq. (3.2 yields
slow and aging effects occur, even if the system was initially

in equilibrium at low temperatures. Since it is easily seen JZdga®(q)e ™M@
that atT=0 our model becomes equivalent to “model B” P(t)= = =
studied in detail in Ref. 17, we will not discuss the aging odaa(a)
effects here. It follows that ¢(t) decays monotonically from its initial
value, ¢(0)=1, to zero. This could have been foreseen,
Ill. RELAXATION PROPERTIES since it is a general property for equilibrium autocorrelation

. . . . functions in models whose dynamics is described by means
In this section we are going to study the relaxation prop-

. . " of master equations with the transition rates verifying the
erties of the model at a given constant temperature. Attentio a fying

il be f d the i ¢ lation functi ¢ Hetailed balance condition.
will be focused on(a) the time autocorrelation function o The problem has been reduced to calculate the function

energy in equilibrium andb) the linear relaxation of energy : :
after a temperature perturbation. It must be stressed that bo%q)’ defined by Eq(3.7), that can be written as

(3.8

quantities does not coincide, because the ensemble descrip- o
tion of the model does not correspond to the canonical one. a(q)= 2, €&,(q)=—e&(q), (3.9
n=1
A. Energy time autocorrelation function because

The time autocorrelation function of the energy in equi- o
librium is given by —
=0, 3.1
2 @ (310

(E(OE(M))o=2 X €némpap(ntim0)plY, (3.1  due to the orthogonality of the eigenvectdiy) with re-
n=0m=0 spect to the equilibrium distribution. From Eg&.9) and
wherepy;3(n,t|m,0) is the conditional probability of finding (2.163 we obtain
the system in stata at timet given it was initially in state

m. Let us introduce the response function a(q)=cosn(q). 311
2 The proportionality constant in the above relation is irrel-
(1) (E(0)E(1))o—(E)d (3.7  evant for the calculation of the response function, given by

(E2)0—<E)§ ' Eq. (3.8). The functionz(q) defined in Eq.(2.17) is rather

involved, but simple expressions are derived both in the lim-
its of short and long times. For short timesg1, it is

(t)~e v, (3.12

that verifies

#(0)=1, lime(t)=0. (3.3

t—ow

where
The conditional probabilit)pl‘l(n,t|m,0) is the solution
of the master equatio®.10 with the initial condition Tdan 2
)\MET?:IO gr(9)a’(q) _

—_— *—1. 3.1
p12(N0IM,0) = Sy (3.4 jdad@  © (313
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Thus, the relaxation in the short time regime is exponentialthe regions<1 we do not get the low-temperature version of
as it is the usual case in systems described by masténe short time behavior, as given by Eg.17), since it cor-
equations?® In the limit of long times, a Laplace’s analysis responds to the much shorter time scale definedaby.
of Eq. (3.8 gives Over the time scals, that behavior collapses onto the point
s=0. Actually, s<1 corresponds to an intermediate time

_ _a—al2y2
N e’—1 e td-e ™ window wheret is large buts= «?t/4 is small @<1). It is
¢(t) 27T1/299a/4(1+ e al2__ e—a)Z (1_ e a/2)4t3/2' easy to see that
(3.19 4
Aside from slow algebraic corrections, the relaxation is again In&s)~ - —1,751’2, s<1. 3.22
exponential, but with a characteristic time ™
Theref f E A 2
n=(l—e-a2)2, (3.15 erefore, from Eqs(3.19 and(3.21) we get
which is different from the one of the short time regime. This Ing(t)~ — 4a’t| 2 (3.23
is also the most common case in models described by master T ' ’

equations. This fact, together with the monotonic decay of hich | hed ial hi howili
the equilibrium autocorrelation function, leads to a nonexpo—W Ich IS a st][etc € exponential or Kohirausch-William-
nential relaxation regime at intermediate timMsThis re- Watts (KWW) function,

gime is expected to be more relevant as the time scales sepa- Y

ration becomes larger. This is the case wieér->1. Then, Ing(t)= _(;) , (3.24

both characteristic times diverge, but

T.>7g. (3.19 with
Taking into account Eq(2.4) for «, it follows that y=112, (3.253
e*—1 is equivalent toB—x or T—0. In this limit, both
I i a a
Eqs.(3.12) and(3.14) become much simpler. For short times r= 2 Tepe, (3.250
itis 4a 4
o(t)~e (3.17  Thus, at low temperatures the relaxation timeobeys the
_ ) ) Arrhenius law, with an “activation” energy. One may ask
whereas in the long time region himself which is the physical origin of this behavior, since
o altia the system does not have to surmount any energy barrier to

(3.18 reach the ground state. In our model, as in the one proposed
' by Ritort? there is an entropy barrier. At low temperatures

g—>0 and a symmetric random walk is performed by the

system among all the excited states. The characteristic relax-

¢(t)~g&mm-

This latter equation shows that relaxation takes place over

time scale ation time will be dominated by the diffusion process from
a2t the mean position in the excited region to the stated. The
= (3.19 mean position in the excited states,; is given by
which is much longer than the defined by the initial expo- _ 3ronp®  (nyg a1
nential. Thus, separation of time scales comes up, and non- Mexc™ S p@ :1_p<0) =(1-e97% (3.2
exponential relaxation is to be expected in an intermediate n=itn 0
time window. where we have made use of EQ.59. This quantity must

The picture we have obtained is similar to the one foundnot be confused with the average number of particles in ex-
in the low-temperature relaxation of Glauber's Ising cited states. In the limit of low temperatures
model*®*~?! Therefore, we make use of the same techniques -
to derive the behavior of the correlation function in the in- Newe~a ™ '>1. (3.27
termediate time regime in the low-temperature limit. To be-
gin with, we obtain an expression which is valid in the time
scale defined by Eq3.19. We introduce a new variable

Then, an estimation to the time needed to diffuse until
n=0 will be

through Tdifzo(ﬁgxgzo(a_z)- (328)
q=au/2. (320  The above equation can be considered as a qualitative expla-
Then, a simple analysis gives nation of the relaxation time dependence on the tempera-
ture shown by Eq(3.25b, since it is reasonable to expect

o u? 1) that 7= 0O( 74;), the mean time taken by the system to get to
dume . (32D the “bottleneck” in the configuration space.

A simplified picture of the evolution of the equilibrium
where terms of ordetr have been neglected. For very long time autocorrelation functionp(t) of the energy can be
times,s>1, Eq.(3.18 is of course recovered. However, in given in terms of the three time regimes we have found,

— 4
Ho=g(5)=~ |

0
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FIG. 1. Plot of the equilibrium autocorrelation function of en- ~ FIG. 2. Energy relaxation in the low-temperature region, for a
ergy, for a temperature value corresponding/iosT=10. The dia- ~ témperature value correspondingdtkgT=10. The diamonds are
monds are the numerical evaluation of E8.8), and the solid line the numerical evaluation of E¢3.33, while the solid line corre-
is the stretched exponential of E@.29. sponds to the KWW function of Eq3.43. In this logarithmic
scale, we have restricted ourselves to positive values of the re-
sponse function.

e t<1,
b(t)= e (4PUm? g ctcnn? (3.29  temperatures. This is not a general property for all master
12 2 —3l2— oPtia s equations, and KWW relaxation may not show up for a given
m Y a?t/4) "% t>4a" " choice of the transition rates, if the relaxation spectrum as-

o . . ) sociated to them remains narrow at low temperatures.
A similar behavior has been previously obtained for relax-

ation in different model&®1%22|t must be noticed that the
scheme described by E.29 is consistent with both em-
pirical and numerical results for glassy systems, where non- The energy relaxation after a temperature perturbation is
exponential relaxation and KWW behavior is usually foundcharacterized by the response function
over an intermediate time windof.

It is possible to estimate roughly the range of validity of ()= (E(1))—(E)o (3.30
the KWW function. One can determine the time intersections (E(0))—(E)o’ '
t; andt; of the KWW function with the short and long time
exponentials, respectively. It is found tha&t=4/7 and
a?t;=6.28. In the time intervalt( ,t;) the KWW function is o
expected to hold, and the relaxation function verifies — — _
exp(—4alm)=¢(t)=0.06. Although this is a very crude esti- (EM) ngo €nPn(t)= e[ 1= Po(t)]. (3:31
mation, we conclude that most of the relevant part of th
relaxation of ¢(t) at low temperatures is given by the

B. Linear relaxation of the energy

where

eUsing the definition ofA, in Eq. (2.22), we have

stretched exponential in E3.29), becausar<<1. ()
In Fig. 1 we have plotted(t) -fOF-BEf 10, which corre- Y(t)= AO(O)' (3.32
sponds toe=6.7x10"2. The solid line is the KWW func- 0

tion given by Eq.(3.23. As discussed in the paragraph sypstitution of the exact solution of the master equation for

abOVe, it is valid over an intermediate time window Corre-constant temperature obtained in Sec. ||' EC&ZD and
sponding to the relevant part of the relaxation. For very long2 22, leads to

times, relaxation is exponential, and the KWW function is

not a good approximation. For very short times, relaxation is © Jodgg(qg)cosy(q)e ™MD

also exponential, but the difference with the KWW function = 7

is negligible over the scale of the figure. odag(q)cosn(q)
Finally, it must be remarked once more that the KWWWwe have to calculateg(q), from the initial conditions

decay found at intermediate times follows from the existencez ,(0). We will consider that the system was in equilibrium

of two exponential regimes valid at very short and very longat a temperatur@@+ A 8. Then, the temperature was instan-

times with a clear separation of their respective time scalesaneously changed t8 at t=0. In the linear response ap-

A detailed discussion can be found in Ref. 18 for any systenproximation,

whose dynamics is described by a master equation. The main

point is whether most of the relevant part of the relaxation 0 0 d 510)

can be described by a KWW function as a consequence of a An(0)=pX(B+AB) —pY(B)= WA'B' (3.39

clear time scale separation. This happens in our model be-

cause the relaxation spectrum becomes very broad at loand the functiorg(q) in Eq. (2.21) reads

(3.33
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°O d and substitution of Eqs(2.16 and (3.3 into Eq. (3.35,
g(q)=ABY, §n(q)@lnpﬁ1°). (3.35 together with the relation
n=0
. —_—— .. . — Bel2
The expression of the equilibrium distribution, Eg.5), d_a_ _€ ¢ _ & e g
is equivalent to dg~  21+e PR~ 2° : (3.39

Inp\”'=— Be(1—80) —a(n+1), Vn=0, (3.3 |eads, after some algebra, to

9\ 12 1 cogq+ 7(q)]—2e” *“cosp(q) + e~ “cog 7(q) —q]
N (Be—a)l2 A Be—2a
g(q) ( 7T) GA:B € COS??(Q)+ ze (1+efa_zefa/200$)2 . (33a
|
The above expression fa@y(q) is rather involved for arbi- e 2t t<1,
trary temperature. In the low-temperature limit-~ 0, intro- 1602t/ m) 12 _
ducing again the time scatedefined by Eq(3.19 and the #(t)=9 € 1<t<4a (3.49
variableu of Eq. (3.20, one gets — 27 V2 o2t/4) 2% A (4472,
. 8 (= u(u2-1) . At very long times, the relaxation functiopi(t) crosses the
P()=i¢(s)= —j du———5e S (3.39 taxis and decays to zero from negative values. This is quite
mJo (1+u?) a small effect, since a numerical estimation of the minimum

af (t) gives ¢yin=—0.05.
The relaxation of the energy takes place over a time scale of %(Qrgfore ﬁﬁg KWW function in Eq3.44 also gives a

72 . g .
ordera ", as it was the case of the equilibrium energy au-re|e\ant information about the energy relaxation at low tem-
tocorrelation. In thes time scale, the initial exponential re- geratures. In particular, its relaxation time
r L

laxation does not show up, because the short time behavi
of (1) is given by T T
=g 2~ —gB€
. TE= g 1Ge , (3.49
lp(t):e—2tsmha’ (3.4() . .
can be used to characterize the relaxation of energy after a

and at low temperatures its characteristic time scaldlomogenous perturbation in temperature. It must be re-
(2a) ! collapses onto the poirst=0. For very long times, Marked thatrg also follows an Arrhenius law at low tem-

s>1, a Laplace analysis of E¢3.39 yields peratures. A qualitative explanation of this behavior, in terms
of the diffusive motion of the system, can be given along the
L 2 e same way as in the previous section. Obviously, the stretched

y(s)~— —m g (3.41) exponential approximation is not able to explain the crossing

of thet axis that takes place at very long times, but it accu-

. . L rately fits most of the relevant part of energy relaxation,
The previous equation tells us that energy relaxation is noﬁamely up tog=0.1

monotonic. In fact, it is proved in Appendix B that In Fig. 2 the energy relaxation function obtained numeri-

cally is compared with the KWW function in E¢3.44). The
- _ value of the parameter is the same as in Fig. 1, i.e,
fo dt(H) =0, (3.42 Be=10 («=6.7<10"3). In the variables used in Fig. 2,
exponential relaxation corresponds to a straight line of unity
implying that(t) is negative in a time region. However, in slope, while KWW relaxation is represented by a straight
the intermediate time window<1 a stretched exponential line of slope equal to the parametgrin Eq. (3.24. The
decay is again obtained, though the general argument devdpgarithm scale used amplifies the discrepancies, especially
oped in Ref. 18 cannot be directly applied. Fse1, it is  for short times, where the difference between the KWW

easy to show from E(3.39 that function and the initial exponential is in fact negligible.
1602t 12 IV. THERMAL CYCLES
Iny(t)~— (3.43 ) ) ) _
Here we are interested in studying the behavior of the

model when it is continuously cooled down from high to low
Therefore, a simplified picture of the energy relaxation attemperatures, and afterwards reheated. This is usually called
low temperatures is obtained, which is similar to the onea thermal cycle. Upon describing it, the system may deviate
found before for the energy autocorrelation. In terms of thefrom equilibrium while being cooled, leading to the kinetic
three relevant time regimes that have arisen in our discugghenomenon known as the laboratory glass transition. In the
sion, heating process, equilibrium is approached again at high
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temperatures, but the system follows a different curve fromany more transitions. Thus, for temperatures lower than the
the cooling one, and hysteresis shows up. The kinetic behawne corresponding tt(q) the contribution of the mode will

ior just discussed is shown by a wide class of matefidls, not evolve in time and can be considered as “frozen.” In this
and also by some simple modéti-132124Nevertheless, way, we can determine a freezing temperaflig) for each
analytical results are scaré&' although quite a general ex- value ofq. Equivalently, one can introduce the notion of a
planation of the hysteresis phenomenon has been giién. “demarcation” mode qp(T), such that modes with
can be understood as the monotonic approach to a “normal<qp(T) are frozen, while modes with>qp(T) are still
curve, different from the equilibrium one, characterizing relaxing at the given temperatut®?’

heating processes. As the proof in Ref. 12 was made for the The laboratory glass transition begins at the temperature
canonical ensemble, a generalization for the case considergg=T(t,) given by the relation

here is presented in Sec. IVB.

The remainder of this section is organized as follows.
First, we study cooling processes, and the existence of the
laboratory glass transition. Secondly, heating processes are
considered, paying special attention to the appearance &F
hysteresis, and relating it to the trend of the system to ap- _
proach the normal curve. Ap(T2)=0. “.9

Let us point out that we have not been able to solve exi.e., only the slowest relaxation rate is frozen, and the devia-
actly the master equation for the case of time-dependent tention from equilibrium starts off. On the other hand, the sys-
perature, that implies that the transition rates are also timeem will be completely frozen at a temperatdrg=T(t,) for
dependent. The procedure developed in Ref. 13 is valid whewhich the fastest relaxation mode does not evolve any more,
the eigenvectors of the master equation do not depend amamely,
temperature. This is not the case here, since the eigenvectors

t
“dtny(T))=1 (4.4

ty

of the master equation, given by EQ.16), are temperature todt’)\ (TH=1 4.6
dependent through the function(q) in Eq. (2.17. There- t 2 ‘
fore, we have performed a Monte Carlo simulation of the
master equation, using a generalization of the Bortz-Kalos®"
Lebowitz algorithm3® for master equations with time- _

ap(T2)=m. 4.7

dependent transition raté%.Nevertheless, some analytical
estimations can be done, and they will be compared withA global image of the freezing phenomenon can be obtained
numerical results. by means of the time scale

) .. to 1
A. Cooling processes and laboratory glass transition 5= J dt’ (4.8
t

Now we are going to study the continuous cooling of the (T’
system to low temperatures. In order to analyze the deviatiojhere 7(T) is the time characterizing the relaxation of the
from equilibrium values of the properties of the system, wepropertyP we are interested in after a temperature perturba-
will follow a reasoning similar to that used in Ref. 13. We tjon. For instance, in our modelwould be the KWW relax-
start from the r(_alaxation spectrum of the master equation, Ettion timere in Eq. (3.45, if we want to describe the energy
(2.19, and notice that the modes depend on temperature eyolytion during the cooling process. An estimation of the

througha, and therefore they are time dependent in a given-g|oba|n freezing temperatureT; for the propertyP is ob-
cooling programT (t). In this spectrum, the relaxation rates igined by making=1, i.e.,

of the system vary with their labal, from the minimum

value, corresponding tq=0, 1

t

1= | “dt——, 4.9
N=l+e a—2e @2=(1-e 922 (4) y o ()
and thenT;=T(t;). Since the laboratory glass transition is
very narrow in temperature, at least when the system is

Np=1+e *+2e “P=(1+e *?)2, 4.2 slowly cooled, an approximation to the frozen value of the

property P under consideration would bBy(T;), i.e., the

Given a cooling law, to each of the relaxation modes weequilibrium value at its freezing temperatuFe.

to the maximum one, fogq= 1,

can associate a characteristic time scale It is important to note that the temperatureg T,, and
. T; depend both on the cooling ratg and the cooling law
0 . :
s(q)= ft dtN(q:T"), (4.3 f(T) defining the cooling program,
T
wheret, is the extrapolated time for which the temperature Fran —rf(T). (4.10

would vanish according to the cooling program, and

T'=T(t"). The times(q) is roughly proportional to the ef- This is also the case in other simple models whose dynamics
fective number of transitions left to the modéq; T) before is described in terms of master equations. For some choices
reachingT=0. For times longer than the oriéq) making of the cooling lawf (T), the system remains in equilibrium at
s(q) =1, one can consider that the mode will not experimentall temperature&!*We are not going to discuss this problem
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here, but focus our attention on the behavior of the systerNow, we take into account that; ~exp(—8;:€/2), to get

when it is being linearly cooled,

dT

az—rc, (41])

i.e., f(T)=1, which is the most usual cooling program in

€ 1

T~
b kg [In(8p,)]

(4.19

In order to calculate the fictive temperature, we start

real experimenfsand also in theoretical studies of model from Eq. (4.9), with the relaxation time of energye given

systems11:24:28

The relaxation modes; and\,, Egs.(4.1) and(4.2), and
the time characterizing the energy relaxatignare written
as functions ofe, defined by Eq(2.4). Then, it is useful to
transform the time integral in the definition of tisescales
into an integral overr with the aid of

da
— = —p(1—e M[In(e*—1)]?,

at (4.12

where Eq.(4.11) has been taken into account, and

_ 2kgr¢

€

Pc (4.13

by Eq. (3.49,

1_J'afd at 16 J’afd a?
=y 94 e (W= 00 ) Y e Dine - D
(4.20

As before,a; is the value ofa corresponding tor;. For
slow cooling, it isa;<1, sincea;<a;. Then, the above
equation reduces to

1= 10 fafd “ 4.2
“mpedo 3 nay .23

In this way, we have arrived at an expression similar to Eq.

is an adimensional cooling rate, giving the time scale ovef4.19 for a;. Therefore,

which «a evolves.

As discussed above, the beginning of the laboratory glass

transition is estimated to take place at a tilgesuch that
T(t,)=T,, being T, the temperature in Eq4.5), i.e., the

2

fafd a o
o "¥(na)?” 2(Inay)?

(4.22

one at which the slowest relaxation mode freezes. By usingnd

Egs.(4.1) and(4.12), we can write

1 (e
1:-[ d
PcJto

wherea = «(t,). In the limit of slow cooling,p.<1, and it
follows thata;<<1. For this case, Eq4.14) simplifies to

(l_efa/Z)Z
Y 1=e 9[In(e"—1)]2’

(4.19

1= 1 fald “ 41
~Zp.)o Y Tnarz 413

2
8 O

1=— — .
7pe (INarp)®

(4.23

Again, a reasoning along the line of the one above(Ed.9
gives us

€ 1

Tt kg In(mpa8)] 4.2

To solve this relation forr;, we make the change of variable A Similar dependence on the cooling rate is obtained in real

a=a;X,

fald o _ aq fld X
o "Yna)?2” (Inay?)o " T1+ (Inx/nay) ]2

2
a;

T 2(Inap)?”

(4.16

The last integral can be done by dividing the interval (0,1)'30'[entlal 1

into the two subintervals (Ina,| 1) and (Ina,|~1,1). In the

first interval, the integrand is bounded by unity, and the in-

tegral is negligible. In the second interval, it|lax|<|Inay],
giving rise to the result in Eqg4.16). Substitution into Eq.
(4.19 yields

2
1 af

1:8—pCW. (4.17)

By making use of the slow cooling conditiom;;<<1, we
have

2Ina,~1In(8p;). (4.18

experiment$, and has also been found in Glauber's Ising
model?® Taking into account the comment below Hg.9)
one can estimate the residual value of the energy, i.e.,

&= Ilim[(E)(T)—(E)o(T)]=(E)o(Ts).  (4.29

T—0

In the limit of slow cooling,p.<1, Eq. (4.25 leads to a
dependence on the cooling rate of the residual en-
ergy, erocpc’z. A similar behavior of the residual properties
has been obtained in some models of glas<@s.

In Fig. 3 the evolution of the mean energy for the cooling
program in Eq.(4.11), with an adimensional cooling rate
p:=0.02, is plotted. The departure from equilibrium roughly
begins at the temperature obtained from E@.19,
kgT,/e=0.55. The estimation of the freezing temperature,
obtained by using Eq4.24) is kgT;/€=0.21, in good agree-
ment with the numerical result. The frozen value of the en-
ergy given by the Monte Carlo simulation §&)/e=0.076,
while the value obtained fronT; is (E)(Ts)/e=0.081.
Again, the approximated theory provides a reasonable esti-
mation of the actual value.
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Here A©(t) is a rather involved functional op,(t) and

04l pO(t). Its explicit form is given in Ref. 12. The important
point for our present purposes is that it has the property
03l A9 (1)=<o0, (4.28
<E>je with the equality sign being verified if and only if
o2 Pa(t)=pP(D), (4.29
for all n. If the temperature is constapt®’ does not depend
01r on time and we get the usual approach to equilibrium
theoremt® On the other hand, if the temperature is time de-
. T T . . , pendent,H(® does not have a monotonic decay. This is a
0 02 04 06 08 1 12 14 manifestation pointing out the tendency of the system to ap-
kaT/e proach the normal curve, not the equilibrium one. In fact, the

equilibrium distribution is not a solution of the master equa-

FIG. 3. Plot of the mean-energy versus temperature, for théion for the case of time dependent transition rates. Never-
linear cooling program corresponding to a cooling rate=0.02.  theless, we are going to show that, in heating processes, the
The solid line is the equilibrium energy, and the diamonds havesystem tends to the equilibrium curve for high enough tem-
been obtained from Monte Carlo simulation of the system. Theperatures. From Ed2.1) we get
temperatured; andT; defined in the text are also plotted.

dinp’®  dg da
B. Heating processes and hysteresis cycles BT a(en—<E>0)— a(n—(mo). (4.30

A quite general property of models described by master N .
equations with time dependent transition rates is the existiow. takmg_mto account Ec{2.3), substitution of the above
ence of a “normal” solution®? i.e., a solution of the master €XPression into Eq4.27) yields
equation such that is approached by any other solution in a dH©
monotonic way. Since the only condition required is that the =A0 _ 5
stochastic process defined by the equation be irreducible, the dt kT
property holds in our model. In other words, all solutions of 1 dT
the master equation converge to a common curve in the long + T2 E<E>O(<n)— 1), (4.3
time limit. B

As a consequence, there is a long time regime where thghere we have made use of
system has forgotten the initial conditions, and its properties
depend on time only through the temperature. It must be da 1
noticed that the above property cannot be applied to cooling @ = §<E>o: (4.32
processes up td=0, because in this limit some of the tran-
sition rates go to zero, and the process is not irreducibledbtained by comparing E¢3.37) with Eq. (2.6).

daT
T{E=(E)o)

More precisely, in our model the state=0 becomes an In Eq. (4.31) there are two positive terms, namely,
“absorbing” boundary in the zero temperature limit, i.e., the 1 dT
transition rate for leaving events vanish. B.(t)= —— —(E 4.33
. . “ l( ) k 2 < >01 ( . a
On the other hand, for heating processes there is a “nor- gl dt

mal” solution, because for any temperatufe£0 all the

states are connected through a chain of transitions of nonzero B.(1)= art E (4.33h
probability. For the case of a canonical ensemble description, 2(t) 2kgT? dt< yo{n). '

it has been show that the normal solution approaches in L . Lo

the high-temperature limit the equilibrium curve. This resultBOth terms vanish in the high-temperature limit, if the func-
cannot be translated directly here due to the peculiarities dfon T(t) is such that it takes an infinite time to reach
the ensemble we are considering. Nevertheless, we are goig~ - 1S iS true, in particular, for a linear heating pro-
to prove that a similar result can be derived here. Let ug"@m

define

daT (4.34
o v rh . .
HO(t)= > (t)Inpn—(t) (4.26 o

& Pn p'V(t)’ ' Therefore, it is concluded that
where p,(t) is a solution of the master equation, and dH©
p{(t) is the equilibrium distribution, Eq2.5), for the tem- lim ——=0. (4.39
peratureT(t) at timet. The time derivative oH© is e

dHOD) SinceH© is bounded belowH (®) must reach an asymptotic

i (0)
=AO(t)— E Pa(t) dpy (t)_ (4.27) stationary value. Thus, all terms in E@.31) must tend to
dt o p9t) dt zero in that limit. In particular,
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effect of the energy. A similar behavior has already been
oal ] observed in other model systerifs-3 We think that this re-
lation between hysteresis and tendency to the normal curve is
a result valid for most of the systems described by master
0.3} | equations.

<E>/¢
V. CONCLUSIONS

Very recently, a model trying to identify the role of en-
tropy barriers in glassylike behavior has been introdifckd.
is called the Backgammo(BG) model. In the Introduction
we have presented a possible interpretation of the BG model.
Another possible interpretation, perhaps closer to modelling
of real glasses, can be proposed. In a given real system there
are a large numbeX of elementary structural celfS.Each
of these cells contains a mesoscopic number of particles of
he real system, but they are treated as “particles” in the BG
model. The system has structural disorder, in the sense that
there areM>1 different structuregdefined by density, co-
ordination number, etgavailable to each cell. The choice in
the BG model isM=N, but the main point is that
M= O(N). A configuration of the whole system is specified

0 02 0.4 06 0.8 1 1.2
kel/e

FIG. 4. Hysteresis cycles of the energy, when the system i
cooled and reheated. The heating ratgjs 2x 10~ 2, and the cool-
ing rates arep.=2x10"? (diamond$, andp,=2x10"* (pluses.
The solid line is the equilibrium curve, and the dotted line corre-
sponds to the normal solution.

tlmA“’)(t) =0, (4.36 by the number of cells having each of the possible structures.
All the structures havéapproximately the same energy, and
and using Eq(4.29 we arrive at thus the energy of the system is associated to the “disorder,”
i.e., the number of structures which are occupied. Therefore,
Pn()=p'% (o), (4.37  the ground state is degenerate, with all the cells being in one

of the available structures.

for all n, i.e., our model tends to equilibrium at high enough  We have studied in detail the dynamical evolution of a
temperatures, although this trend is not monotonic, sincenodel with a variable number of particles. Regarding the
dH©/dt does not have a definite sign for all times. static properties it is equivalent to the BG model with indis-

Therefore, the global picture of a heating process is theinguishable particles, while a simplification of the dynamics
following: first, there is a stage in which the evolution of the is introduced. As in the BG model, the dynamics of the sys-
system depends on the initial condition, but all the solutiongdem is defined in such a way that no energy barrier is to be
of the master equation tend in a monotonic way towards @&rossed in order to fall onto the ground state. Despite it, this
common behavior given by the normal solution. Over themodel shows many of the characteristic features exhibited by
normal curve, the time dependence of the physical propertiethe relaxation of glassy materidis! This is another indica-
arise through the heating program, and initial conditionstion of the relevant role that entropy barriers may play in the
have been forgotten. Afterwards, for high enough temperaexplanation of the dynamical behavior shown by structural
tures, the normal solution asymptotically approaches thglasses:!® The consideration of simple models, for which
equilibrium curve. Let us stress that the last result is someexact analytical calculations can be performed, is worth it
how restrictive, because it depends on the applied heatingecause they allow the identification of the mechanisms
law. leading to glassy behavior, both in relaxation and thermal

In Fig. 4 we have plotted two thermal cycles. The heatingcycles. Besides, the arguments used along this paper seem to
program is given by Eq4.34), with an adimensional heating be quite general for systems whose dynamics can be de-
rate p,=2X 10 2. Of course,p,, is defined by Eq(4.13,  scribed by master equatiotfs?!
with r. replaced byr,,. In each of the cycles, the system was  For linear response processes, the system shows nonexpo-
previously cooled down to low temperatures, following two nential relaxation. In the low-temperature regime, an inter-
linear programs withp,=2x10"2 and p,=2x10"4 re-  mediate time window appears in which stretched exponential
spectively. Also plotted is the normal curve for the heatingrelaxation becomes exact. This reflects the cooperativity of
process, which was obtained by starting from equilibrium athe dynamics of the system at low temperatures. The value of
T=0.213 All the curves have been obtained from Monte the parametey in the KWW function¢(t) =exd —(t/7)"] is
Carlo simulation of the system, except for the equilibriumanalytically shown to be 1/2. The same value has been ob-
one. Because of technical numerical problems, the initiatained in other one-dimensional simple models at low
condition for the heating process is bt 0, but the lowest temperature$®2°2230-32 plthough quite different in their
temperature for which the transition rate exyfe) is differ-  formulation, all these models present the common point that
ent from zero within the precision of the computer. In thediffusion processes play an essential role at low tempera-
figure, the two regimes previously discussed appear clearlyures. Diffusion appears associated to a symmetric random
First, the heating curves approach the normal solution andalk performed by the “components” of the system. Be-
afterwards the latter tends to equilibrium. The trend of thesides, the relaxation time giving the relevant time scale
system to the normal curve is responsible for the hysteresifollows an Arrhenius law, although the activation enekgy



6354 A. PRADOS, J. J. BREY, AND B. SNCHEZ-REY 55

does not correspond to any energy barrier preventing the N N
system from falling onto the ground state. Instead, the relax- E(ny,n,, ... ny)= >, e(1—34, 0= e( N—> &, E
ation time is related to the characteristic time of diffusion r=1 ' r=1 7

until the “bottleneck” in configuration space. Therefore, (A2)
Arrhenius-like behavior of the relaxation time appears in oufyith the occupation numbers verifying

model because of the existence of entropy barriers, as it may

happen in more complex models and real systems. Thus, it N

cannot be inferred from an Arrhenius dependence of the re- 2 n,=N. (A3)
laxation time that the main mechanisms of relaxation are r=1

energy-activated processes. The system is at equilibrium in contact with a heat bath
Along thermal cycles of cooling down to low tempera- gt temperature T. Therefore, its  distribution
tures and subsequent reheating, the model also shows gl<':1§§c;a)(n1 Ny, ... Ny) iS

behavior. In cooling processes, freezing takes place when the
average number of transitions before formally reaching 1 N N
T=0 is of the order of unity. This criterion can be applied to p@(n,, ... ny)= —ex;{ —Be| N= > &, ,o) } NS oy
each of the relaxation modes of the system. For the slowest Zn r=1 " =
mode, it leads to the temperature at which the departure from (A4)
the equilibrium curve starts off, i.e., the temperature at Which
the laboratory glass transition begins. For the relaxation time

hereZy is the patrtition function,

of a given propertyP, it gives an estimation of the fictive o o N N
temperature, i.e., the temperature at which the equilibrium z = > ... > exp{—ﬁe(N—Z 5n O”gN S
value of P is equal to its frozen value at low temperatures. n;=0  ny=0 r=1 " =
Therefore, the residual properties of the system can be cal- (A5)
culated.

For continuous heating processes, a crucial role is playe the int I tati FK Kerfsncti
by the special solution of the master equation called th € use Ihe integral representation ot Kronec nction

“normal” solution. It is completely determined by the heat- 1

ing program, and the dynamical behavior of the system un- Smo=o— % dyy +m, (AB)
der heating is essentially given by the normal solution. In v 2mi c,

particular, the hysteresis effects observed when the system \i/vsnerec is a circumference of arbitrary radisscentered in
cooled and reheated are a consequence of the trend of tfﬂ% ori ipn Thus y w
system to approach the normal curve. This is similar to the gmn. '

result obtained for the one-dimensional Ising model with 1

Glauber dynamic¥® It is tempting to speculate whether a Zy=e NBe_—_ é dyy !
similar curve in phase space exists in real structural glasses. 2 Cp

ﬁwis expression can be easily evaluated in the liit oo,
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APPENDIX A: STATICS OF THE BG MODEL

(A8)
Now, the integral can be evaluated by means of the saddle
point method. The saddle poigf is determined by the sta-
tionary points of the function

Here we will consider the Backgammon model with in-
distinguishable particléS in the thermodynamic limit
N—o. A configuration of the system is given by the occu-
pation numbera, of the abacuses=1,... N. The total
number of configurations of the system is

f(y)=—Iny+In| ef<+ 1Z—y , (A9)
(2N-1)!
NENI(N=1)!" (Al)  in the region G<|y|<1, wheref(y) is analytic. After some
’ ' simple calculus one gets
that is much smaller than the number of configurations in the 1
system if the particles were considered as distinguishable, Y« =17 o B (A10)

that is NN° In the thermodynamic limit N—oo,

InQy~2NIn2, so being a correct dependenceMnThe en-  that coincides with the fugacity of our modék exp(—«),
ergy of a configuration is proportional to the number of oc-defined by Eq.(2.4). A straightforward calculation for the
cupied abacuses, partition function gives
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(1+e_'86/2)2N +e_a_ﬁfpn—15nli (BZ)
(4mNe”) and substitution of this equation into E(B1) yields, after
and, forN—os, some simple algebra,
- — Bel2 d{n
InZy~ 2NIn(1+ e~ A<2), (A12) (<jt> lter(ecBeeil)p,. (B3

From the partition function we can get the static proper- ]
ties of the system. The mean value of the energy and th&aking into account the expression fer Eq. (2.4), and Eq.
number of particles per abacus are the same as for the mode-53., we arrive at
in this paper, given by Egq92.6) and (2.3), respectively. d(n)
Also the entropy per abacus is given by E2,.9). In fact, the —L = (e*—1)(po— p80>), (B4)
probability that one particular abacus hasparticles can be dt
calculated from Eq(A4), summing up over all the occupa- hich is equivalent to
tion numbers of the remainder of the abacuses. In the ther-

modynamic limit, a similar calculation to the one carried out d({n) « (E)o—(E)
for Zy gives g e —— (BS)
p(O(n,)=e Ael=d oyt+N) (A13)  On the other hand, let us introduce the response function for
* the energy after a temperature perturbation,
This expression is seen to be equivalent to %), taking
into account thay, =¢. (t)= (E())—(E)o  AE(1) (86)
MU= E0)—(B)e  AE(0)
APPENDIX B: PROOF OF EQ. (342 By comparing Eq(B5) with Eq. (B6) it is obtained
Let us derive the time evolution equation for the mean a(n) AE(0)
value of the stochastic variabie —  (pa_
g = (e D)—_—u) (87)
dn) < dp,
N ~n and, therefore,
pm n§:‘,0 e (B1)
Now, we make use of the master equati@l0 for n#0, fo dty(t)=0, (B8)

since the terrn=0 does not contribute to the sum. Then,
since(n)o=1, independently of the temperature. Equation

%: —(1+e )P+ Pregte o 1(1— ) Egg)(frlwally implies that the relaxation of(t) is not mono
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