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Self-diffusion in freely evolving granular gases

J. Javier Brey, M. J. Ruiz-Montero, D. Cubero, and R. Garcia-Rojo
Fisica Teoica, Facultad de Fsica, Universidad de Sevilla, Apartado de Correos 1065,
E-41080 Sevilla, Spain

(Received 18 March 1999; accepted 15 November 1999

A self-diffusion equation for a freely evolving gas of inelastic hard disks or spheres is derived
starting from the Boltzmann—Lorentz equation, by means of a Chapman—Enskog expansion in the
density gradient of the tagged particles. The self-diffusion coefficient depends on the restitution
coefficient explicitly, and also implicitly through the temperature of the system. This latter
introduces also a time dependence of the coefficient. As in the elastic case, the results are trivially
extended to the Enskog equation. The theoretical predictions are compared with numerical solutions
of the kinetic equation obtained by the direct simulation Monte Carlo method, and also with
molecular dynamics simulations. An excellent agreement is found, providing mutual support to the
different approaches. @000 American Institute of Physids$1070-663000)00603-§

I. INTRODUCTION time as a consequence of dissipation in collisions. This will
h ) ¢ freel i | h be the state we will consider. In this context, it is important
The properties of freely evolving granular gases havg, ,qice that the HCS is known to be unstable with respect

been extensively investigated in the last years. At a particki-0 long-wavelength perturbations, tending to form particle

level of description, a granular medium is usually mOdeledclusters. This has been observed in dense syétantsalso

as a system of inelastic hard spheres, which in the simple?lxI low-density gases described by thiselastio Boltzmann

case are considered to be smooth. The kinetic equations used .. . cer .
_~>8&quatior’, The analysis of self-diffusion we will present here
for molecular gases, e.g., Boltzmann and Enskog equations

ST : Will be restricted to short time intervals, before the system
have been extended to account for dissipation in collistdns. .
o o . o can develop density clusters.
Once a kinetic theory description is available, it is, at . e .
. S . . The extension of the concept of self-diffusion for time-
least in principle, possible to proceed to a hydrodynami

description by means of the Chapman—Enskog procedure Slfependent states like the HCS is not trivial. For equilibrium

constructing normal solutions to the kinetic equations. In '[his;States of molecular fluids, there are several equivalent defi-

way, hydrodynamic equations, similar to the Navier—Stoked"'tlons of t_he Self-dn‘fu_smn _COEffICIGHt, e.g., thr(_)ugh a dn‘fg-
equations for molecular fluids, have been derived and exSion faquatlon, as the time integral of the velocity corr-elatlon
plicit expressions for the transport coefficients appearing iunction, and from the slope of the mean-square displace-

them have been given. Although most of the derivations ar&'€Nt- In time-dependent states, all these quantities depend
restricted to the small inelasticity limitvery recently the ©n time and the relationships between them may be rather

hydrodynamic equations have been obtained without thdfvolved. . _
restriction® Of course, there is still the problem of delimitat- ~ 1he starting point of our study will be the Boltzmann—
ing the range of values of the parameter characterizing dis=Crentz equation for a dilute gas of inelastic smooth hard
sipation for which a hydrodynamic description is valid. spheres or disks. Dissipation in co.II|S|.ons iS characterlged as
The simplest transport process one can think of is selfSual by means of a constavelocity-independentcoeffi-
diffusion, i.e., the diffusion of tagged particles in a system of¢ient of normal restitution. The kinetic equation is particu-
mechanically equivalent particles, that is otherwise homogelarized for a gas in the HCS and solved by means of the
neous. In molecular systems, self-diffusion in equilibrium Chapman—Enskog procedure in Sec. Il. Some details of the
has served in many ways as a prototype for more Comp”calculations are given in the Appendix. The analytical
cated transport phenomena. Here complicated refers to botRethod we follow parallels in many points a previous work
from a conceptual and from a computational point of view.on the derivation of the Navier—Stokes transport coefficient
Self-diffusion has also been investigated in granular flowsfor a simple fluid” The main result we obtain is a diffusion
Experimental studies include both systems with macroscopiequation with a transport coefficient depending on dissipa-
flows® and vertically vibrated systenisCampbell has cal- tion explicitly through the restitution coefficient and implic-
culated the diffusion coefficient in a sheared cell using moitly through the time-dependent temperature of the system.
lecular dynamics simulations. The Chapman—-Enskog procedure is based on the exis-
Granular systems do not have a time-independent homdence of time and length scales over which there is a normal
geneous state similar to the equilibrium one for moleculaisolution to the Boltzmann or Boltzmann—Lorentz equations.
systems. The simplest state of a granular fluid is the so-calletihis is closely related with the validity of a hydrodynamic
homogeneous cooling statelCS), in which the system is description of the system, once the accuracy of the kinetic
homogeneous but the temperature uniformly decreases iquation has been assumed. In order to check this in the

1070-6631/2000/12(4)/876/8/$17.00 876 © 2000 American Institute of Physics
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context of self-diffusion in an inelastic dilute gas, in Sec. Il

we present numerical solutions of the Boltzmann—Lorentz Js(r,t):f dwfy(r,v,t). (6)

equation obtained by means of the direct simulation Monte

Carlo method? The agreement between the numerical solu-The above conservation law becomes a closed hydrodynamic

tion and the results derived by means of the Chapman-equation for the density of tagged particles odges ex-

Enskog procedure strongly supports the existence of a nopressed as a functional of it, and also of the macroscopic

mal solution and, therefore, of a hydrodynamic descriptionfields defining the state of the gas as a whole. The aim here

The final section contains some concluding remarks and pogvill be to obtain the lowest order in the density gradient of

sible generalizations. Js, by applying the Chapman—Enskog procedure to solve the
Boltzmann—Lorentz equation. It is assumed that in the long
time limit there is a normal solution to the kinetic equation

IIl. CHAPMAN—ENSKOG SOLUTION OF THE
BOLTZMANN—LORENTZ EQUATION (1) of the form
A dilute gas of smooth hard sphered={3) or disks fs(rv,)=fving(r,t) {Bi}, (@)

(d=2) of massm and diametew is considered. Collisions \yhere the sefB;(r,t)} denotes the hydrodynamic fields de-
between pgrtlcles are melastlc.an.d characterized by a CORihing the macroscopic state associatedi(tqv, ,t), which is
stant coefficient of normal restitution. Some of the par- 555umed to also have a normal form. Although the formalism
ticles are labeled, but they are mechanically identical to the.;, pe developed, in principle, for any state of the gas, we
other ones. The one-particle distribution function of the the;i| restrict ourselves in the following to the so-called homo-
tagged particles will be denoted biy(r,v,t), while f(r,v,t)  geneous cooling statéHCS). This state is described by a
will be used for the complete system. ~ homogeneous solution of the nonlinear Boltzmann equation,

The time evolution of ((r,v,t) is given by the extension f.(v1,1), in which all the time dependence takes place
to the case of smooth inelastic collisions of the Boltzmann—through the temperature of the gas(t).> Therefore, it

Lorentz equatiort; obeys the equation
(i +v-V)f(r,v,t)=A(r,v,t)f(r,v,t), (1) JT
H
whereA is the Boltzmann—Lorentz collision operator, e me(Vat):J[Vl!t“H ful 8

ATV DTV D=I0r v, fs ] An evolution equation for the temperature is easily obtained

a1 . L from the own Boltzmann equation,
=0 f dvlf do®(g-0)g-0o
dTy(t)

X [a 21V DF(rvi,0) a - T Tr(b), ©
—fs(r,v,0)f(r,vy,0)]. (2)  where the cooling raté,(T,) is given by
Here & is a unit vector along the line joining the center of M0 254101 _ 42
particle 1 to the center of the tagged particle at contact, away ;= 7 i 4 f f dvy,dvy| v, —v,|3
from the former,g=v—v; is the relative velocity® is the 4dl“(d+3>nk T
Heaviside step function, and’, v; are the precollisional 2 BH

velocities leading after collision te, v,. They are given by X E (Ve ) (Vo) (10)
H{V1, H{V2,4),

1+« 1+«
V' =v———— (g0, V=Vt T(g'&)&' (3) kg being the Boltzmann constant andhe uniform density

2a of the gas. The explicit form of ,(v4,t) is only known in
Since the distribution functiofi(r,v,t) obeys an independent the first Sonine approximatiot?
equation, namely thénelastio nonlinear Boltzmann equa-

2
tion, the Boltzmann—Lorentz operator, and EY. are linear _ c*(a) m 2
in fg(r,v,t). fr(vi,t)=fu(vy,t) 1+—4 PRl U7
Tagged particles may freely exchange momentum and
energy with the rest of the fluid and, therefore, these are not _ (2+d)mvi (2+d)dH, (12)
invariants of the collision operatdf f4,f]. Only the number 2kgTH 4
of tagged particles is conserved. More concretely, the density )
¢ (a)= 321-a)(1-2a%) (12
ns(r,t)zf dvfy(r,v,t) (4 9+24d+(8d—41)a+30a°(1—a)"
obeys the conservation law Herefy is the Maxwellian,
d/2
ang(r,t) _ —mo2i2kg T (1)
T TV-3(r)=0, (5) fm(vy)=n 2kaTH(t)) e ™ : (13

with the flux of tagged particled,, defined by In the same approximation,
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2 p(d=1)2 koTo, | 12 3c* (o
h=(1-a?)————ngd~ Y =] |1+ (@)
dr(d/2) m 32

(14

Now we proceed with the application of the Chapman—
Enskog algorithm to Eq(1). The distribution function is
written as a series expansion in a formal parameterea-
suring the “uniformity” of the system,

f=fO+ef M+ 2P+ (15

Brey et al.

The vectorB(v) will also depend on time throughy(t), but
this will not be indicated explicitly. Substitution of this into
Eq. (22) yields

+A|B(v)=

ﬁ vf H- (24)

J
aTh(1)

The contribution to the particle flux of first order in the den-
sity gradient is given by

(ZH(t)TH(t)

IM=—DVnyr,1), (25

Since in the present case the only possible hydrodynamic%th

inhomogeneity is in the density;, each factor ok implies
an implicit V ng factor. Consistently, the balance equation for
the density, Eq(5), is expanded as

angr,t) & ..
sl )=E e 1gng(r 1), (16)
at i=o
with
any(r,t)==v-30(r,0),
(17

J;D(r,t):f dwf(r,v,t).
Then, to zeroth order im the kinetic equatiorfl) becomes

Iy 3
— —fO=AfO=0[f0 ]

at aTy (18)

We have taken into account that, as indicated in &,

there is a time dependence through the temperature of the

systemTy(t). This dependence is not associated to any gra.

D

1
—af dvv-B(v). (26)
Upon deriving the above expression we have made use of
symmetry considerations. An equation for the self-diffusion
coefficientD is easily derived from Eq.22),

dient in the system and, therefore, it is considered as being of

zeroth order ine. A comparison of Eqs(8) and(18) shows
thatf(so)(r,v,t) must be proportional tdy(v,t). Then, be-
cause of normalization,

ng(r,t
v = S(n :

fu(v,t). (19

T J D= KgTh(t) )
Zu(t) H(t)m vp|D= e (27)
wherevp is a functional ofB(v),
Jdvv-AB(v)
"7 Faw-B(Y) 29
Since 7= TH?, dimensional analysis requires that also
DxTY? and
oD _ D 29
ITa 2Ta (29
50 that Eq.(27) leads to
KgTh(t) Zn\ 7t
= m Vp— 7 . (30)

In order to get an explicit expression f@ we have
considered a first Sonine approximation, in which only the
leading term in the expansion B{V) in Sonine polynomials
is kept. Then we approximat(v)«vf,,(v), with f\, being

It follows that the flux of tagged particles vanishes to zeroththe Maxwellian defined in Eq(13). Details of the analysis

order, i.e. J%’=0. To first order in the density gradient, Eq.
(1) leads to an equation fdi",

J Ty d J
Opny L g0 ZH T ), (. 7 50 _ A§(D)
(dy7'ng) ansfs + ot fo'+(v-Vny) ansfs AT
(20)
The zeroth-order results imply
d 1
#ong=0, ——fO="fy, (1)
S
and, therefore, Eq20) becomes
d w1
é’H(t)TH(t)mJFA fs' =5 (v-Vngfy. (22

The solution to this equation is proportional ¥ng, i.e., it
has the form

fO(r,v,t)=B(v)-Vny(r,t). (23)

are given in the Appendix, where also the explicit form of
(M is derived. The result is

4
c*(a)
32

D(a) B

0

D*(a)

(4+a—3a2).
(39)

HereD, is the elastic limit ¢— 1) of the self-diffusion co-
efficient at equilibrium, but with a time-dependent tempera-

ture Ty(t),
)1/2

In summary, we have derived the self-diffusion equation for
a low-density granular gas in the HCS,

(1+ a)z—

B dr(d/2) 1
_4W(d—1)/2 nod-1

I(BTH
m

0 (32

J
Ens(r,t)z—D(t)Van(r,t), (33
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18 ‘ , 1 . important peculiarity to be stressed is that we are considering
the Boltzmann—Lorentz equation and not the general nonlin-
ear Boltzmann equation. That means that the distribution
function of the systemf(v,t), is given, i.e., it is a needed
input to solve the kinetic equation. We do not investigate
. whether or not a given system would actually remain in the
> homogeneous cooling state for the time interval considered;
D* 44| ] it is just assumed that this is the case. Of course, this avoids
by construction the possibility that the system develops ve-
locity and density instabilities that are known to occur in a
freely evolving granular system.

The time dependence of the diffusion coefficient in Eqg.
(33) can be eliminated through a change in the time and
space variables. Let us introduce the Boltzmann collision
10,5 o6 o7 o8 o9 10 frequency,vo(t), corresponding to a dilute gas with a Max-
wellian distribution function at temperatufiig,(t),

2712 (kgTy(t)
m

1.6 ¢

12+

o
1/2
FIG. 1. The reduced self-diffusion coefficiebt* as a function of the co- vo(t)= no
- - AR . L ) 0

efficient of restitutiona. The solid line is the theoretical prediction given by I'(d/2)
Eq. (31), while the symbols have been obtained from the direct Monte Carlo . . . . .
simulation of the Boltzmann equation for a system of hard spheres by usinyVe define dimensionless time and space variables by
the mean square displacement of the partighirsles, and the time evolu- 12
tion of a sine perturbation in density of tagged partidleguares 1t , , Vo(t) m

== | dt’wo(t"), I= ] r

2 Jo 2 \kgTy(t)

(35

(36)

whereD(t) is given by Eq.(31). As it is the case for the 1he time scaler provides an accurate estimation of the av-

other Navier—Stokes transport coefficieht®, has a double ~€rage number of collisions per particle in the time interval

dependence on the coefficient of restitutienFirst, there is Petween 0 and, while the unit of length introduced above is

the explicit dependence given by the fac®F (a) in Eq. proportional to the mean-free pat_h of_ the partu_:les. In terms

(31), and, second, there is an intrinsic dependence througﬂf the above variables, the self-diffusion equation reads as

the time evolution of the temperatufg , which is also gov- d

erned by the coefficient. &—Tps(l,T)I ZD*(a)VFps(l,T), 37

An expression for the self-diffusion coefficient in a sys-

tem of smooth inelastic hard spheres has been derived befovehere V,2 is the Laplace operator ihspace, and we have

independently by Hsiau and HdAtind by Savage and DHl.  scaled the density of tagged particles with the average den-

In our notation, their result reads as sity of the system, i.eps=ng/n. Equation(37) is a diffu-
sion equation with a constant diffusion coefficient

D*(a)= , (34) D*(a)d/4. 1t follows that the mean square deviation of the
1ta “position” | of the tagged particles after a “time” interval
and differs from the one obtained here, except in the limitis™
a=1. 2
d
Figure 1 shows the reduced diffusion coeffici&it as a ((AD?;7)y= > D*(a)7. (38

function of the coefficient of restitutiomx in the interval

0.5sa<1 for d=3. It is seen that the deviation from the This extends to the case of dissipative collisions the well-
elastic functional form is quite relevant, even for valuesrof known relationship between the mean square displacement
close to unity. On the other hand, let us point out that if theof the particles and the self-diffusion coefficient in elastic
distribution function of the gas as a whole is approximatedsystems. Equatiof88) is equivalent to

by a Gaussian, i.e., we formally pat (a)=0 in Eq. (31),

the discrepancy with the curve plotted in the figure cannot be i((Ar)z't): 2dD(a,t) (39)
observed on the scale used. ot ’ Y

and also to

I1l. DIRECT SIMULATION MONTE CARLO METHOD 212
). d<I'+(d/2) .
The direct simulation Monte Cark®SMC) method pro- (AN5n= 15 5a P ()T (40)

. . . . . 27 N0
vides an algorithm to obtain numerical solutions of the Bolt-
zmann equation. The general idea is to mimic the dynamical The first method we have used to measure the diffusion
processes involved in the kinetic equati@rits extension to  coefficient numerically is directly based in E@®9). In the
deal with inelastic collisions is straightforward. Since thesimulations we have considerdd=2.5x10° tagged hard
method has been discussed extensively many times in thepheres. These particles did not see each other, so that we
literature, only some specific details will be given here. Ancould say equivalently that we generafde:2.5x 10° inde-



880 Phys. Fluids, Vol. 12, No. 4, April 2000 Brey et al.

120 . ‘ ‘ , It must be realized that the value of the scaled diffusion
coefficient D*(a) changes by an amount of the order of
50%.
A second way of measuring the diffusion coefficient nu-
merically follows as a consequence of the linear character of
80 | the self-diffusion equation. If we introduce the Fourier trans-
: formed of the density of tagged particleg,, the diffusion
<(A)> equation(37) leads to
40 ns,k( T)= ns,k(o)qu_SD 7), (41)
where
d
SD:_ D* k2. (42)
4
%0 5 10 15 o0  We have considered a system of size 50\ in the x direc-

tion, which is the direction along which the density gradient
will be studied. Consequently, periodic boundary conditions
FIG. 2. Mean square displacement of the particles as a function of time foAf€ introduced in this direction. On the other hand, no den-
several values of the restitution coefficient. Both quantities are measured igity gradient of tagged particles is allowed in theand z

the dimensionless units defined in the main text. directions.

Suppose an initial distribution of tagged particles, given

by
pendent trajectories of a single tagged particle. Only the po-
sition of the tagged particles was recorded along the simula-
tion, since, as already discussed, the distribution of thavith ny being a constant angl,=2=/L. This density profile
complete system was not generated by the simulation, bus compatible with the periodic boundary conditions and,
introduced as an input. Every time there was a collision oftherefore, Eq(41) predicts that
the tagged particle, the velocity of the other particle involved
in the collision was generated from the distribution function
corresponding to the HCS in the first Sonine approximation, n,=ngexp —Sp m7).
Eqg. (11). As a consequence, there is no need either to divid
the system into cells, since the “bath” seen by the taggecf
particles does not depend on their position. For the sam

reason, it is not necessary to specify the size of the Syste{ag split into 100 layers of the same width perpendicular to

nortany. kind O.fd bomijndary fc':o.?dltlogsh In other words, Tlhzlhe x axis. Of course, this was to the only effect of coarse
system IS considered as infinite and nomogeneous in a I(jraining the density of tagged particles, since the distribution
rections. Finally, let us mention that the time interval over

function of all particles was again given Iy in Eq.(11). In

which it is stumed that the_re_ are not correlatlons_bzetwee{he simulations we have verified that the profile is well fitted
free  motion and collisions is At=5X10 “A

. by a sine function with wavelengthin all the time intervals
X[2kgT(0)/m]*?, wherex=(vV2mno?) ! is the mean-free y g

th of th ficl T(0) is the initial t i f1h considered. As an example, the values obtained for the am-
path of the particles anti(0) is the initial temperature of the plitude of the density perturbation far=0.8 are plotted in

system. This time interval must be chosen such that it reiig_ 3 as a function of time. They decay exponentially, in

mains small as compared with the average time between co, {greement with the theory, and from the slope of the loga-

lisions. As the temperature of our system decreases MONQ& 1 the reduced self-diffusion coefficieBt* («) can be
tonically in time, the above choice guarantees that thi '

dition i ifiad all al the simulati Scomputed. The values obtained in this way for different val-

conl ! 'g‘ |52ver| 'i a alotrtlg Ael szlmu a 'O?' . fthe Yes of the coefficient of restitution have been included in Fig.
cumSIat;\Q/]é nL\JNn?be?VOef ?:(())Iligic({)gs )péraSaﬁticﬁjer]cr::);agure(je byl' As expected, they are practically the same as those ob-
. ) ) ' tained from the mean square displacement, then providing a

the time scaler defined in Eq.(36). Several values of the q P P 9

fficient of restitution in the int I <0.99 h self-consistent test for both the theory and the numerical
coetlicien .0 restitu |_on In the intérval U=oa=v. ave . _method. Let us mention that the use of a sine perturbation of
been considered. It it observed that, after a short transie

S . . ) . %e hydrodynamic fields has been recently employed to mea-
period in which each tagged particle has collided about f'Ve'sure the Navier—Stokes transport coefficients of a dilute
times, the scaled mean square displacement becomes a lin

function of 7, as predicted by E(.38). From each value of %%mular gas in the linear approximatith.
the slope in the linear regions, we have compuf¥d by
dividing the slope bya. The comparison with the Chapman—
Enskog value, Eq31) is presented in Fig. 1. The agreement The results discussed in the previous sections rely on the
is very good in all the range of values efconsidered, al- validity of the Boltzmann equation to describe a low-density
though the discrepancy increases as the valueddcreases. granular gas. Also, the possibility of observing a system in

ng(x,0)=ng(1+sing,x), (43

Ang(x,t)=ng(x,t) —ng=n_sing,X,
(44)

eresp ,=dD* krzn/4, wherek,, is the dimensionless wave

umber corresponding @, i.e.,Kn=2v4(t)qm/vy(t). TO
gnalyze the density distribution in tixedirection, the system

IV. MOLECULAR DYNAMICS RESULTS
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\\\ md10 aAAAAAAAAAAAAAAAAA
n e 0 1
T ~
.
.
\. A
0.6
LN +
.
.\
. 05 K
0.0 20.0 40.0
. ‘ tv,(0)
0 10 20 30
T FIG. 4. Time evolution of the reduced slope,=(4D§) "*d,((Ar)?) for

«=0.7,0.8,0.9,1, from top to bottom. The steady values determine the re-
FIG. 3. Time evolution of the amplitude of a sine density perturbation of duced self-diffusion coefficient. The data have been obtained by molecular

tagged particles for=0.8. The density is reduced by the initial amplitude, dynamic simulations of a system of hard disks.
and the time is measured in the reduced units defined in the text. The dashed
line is the best fit to a straight ling@xponential behavigr

time large enough for the system to reach a Maxwellian ve-
locity distribution. In this way the initial conditions for the
the HCS for a time period long enough as to reach the selfsimulation of the inelastic gasi<1) was generated. The
diffusion regime, i.e., the existence of a time window in simulations typically involvedN = 6400 particles and the re-
which the diffusion equation applies, was taken for grantedsults we will present were averaged over 30 trajectories. The
This is not at all evident due to the cluster instability exhib-simulation technique was based on the “event driven”
ited by systems composed by inelastic hard partftfeSor  algorithm® A discussion of the application of the method to
these reasons, here we present and discuss some results gkanular fluids is given in Ref. 17.
tained by means of molecular dynamics simulation. In Fig. 4 we present results obtained in a very dilute
Of course, when using molecular dynamics, the densityystem with a solid fraction 810~ 4, that is equivalent to a
of the system is not asymptotically small, as required by thewumber densityno?=6.25x10 *. For this density it is
Boltzmann equation, and density effects can, in general, bg,(n)=1.0008'® The figure shows mp=(4Df)*
expected. The Enskog equation provides a useful generaliza< 9,((Ar)?) as a function ot vy(0) for several values of the
tion of the Boltzmann equation to higher densities for a gasoefficient of restitution in the interval 0.Z0a<1. Herev,
of hard spheres or disk$? Applied to the self-diffusion s the initial value of the Boltzmann collision frequency de-
problem in an inelastic gas in the HCS it has the form fined in Eq.(35). After a short transient time, of the order of
5 _ a few collision times, the curves reach a time-independent
(v =gem A tlfs, Tul, 49 plateau. In the simulations, two quantities were recorded to
where the collision operataris still defined by Eq(2) and  verify whether the system stayed in the HCS, namely the
ge(N) is the equilibrium pair correlation function at the den- root mean square of the local density and the ratio of the
sity n of the system and a distanee It follows directly that  total macroscopic kinetic energy to the total thermal energy.
the self-diffusion coefficient from the Enskog equation is|n all the reported simulations both quantities remained with
still given by Eq.(31), except for an obvious fact@; *(n)  very low values, indicating that no significant density or mo-

in the expression oby, i.e., mentum organization was preséftt was also checked that
dr'(d/2) 1 KeTh 1/2 the time evolution of the temperature was accurately de-
b= 27 T2 75T Tg () | “m ) (46)  scribed by the solution of Eq9).
e

According with the theoretical prediction, E(B9), the
Also, it is evident that, when properly scaled, the solutions ofsteady values in Fig. 4 should correspondDé («), as

the Boltzmann—Lorentz equation and E@5 coincide. given by Eq.(31). The comparison between the latter and the
Therefore, the numerical results in the previous section casimulation values is presented in Fig. 5. Again, a very good
be directly translated to the Enskog equation. Let us stresagreement is observed. Moreover, it is interesting to notice
that this is due to the homogeneity of the state we are corthat the slight deviations here go in the same way as for the
sidering numerical solution of the Boltzamnn equation. For small dis-

We have simulated a system of hard disks in a squarsipation (a very close to unity the theoretical curve lies

domain with doubly periodic boundary conditions. The ini- below the simulation data and there is a crossover as the
tial condition was a uniform distribution of particles and anvalue of @ decreases. This seems to indicate that the small
isotropic and homogeneous velocity distribution. Simula-discrepancy is in both cases due to the approximate character
tions were run with elastic collisionsy=1) for a period of of the Chapmann—Enskog solution we have obtained,
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1.60 ‘ - ‘ to reach the hydrodynamic regime. The extension to higher
densities, beyond the range of validity of the Enskog equa-
tion, requires the use of the pseudo-Liouville equation along
the lines discussed in Ref. 2. An analysis of short times and
1.40 1 large gradients can be carried out by means of model kinetic
equations, such as those discussed in Ref. 4.
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¢ APPENDIX: EVALUATION OF », AND £V

FIG. 5. A comparison of the reduced self-diffusion coefficient for a system . . . .
of hard disks obtained from molecular dynamics simulati@ysnbol$ with In this appendix some of the calculations leading to Eq.
the theoretical prediction given by E€1) (solid line). (31) are detailed. In order to evaluate velocity integrals in-

volving the linear collision operatak, it is convenient to use

the relationship
namely to the use of the first Sonine approximation. In fact,

if the values for the self-diffusion coefficient obtained from dvY(V)A[X(V) Fy(V)]
the numerical solution of the Boltzmann—Lorentz equation
are compared directly with those following from the molecu-

lar dynamics simulation, an excellent agreement is found. :adflf dvf dvlf do®(g-o)(go)Y(v)

This happens in spite of the fact that while in Fig. 1 we

considered a system of hard spheres=@) now we are X[a™2X(V) F(v) Fy(vy) = X(V) Fp(V) Fa(ve) ]
dealing with hard disksd=2). The reason is that all the

dependence db* (a) on d comes througlt* («), and this :O.d—lf dvf dVlf 40 (—g)| g ] X (V) Fy(V)
guantity gives a negligible contribution.

XEu(v) [Y(VF)=Y(V)], (A1)

wherev* is the after-collision velocity of the tagged particle,

In this paper we have discussed the simplest example of
transport in a granular gas, namely self-diffusion in the ho-  \x—y_ —_— §.g4. (A2)
mogeneous cooling state. We have combined several differ- 2
ent approaches: numerical solutions of the kinetic equationgjse of Eq.(A1) into Eq. (28) after approximatindg3(v) by
obtained by the direct simulation Monte Carlo method,the first term in the Sonine polynomials expansion,
Chapman-Enskog solution of the same equations, and mo-
lecular dynamics simulations. The very good agreement B(V)*Vfu(V), (A3)
found over quite a wide interval of values of the coefficient|eads to
of restitution, provides a strong test of the validity and use- d-1
fulness of the different approaches. It shows that kinetic —, _ _ ma H_af dv | dvyfy(v)fy(vy)
theory and a hydrodynamic description are accurate to de- P ndkgTy 2 M H
scribe some states of granular fluids. In particular, the mo-
lecular dynamic results we have presented indicate that there XJ do®(—g-6)(g-6)%ov. (Ad)
is a relevant time interval in which the hydrodynamic limit is
attained while the system stays in the HCS or, at least, veryhe angular integration ovér can be easily carried out with
close to it, in the sense that the possible instability effects aréhe result

small. d-1 (d-1)/2
e . - m 1+
The self-diffusion process in a granular fluid in the HCS Vb i @

V. DISCUSSION AND CONCLUSION

can be described at a macroscopic level by a hydrodynamic ndkgTy 2 d+_3

equation of the same form as in the case of ordinary fluids. 2

The main difference is in the time dependence, through the

temperature of the system, of the self-diffusion coefficient. xf dvf dv, fy(Wfu(v)a(gv). (A5)
Also, there is an explicit dependence on the restitution coef-

ficient characterizing dissipation. Using Eq.(12) for f, the velocity integrations can be trans-

The results presented here are restricted to a low-densitjormed into the product of Gaussian integrals by changing
small gradient in the density of tagged particles and to avariables tog and G=(v+v;)/2. The integrals are straight-
system in the HCS. Moreover, the time must be large enougforward although lengthy, and the final result is
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