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In this paper we study numerically existence and stability of exact dark waves on thesnonintegrabled
discrete nonlinear Schrödinger equation for a finite one-dimensional lattice. These are solutions that bifurcate
from stationary dark modes with constant background intensity and zero intensity at a site, and whose initial
state translates exactly one site each period of the internal oscillations. We show that exact dark waves are
characterized by an oscillatory background whose wavelength is closely related with the velocity. Faster dark
waves require smaller wavelengths. For slow enough velocity dark waves are linearly stable, but when trying
to continue numerically a solution towards higher velocities bifurcations appear, due to rearrangements in the
oscillatory tail in order to make possible a decreasing of the wavelength. However, in principle, one might
control the stability of an exact dark wave adjusting a phase factor which plays the role of a discreteness
parameter. In addition, we also study the regimes of existence and stability for stationary discrete gray modes,
which are exact solutions with phase-twisted constant-amplitude background and nonzero minimum intensity.
Also such solutions develop envelope oscillations on top of the homogeneous background when continued into
moving phase-twisted solutions.

DOI: 10.1103/PhysRevE.71.036627 PACS numberssd: 05.45.Yv, 42.65.Wi, 03.75.Lm, 63.20.Ry

I. INTRODUCTION

There is a large current interest in effects arising from
competition between nonlinearity and dispersion in spatially
periodic systems, which in many cases can be well captured
by simple nonlinear lattice modelsf1g. In particular, much
recent experimental activity has been devoted to studies of
arrays of nonlinear optical waveguidesf2g, as well as to stud-
ies of Bose-Einstein condensatessBECsd in optical lattices
f3g. Under certain conditionssnotably strong periodic poten-
tials and, for BECs, a large number of atoms per welld, the
dynamics can in both casessRefs. f4,5g, respectivelyd ap-
proximately be described by the discrete nonlinear
SchrödingersDNLSd modelfEq. s1d below, see, e.g., Ref.f6g
for a review of its properties and applicationsg. As predicted
by the DNLS model, the existence of self-localized discrete
solitons has been experimentally confirmed in both contexts
sRefs.f7,8g, respectivelyd. These are particular examples of a
generic class of time-periodic, spatially localized modes in
nonlinear lattices, the so-called “intrinsic localized modes”
or “discrete breathers”f9g.

An important consequence of the discretenesssor spatial
periodicityd in these systems is, that self-localization is pos-
sible also when the nonlinearity in itself is defocusingsre-
pulsive interactionsd. This is a result of the band gap struc-
ture of the dispersion relation for linear waves, and the
anomalous dispersionsor diffraction, in the case of spatial
solitonsd at the Brillouin zone boundary. In particular, in the
DNLS description the attractive and repulsive cases are
mathematically equivalent through a “staggering” transfor-
mations−1d j, corresponding to reversing the phases in every
second potential well. Thus, in such a situation discrete soli-
tonssbreathersd have exponentially decaying staggered tails,
and have been observed experimentally in optically induced
nonlinear photonic latticesf10g, waveguide arraysf11g, as
well as BECs in periodic potentialsf8g.

On the other hand, it is well knownf12g that without the
periodic potentialscontinuum systemd, a defocusing nonlin-
earity generally leads to the existence of dark solitons, con-
sisting of a localized dip in a homogeneous background in-
tensity flike the dark-soliton solution of the defocusing
integrable nonlinear SchrödingersNLSd equationf13gg. Such
modes are ubiquitous in nonlinear opticsf12g, and also ob-
served in BECs with repulsive interatomic interactionse.g.,
Ref. f14gd. When adding a periodic potential, it is possible to
generate stationary discrete dark solitonssbreathersd not only
in the standard defocusing case, but also for focusingsattrac-
tived nonlinearity where staggered dark solitons may exist,
analogously to the staggered bright solitons in the defocusing
case. Such staggered discretesimmobiled dark solitons, pre-
dicted from the DNLS modelf16g, have indeed been experi-
mentally observed in waveguide arraysf15,11g. For BECs in
optical lattices, dark solitons have not yet been experimen-
tally reported, but theoretically analyzed in Ref.f17g.

However, as was found first numerically for the DNLS
model in Ref.f16g and later confirmed in Ref.f18g, the dis-
creteness may induce oscillatory instabilities for the station-
ary dark modes. It was foundf18g, that for infinite chains the
strength of these instabilities decay in an exponential-like
way approaching the continuum NLS limit, while for finite-
size systems stabilization due to boundary effects may occur.
Typically, these instabilities lead to a spontaneous motion of
the dark mode, together with some radiationf16,18g. It is
therefore an interesting question, whether such moving dark
solitonssbreathersd may exist as exact solutions in the DNLS
model, and if so, whether they may be stable in regimes
where the stationary dark modes are unstable. Addressing
these issues is the main purpose of the present paper.

In integrable models, such as the Ablowitz-Ladik discreti-
zation of the NLS equation, traveling dark solitons exist and
can be obtained exactly analyticallyf19g. The evidence that
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moving dark breathers may exist as exact solutions in a non-
integrable lattice was given by Feddersen, who showed nu-
merically f20g, for the DNLS as well as for the discrete
Davydov equations, that traveling dark waves bifurcated
from stationary solutions. However, the solutions he found
all had a wide envelope and were close to continuum NLS
dark solitons. Attempting a continuation towards narrower
modes, he found that it always stopped at some point, but he
did not analyze this scenario in detail.

On the other hand, much recent attention has been drawn
to the study of mobile discretesbrightd breathers in general
oscillator chains, and it has been found, numericallyf21,22g
as well as mathematicallyf23g, that such solutions may exist
but typically as nonlocalized solutions with a small-
amplitude oscillatory tail. A preliminary calculation of one of
the present authorssM.J.d f24g showed, that generally also
the tails of numerically exact moving dark DNLS solitons
did not have a constant amplitude, but exhibited small-
amplitude envelope oscillationssin Ref. f25g, such solutions
were termed “dark nanopterons”d. In addition, it has also
been preliminary reportedf26g, that also stationary gray
modes, with nonzero minimum intensity and phase twisted
backgroundscf. gray solitons in continuum NLS models
f12gd, may exist in the DNLS model. In this paper, we will
provide extensive numerical confirmation of these prelimi-
nary results. By performing numerical continuations from
the stationary dark DNLS soliton, we observe the following
main effects of discreteness:sid An exact moving discrete
dark wave generically has envelope oscillations around the
constant-amplitude background andsii d gray solitons with
phase-twisted constant-amplitude background exist as sta-
tionary solutions trapped by the lattice potential.

It should also be emphasized that, due to the generic na-
ture of the DNLS equation, similar results should be ex-
pected also for dark breathers in other types of anharmonic
lattice models. Stationary dark breathers have been discussed
as well for Klein-Gordonf25,27,28g, as for Fermi-Pasta-
Ulam sFPUd modelsf29,30g, and the validity of the DNLS
approximation for weak coupling and small-amplitude oscil-
lations explicitly confirmed numerically.

The outline of this paper is as follows. In Sec. II we
introduce the DNLS model, and recapitulate briefly some
properties of its stationary dark modes fromf18g. In Sec. III
we describe our numerical results for existence and stability
of exact traveling dark waves; Sec. III A discusses the con-
tinuation versus velocity, and Sec. III B the continuation ver-
sus internal frequency, which essentially plays the role of
discreteness parameter. Section IV discusses properties of
gray solitons with a phase gradient, which may be either
stationary or moving. Finally, in Sec. V some concluding
remarks are made.

II. STATIONARY DARK MODES

Our starting point is thesattractived DNLS equation

iċ j + uc ju2c j + Csc j+1 + c j−1 − 2c jd = 0, s1d

wherec jstd is the complex amplitude of the oscillator at site
j on a lattice, andC is a coupling constant. Without loss of

generality, we assumeC.0. We consider a finite lattices j
=1,2, . . . ,Nd and adopt, as usual, periodic boundary condi-
tions: c j+Nstd=c jstd.

Let us assume thatc jstd is a solution of the DNLS Eq.s1d
and define

c j8std = c jstdeiv0t. s2d

By direct substitution intos1d it is easy to check thatc j8std
verifies

iċ j8 + uc j8u
2c j8 + Csc j+18 + c j−18 − 2c j8d + v0c j8 = 0. s3d

As a first step we are going to study stationary dark solu-
tions to s3d of the form

c j8std = f je
iV8t, s4d

with time independentf j and V8. These solutions corre-
spond to stationary dark solutions of the DNLS Eq.s1d with
frequencyV=V8−v0. We obtain them numericallysas an
example see Fig. 1d by continuation of the code. . .+1,−1,
+1,−1,0, +1,−1, +1,−1. . . at theanticontinuous limitC
=0. As it is well knownf18g, they show a constant back-
ground intensitysuc ju2→V+4C; u j u→`d, with zero ampli-
tude at a lattice site.

In particular, we are interested in studying the linear sta-
bility of these solutions versus the periodT=2p /V8. Figure
2 shows the moduli of the Floquet eigenvalues for the choice
v0=4. For low enough values of the periodshigh enough
frequencies, equivalent to anticontinuum limitd the solutions
are stable, but increasingT above a critical valueT.0.48 we
observe oscillatory instabilities. These oscillatory instabili-
ties are size dependent and their computation for increasing
system sizes suggests that they decay to zero for large
enoughT for any finite chain, but only asymptotically for
T→` scontinuum limitd in the infinite chain. This result is
equivalent to the one observed in Ref.f18g for increasing
couplingfwith the used parameter values, Fig. 2 appears as a
rescaling of Fig. 2 in Ref.f18g, with T↔2pC and Moduli of
Floquet eigenvalues↔e2pResldg.

FIG. 1. Stationary dark breather forV8=p /3, v0=4 and
C=1.
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We remark that, for direct physical applications, the form
s3d is generally the most relevant form of the DNLS equa-
tion, with v0 being the frequency of an uncoupled oscillator
in the small-amplitude limit, andV8=2p /T a physical oscil-
lation frequency. Thus, the frequencyV of a solution tos1d
normally does not in itself describe a physical oscillation
frequency but rather a frequency shift relative tov0, and
thereforeV does not need to be sign definite. Evidently, the
sign of a frequency also depends on the sign-convention used
in s2d and s4d.

III. EXACT DARK WAVES

Traveling dark waves were found to appear, together with
some radiation, from unstable stationary dark breathers in
numerical simulationsf16,18,25,27g. Typically these moving
dark breathers continuously emit radiation and decaysits
minimum intensity increasesd, especially if the dark mode is
narrow. However, analogously to the search for moving
’bright’ discrete breathersf21,22g, one can search for travel-
ing dark breathers which afterm internal oscillations, each of
period T, return to a state identical to its initial state but
translatedk sites. In other words, we can look for solutions to
s3d that fulfill

c j8smTd = c j−k8 s0deia8, s5d

where a8 is some arbitrary phase. The dark solitary wave
numerically found in Ref.f20g is a special case of such a
solution.

The reason for working with Eq.s3d instead of Eq.s1d is
that c jstd=c j8stde

−iv0t will be a solution of Eq.s1d fulfilling
the conditionc jsmTd=c j−ks0deia with a phase

a = a8 − v0mT. s6d

Thus, for fixed parametersC, T, m, and k, we are able to
investigate the dependence of an exact mobile solution of the
DNLS system on the phasea, just by computing a solution
to Eq. s3d of the forms5d, and doing the continuation versus
v0. In other words, for the DNLS model there are no effects

of commensurability, in contrast to the case for general os-
cillator chainsf21g. Note that for a stationary dark mode, we
must havev0, s2p /Td+4C to have a nonzero background
intensity, and that continuation in the direction of largerv0
sat fixed T and Cd towards this limit value is equivalent to
approaching the continuum dark-soliton limit, i.e., the “dip”
in the envelope becomes wider.

To obtain numerically an exact traveling dark wave, we
have imposed in the Newton iteration the conditions5d and,
as a guess, we have taken the corresponding stationary solu-
tion and applied a sinusoidal perturbation to its imaginary
part, which plays a role similar to the velocity in stationary
breathers on Klein-Gordon systems. With this method, for
m=1 andk=−1, we have found exact dark solutions moving
to the left with a phasea8=p, which means that

c j−28 s2Td = c j−18 sTdeip = c j8s0d. s7d

Therefore the envelope velocity of these dark waves isc
=2/2T=1/T, since the lattice spacing is 1. In Fig. 3 we show
the dynamics of an exact dark wave for the caseT=4.5. Note
that Eq.s7d implies thatuc j−18 sTdu2= uc j8s0du2.

In Fig. 4, we show snapshots of dark waves at times when
their envelopes are site centered, which is when their dip
intensity is minimal. We observe that the minimum intensity
of these moving solutions is small but nonzero. In that sense,
they are “gray” modes rather than “black” modes. Another
important property is that the background intensity is not
constant. These waves show a characteristic oscillating tail
which seems to be necessary in order to avoid phonon radia-
tion. We can also appreciate that for fixedC and v0, the
intensity of the background decreases with the velocity. The
same behavior is observed for the minimum intensity.

Note that, for a stationary constant-amplitude traveling
background wave of the forms4d, with f j =fs0deiQj, to be
compatible with the conditions7d, its amplitude must fulfill

ufs0du2 =
Q + s2n + 1dp

T
+ 2Cf1 − cossQdg − v0 s8d

for some integern. For largeT, the family of solutions in
Fig. 4 approaches the stationary dark mode, corresponding to
a constant-amplitude background withn=0 andQ=p. When
continuing these solutions towards smallerT, the observed

FIG. 2. Oscillatory instabilities of the stationary dark breathers
vs the period for different lattice sizes and parameter valuesC=1,
v0=4.

FIG. 3. Time evolution of an exact dark wave. The initial state
translates one site each periodT of the internal oscillations.
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oscillations develop against a background which still, as il-
lustrated in Fig. 4sbd, approximately can be described bys8d
with n=0 andQ=p. sIn the smooth continuation, the aver-
age phase twist is fixed by using periodic boundary condi-
tions in a finite-size system.d Thus, these dark modes move
through the interaction with the tail envelope oscillations,
and not through an average tail phase gradienteiQj, Q
Þ0,p. However, solutions with a phase gradient also exist,
and we will return to this point in Sec. IV.

One can study the linear stability of these solutions lin-
earizing the mape js0d→e j−1sTd around the exact solution
c j8. The linearized equations fore j are

i ė j + 2uc j8u
2stde j + c j8

2stde j
* + Cse j+1 + e j−1 − 2e jd + v0e j = 0.

s9d

This linearized map defines an extended Floquet matrix with
properties analogous to the ordinary Floquet matrix for sta-
tionary solutionsscf. Ref. f21gd.

A. Continuation versus T

As in the case of stationary dark breathers in finite-size
systems, the mobile solutions are stable for high enough val-
ues ofT sslow enough velocitiesd if v0 is not too small.sIn
this subsection, we putv0=4C, so thatT→` becomes a
continuum limit.d If we perform a numerical continuation of
this family of stable solutions towards lower values ofT
shigher velocitiesd we find bifurcations as Fig. 5 shows.
These bifurcations are due to harmonic instabilitiessa pair of
eigenvalues collides at +1 and leaves the unit circle along the
real axisd. After emerging the instability the Newton method
stops to converge and the continuation path is interrupted.
However, we can jump into another family of solutions able
to move faster increasing the continuation step. In Fig. 6 we
compare a solution just at the bifurcation pointT1=8.456
splusesd whose continuation stops at 8.385 with a solution
found increasing the continuation step up to 8.3scirclesd.
What happens if we continue the latter solution towards the
bifurcation point? We observe a fast growth and rearrange-
ments in the oscillatory structure of the tailsssee full circles

for T=8.450 in Fig. 6d until the continuation finally stops at
8.468. The signature of these huge changes in the oscillating
tail is an avoided collision at +1 between two conjugated
Floquet eigenvalues and the appearance of oscillatory insta-
bilities, as Figs. 7sad and 7sbd show, respectively.

The following harmonic bifurcations we found in Fig. 5
occur atT2.8.023, T3.6.872, T4.6.234, T5.6.029, T6
.5.034, andT7.4.604. ForT,4.1 more bifurcations ap-
pear atT8.4.091,T9.4.025,T10.3.907, andT11.3.780
but most of them are not visible because the continuation
path is interrupted immediately after a pair of eigenvalues
collide at +1. The structure of all these bifurcations is similar
to the one described earlier. Figure 8 shows the exact mobile
solution at the bifurcation pointT5=6.029 scirclesd, which
can be continued untilT=5.797, and the family of solutions
obtained increasing the continuation step up toT=5.6
ssquaresd. A three-dimensional plot in Fig. 9 shows the con-
tinuation path of this new solution towards the bifurcation
point T5. An avoided collision at +1 occurs at 5.6704fsee
Fig. 10sadg. After the avoided collision the order of the os-
cillating tail is destroyed. A projection of Fig. 9 on to the
s j , uc ju2d plane ssee Fig. 11d shows that this is due to the

FIG. 4. sad Snapshots of exact moving dark breathers corresponding toT=4, T=4.5, andT=6 from top to bottom. Note how the intensity
of the background decreases whenT increases. Other parameters values:C=1, v0=4. sbd Refcns0dg sfull circlesd, Imfcns0dg sopen circlesd,
and ucns0du2 sstarsd for an exact moving solution withT=4.

FIG. 5. Instabilities found along a numerical continuation to-
wards lower values ofT. Shortly after the harmonic bifurcations the
continuation path stops. At this point we have to jump into another
family of solutions increasing the continuation step. ForT,7 we
begin to observe oscillatory instabilities which become stronger.
Other parameter values:C=1, v0=4, N=61.
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activation of an extended mode with wave number close to
p. The phenomenon resembles a lot resonances due to higher
harmonics observed in Klein-Gordon lattices, e.g., reso-
nances between standing-wave phonons observed in Ref.
f25g, and the breather-phonon resonance described in Ref.

f31g along a breather-phonobreather transition. In Fig. 10sbd
we also show the oscillatory instabilities associated with this
process.

Small bubbles of oscillatory instabilities are present in the
system forT,7. They are not visible in Fig. 5 due to the
scale on theY axis. The size of these bubbles increases asT
decreases, and in fact we can appreciate them clearly in Fig.
5 for T,5.

All the earlier descriptions show that the nature of the
oscillating background changes along the continuation path
towards smallerT. Clearly, as the velocity increases the num-
ber of oscillations increases and, therefore, the number of
sites per oscillation decreases. For example, in Fig. 6 we
have roughly five oscillations forT=8.3 with about 12 sites
per oscillation. In Fig. 8 we can appreciate six oscillations
with ten sites per oscillation forT=5.6. ForT=4.5 ssee Fig.
4d the number of oscillations increases up to seven with ap-
proximately nine sites per oscillation. We again can observe
seven oscillations forT=4 but now with eight sites per os-
cillation ssee Fig. 4 anewd. We conclude that the harmonic
bifurcations along the continuation towards smallerT are
associated with a qualitative change of tail nature, corre-
sponding either to an increase of the number of oscillations,
a decrease of the number of sites per oscillation, or both.

FIG. 6. Exact mobile dark breathers just at the first bifurcation
T1=8.456 splusesd and for T=8.3 scirclesd after jumping over the
bifurcation. The full circles correspond to the continuation of this
last solution towards the bifurcation point. Other parameter values:
C=1, v0=4.

FIG. 7. sad When we reverse the continuation path after jumping
over a bifurcation, an avoided collision between a pair of conju-
gated Floquet eigenvalues gives raise to huge changes in the oscil-
latory tail of the solutions.sbd These rearrangements enclose oscil-
latory instabilities.

FIG. 8. Exact mobile dark breathers just at the bifurcationT5

=6.029 scirclesd and for T=5.6 ssquaresd after jumping over the
bifurcation. Other parameter values:C=1, v0=4.

FIG. 9. Inversion of the continuation path after jumping over the
fifth bifurcation. When we approach the bifurcation point the
smooth oscillating tails are destroyed.
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We can obtain an analytical estimate for the dependence
of the oscillating tail wave number on the velocity, by con-
sidering small-amplitude tail oscillations in the linearized
equations. With the ansatz for the tail

c j8std = ffs0d + u0e
isqj+vtd + v0e

−isqj+vtdgeisp j+V8td, s10d

with V8=2p /T andfs0d=ÎV8−v0+4C, conditions7d is ful-
filled if vT−q=2pn, n integer. Moreover, inserting the an-

satz intos3d and linearizing yields the dispersion relation for
small-amplitude oscillations around the stationary solution
scf., e.g., Ref. f32gd, v2=8C sin2sq/2df2C sin2sq/2d
+sfs0dd2g. Combining these two conditions thus determines
the possible wave numbersq for small-amplitude tail oscil-
lations at givenT, C, v0, as

q + 2pn ± 4CTUsin
q

2
UÎsin2 q

2
+

2p − v0T

2CT
+ 2 = 0.

s11d

The variation of the spatial oscillation period 2p /q with T
for fixed v0, C, corresponding to the relevant solutions of
s11d, is illustrated in Fig. 12. As can be seen, the curve cor-
responding to a positive sign andn=−1 in s11d agrees quali-
tatively well with the numerical results reported earlier. Note
that this solution corresponds to opposite signs ofq and v,
and thus a wave traveling to the right, i.e., in the opposite
direction to the dark breather itself. Thus, the traveling dark
breather emits backward radiation behind at the same time as
it absorbs radiation in front, which makes possible its exis-
tence as an exact solution.

B. Continuation versus v0

For fixed periodsfixed velocityd we can also continue a
given solution versus the phase parameterv0. We find that
the background and the stability of the dark waves are very
sensitive to this parameterv0. Whenv0 decreases, the dark
mode narrows and becomes more discrete, and the back-
ground intensity and the oscillation amplitudes increase very
quickly. As an example, a mobile dark breather forT=12 and
v0=4 scircles in Fig. 13d can be continued untilv0=3.64.
For that value, we can see in Fig. 13sfull circlesd that the
oscillations are very large. If we increasev0, the dark mode
widens and becomes more continuumlike, and we observe
the opposite effect. Forv0=4.25 splusesd the background
intensity has already been reduced to its half, and the back-

FIG. 10. sad An avoided collision between a pair of conjugated
Floquet eigenvalues points out the excitation of the extended mode
shown in Fig. 11.sbd This excitation gives raise to numerous oscil-
latory instabilities.

FIG. 11. Projection of Fig. 9 on to thes j , uc ju2d plane. Notice the
excitation of an extended mode with wave number close top.

FIG. 12. Spatial oscillation period 2p /q vs T for small-
amplitude tail oscillations of the forms10d fulfilling s7d, as obtained
from s11d. Solid sdashedd lines correspond to a positivesnegatived
sign in s11d, with, from top to bottom,n ranging from −1 to −7s1
to 6d. As in previous figures,C=1 andv0=4.
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ground oscillations are invisible on the scale of the figure,
but still presentsthey are of order 10−6d. This continuation
path ends, for the considered system withN=61, at v0
=4.516 sclose to the limit valuev0=2p /T+4C for the sta-
tionary mode in the infinite systemd with a background in-
tensity around 0.007.

This result is very interesting for various reasons. On the
one hand, varyingv0 one can find stable mobile solutions
with huge oscillating tails if the velocity is slow enough. An
example is the solution shown in Fig. 13 with full circles.

On the other hand, for a given unstable mobile solution
one can adjust the phasev0 in order to stabilize it. In Fig. 14
we show how we can avoid the harmonic instability atT
=8.4,T1 decreasingv0. Another alternative would be to
jump into another stable family of dark mobile solutions in-
creasing the continuation step fromv0=4.013 swhere the
continuation path stopsd to v0=4.02.

For higher velocities the scenario becomes more complex
due to the appearance of more and stronger instabilities. But
again we can find windows of stability managingv0 as Fig.
15 shows for the caseT=5.

The bifurcations observed in the continuations versusv0
at fixed T are essentially the same types of bifurcations as

those discussed in Sec. III A in the continuation versusT at
fixed v0. Generally, since we have two-parametric families
of solutions, each bifurcation should define a bifurcation
curve in thesv0,Td plane fcf., e.g., a similar scenario for
second-harmonic resonances of standing waves in Klein-
Gordon chains, illustrated in Ref.f25g, Fig. 16sadg. Perform-
ing the continuations at fixedT and fixedv0, respectively,
we will generally hit these curves from different directions.
Note also that expressions11d for the linear resonances de-
pends not only onT but also onv0, since the background
amplitude depends onv0. Thus, the linear spatial oscillation
period changes also when varyingv0 at fixed T, so that a
similar set of resonances should be expectedsand is also
numerically observedd also in this continuation.sAnother
way of expressing this is, that the bifurcation curves in the
sv0,Td plane generally are not horizontal or vertical lines.d

IV. STATIONARY AND MOVING GRAY SOLITONS WITH
PHASE GRADIENT

From a “quasicontinuum” NLS approximation of the
DNLS Eq.s3d, taking into account the discrete dispersion for
the background wavefs0deisQj+V8td but neglecting other ef-
fects of discreteness, one findsf16g that the envelope veloc-
ity c and the minimum intensityucminu2 for wide, continuum-
like discrete dark solitons should be related by

c = 2C sinsQd ± ucminu. s12d

Thus, the minimum intensity determines the envelope veloc-
ity relative to the group velocity of the background wave. It
also determines the total phase shift across such a solution
srelative to the background waved as d=2 arccosucmin/fs0du.
In particular, the quasicontinuum NLS approximation pre-
dicts the existence of a stationarysc=0d gray soliton with
ucminu=2C sinsQd. The condition ucminu, ufs0du would thus
limit the existence of such solutions tou2C sinsQd /fs0du,1.

However, as was discussed in Ref.f16g, the quasicon-
tinuum NLS approximation does in general not accurately
describe wide small-amplitudefcmin close tofs0dg gray soli-
tons in the discrete system, since it does not take into ac-

FIG. 13. Exact dark waves forT=12 and three different values
of v0: 4.0 scirclesd, 3.64 sfull circlesd, and 4.25splusesd. C=1.

FIG. 14. Instabilities vs the phasev0 for a fixed value of the
periodT=8.4.

FIG. 15. Instabilities vs the phasev0 for a fixed value of the
periodT=5.
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count effects of higher-order dispersion. Instead, by taking
into account also third and fourth-order dispersion in the
continuum approximation and performing a multiscale ex-
pansion, it is possible to derive a Korteweg-de VriessKdVd
equation for the soliton amplitude in the limit of small am-
plitude ssee also Ref.f33gd. The envelope of the correspond-
ing family of soliton solutions, parametrized by the small
parameterm, can be written asf16g:

uc jstdu = fs0d −
12m2G2

G1
sech2fmsn − sVg + c0 + Wdtdg,

s13d

where Vg=2C sinsQd, c0
2=−2ffs0dg2C cossQd, G1

=4fs0dC cossQdf−3+Vgc0/4C2 cos2sQdg, G2=C2 cos2sQdf1
+sfs0dd2/6C cossQdg−Vgc0/3, andW=−2m2G2/c0. sIn Ref.
f16g only the caseVg=0 was considered, leading to a van-
ishing third-order dispersion. However, the third-order dis-
persion present whenVgÞ0 only leads to a renormalization
of the coefficients in the KdV equation; see also Ref.f34g.d
Thus, the condition for a stationary small-amplitude gray
soliton becomesVg+c0+W=0. The limit of vanishing soliton
amplitudem2G2→0 then gives the limit for existence of a
stationary gray solution asVg=−c0, i.e., it may exist when

U 2C sin2sQd
ffs0dg2cossQd

U , 1, s14d

which notably agrees with the expression obtained from the
quasicontinuum NLS limit only whenutansQdu=1. sNote that,

as was discussed in Ref.f16g, the family s13d of solutions
also exists forG2/G1,0, leading to “antidark” pulses.d

To search numerically for stationary gray solutions as ex-
act solutions to the DNLS Eq.s3d, we impose the boundary
conditionsfN+1=eiQfN, f0=e−iQf1 and perform a continu-
ation versusQ, using the darksblackd solutions withQ=p
andfs0d=1 previously obtainedf18g for C.0 as trial solu-
tions in the Newton scheme, with an additional phase torsion
eiQj imposed on the background.sOur method is analogous
to that used in Ref.f35g for Klein-Gordon lattices.d To keep
the background intensity to unity, we vary the frequencyV
as V=1+2CfcossQd−1g. An example with Q=0.98p is
shown in Fig. 16. This solution can be continued towards
largerC, and generally becomes smoother and “grayer”si.e.,
ucminu increasesd asC is increased for fixedQ. The scenario
with oscillatorysKreind instabilities is similar to the scenario
for the black solitonsf18g as long asQ is close top. How-
ever, some qualitative differences in the continuation sce-
nario are observed:

sid For eachQ, p /2,Q,p, there is a maximum value of
C for existence of a stationary gray mode. To numerical ac-
curacy, this maximum value is given byCmaxsQd
= ucossQdu /2 sin2sQd as predicted bys14d, and corresponds to
the point whereucminu=fs0d, and the smooth continuumlike
gray soliton bifurcates with the plane wave with wave num-
berQ. Note thatCmax is a monotonously increasing function
of Q in the interval fp /2 ,pf, with Cmaxsp /2d=0 and
Cmaxspd→ +`.

FIG. 16. Stationary discrete
gray breather in DNLS, corre-
sponding to a background wave
with Q=0.98p. sad shows, forC
=0.075, intensityuc ju2 sminimum
intensity is uc31u2<0.0052d; sbd
shows nearest-neighbor phase
shifts a j+1−a j swith notation c j

= uc jueia jd snote that the total phase
shift across the central sitea32

−a30 is not p as it would be for a
black breatherd. Lower figures
with stability eigenvalues show
that the solution is close to the
threshold of Krein instability:C
=0.075 is stable scd while C
=0.076 is unstablesdd.
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sii d Attempting a continuation towards the anticontinuous
limit C=0 at fixed Q, there are two possible qualitatively
different scenarios depending onQ. Forp /2,Q&0.92p the
continuation is monotonic, and ends at the constant-
amplitude phase-twisted solutions. . . ,e−2iQ ,e−iQ , +1,eiQ ,
−1,e−iQ , +1,eiQ ,e2iQ , . . .d, at C=0, where the “−1” denotes
the central site. The total phase twist with respect to the
background wave at the anticontinuous limit is thusd
=2s2Q−pd. The scenario is illustrated in Fig. 17 forQ
=0.6p. Thus, for eachQ there is an “optimal” value ofC
where the stationary gray soliton contrast is largest. Note
also that the instability scenario is different than forQ=p:
the unstable complex eigenvalues behave similarly close to
the continuum limit, but when decreasingC they do not re-
turn to the imaginary axis but collide with each other on the
real axis, so that close to the anticontinuous limit there are
two unstable real eigenvalues. Thus, strictly speaking, the
gray solitons are always unstable for infinite systems for
theseQ.

For 0.92p&Q&p, a monotonic continuation of the con-
tinuumlike gray soliton to the anticontinuous limitC=0 at

fixed Q is not possible due to a bifurcation, associated with a
collision of eigenvalues atl=0. The location of this bifurca-
tion line in theQ-C plane is illustrated in Fig. 18sad. Simi-
larly, the continuation of the anticontinuous solution dis-
cussed earlier to largerC is now interrupted by another
bifurcation close toC=0.14 sdepends only weakly onQd.
Thus, there is a region in theQ-C plane where these two
solutions exist simultaneously, but have different properties
fsee Fig. 18sbdg. The solution continued from the anticon-
tinuous limit is always unstable, while the solution continued
from the continuous limit is stable only in the area in the
lower right corner in Fig. 18sad, above which the oscillatory
instability sets in. Thus, stable stationary discrete gray soli-
tons only existsfor the infinite chaind for 0øC&0.076 and
0.975&Q/pø1.

In a similar way as described in Sec. III, it is possible to
find also exact moving gray discrete solitons with an average
phase torsionQÞp, by using perturbations of the stationary

FIG. 17. sad Continuation of stationary discrete gray soliton
from continuous limitC=Cmax ffrom s14dg to anticontinuous limit
C=0 at fixed Q=0.6p. The smallest minimum intensityucminu2
.0.9398 is obtained forC.0.09. Only the central part of a larger
chain is shown.sbd shows the real part of the stability eigenvalues
during the continuation. The unstable eigenvalues are complex for
C*0.06 and real forC&0.06.

FIG. 18. sad Solid line: Location of the bifurcation interrupting a
monotonic continuation at fixedQ of a continuumlike gray soliton
towards the anticontinuous limitC=0. Dashed line: Location of the
Krein collision causing oscillatory instability. A stable stationary
discrete gray soliton exists only in the area between the linesslower
right part of the figured. sbd Patterns for the central parts of two
simultaneously existing solutions atQ=0.95p, C=0.13.s1d: Solu-
tion continued from continuous limit;s3d: solution continued from
anticontinuous limit.
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gray solitons discussed in this section as trial solutions. In
general, we find that these solutions have qualitatively simi-
lar properties as those with a backgroundQ=p wave, i.e.,
typically they develop spatial envelope oscillations on top of
the homogeneous background when continued away from
their continuum limit, with similar bifurcation scenarios as
described in Sec. III.

V. CONCLUSIONS

In this paper we have investigated numerically existence
and linear stability of exact dark waves on the DNLS equa-
tion, for a finite chain with periodic boundary conditions.
These waves bifurcate from stationary modes with zero in-
tensity at a site. The initial state of the exact dark waves we
have found, translate exactly one site each periodT of the
internal oscillations. They are linearly stable for slow enough
velocities slarge Td, but when we continue them towards
higher velocities oscillatory and harmonic instabilities arise.
The first are similar to oscillatory instabilities shown by dark
stationary modes from which dark waves bifurcate. The har-
monic instabilities are associated with rearrangements in the
oscillating background due to the fact that higher velocities
require an increase of the number of oscillations in the back-
ground.

For fixed velocity, we have also studied the dependence of
exact dark waves on the phase factor introduced during the
translation, which essentially plays the role of discreteness
parameter for the dark modes. The stability and the intensity
of the dark waves are very sensitive to this parameter. In
principle, one could control the background and the stability
of the dark wave if one were able to adjust this phase factor.

We have also investigated stationary gray DNLS solitons,
having backgrounds with constant intensity and phase tor-
sion and nonzero minimum intensity, and determined re-
gimes for their existence and stability. Similarly as the pre-
viously studied black modes, gray modes also suffer
oscillatory instabilities persisting close to the continuum
limit. For infinite systems, stable stationary gray solitons
were found only in a small parameter regime, at small cou-
pling constantC and background wave numberQ close top.
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