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Self-diffusion in freely evolving granular gases
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E-41080 Sevilla, Spain

~Received 18 March 1999; accepted 15 November 1999!

A self-diffusion equation for a freely evolving gas of inelastic hard disks or spheres is derived
starting from the Boltzmann–Lorentz equation, by means of a Chapman–Enskog expansion in the
density gradient of the tagged particles. The self-diffusion coefficient depends on the restitution
coefficient explicitly, and also implicitly through the temperature of the system. This latter
introduces also a time dependence of the coefficient. As in the elastic case, the results are trivially
extended to the Enskog equation. The theoretical predictions are compared with numerical solutions
of the kinetic equation obtained by the direct simulation Monte Carlo method, and also with
molecular dynamics simulations. An excellent agreement is found, providing mutual support to the
different approaches. ©2000 American Institute of Physics.@S1070-6631~00!00603-6#

I. INTRODUCTION

The properties of freely evolving granular gases have
been extensively investigated in the last years. At a particle
level of description, a granular medium is usually modeled
as a system of inelastic hard spheres, which in the simplest
case are considered to be smooth. The kinetic equations used
for molecular gases, e.g., Boltzmann and Enskog equations,
have been extended to account for dissipation in collisions.1,2

Once a kinetic theory description is available, it is, at
least in principle, possible to proceed to a hydrodynamic
description by means of the Chapman–Enskog procedure of
constructing normal solutions to the kinetic equations. In this
way, hydrodynamic equations, similar to the Navier–Stokes
equations for molecular fluids, have been derived and ex-
plicit expressions for the transport coefficients appearing in
them have been given. Although most of the derivations are
restricted to the small inelasticity limit,3 very recently the
hydrodynamic equations have been obtained without that
restriction.4 Of course, there is still the problem of delimitat-
ing the range of values of the parameter characterizing dis-
sipation for which a hydrodynamic description is valid.

The simplest transport process one can think of is self-
diffusion, i.e., the diffusion of tagged particles in a system of
mechanically equivalent particles, that is otherwise homoge-
neous. In molecular systems, self-diffusion in equilibrium
has served in many ways as a prototype for more compli-
cated transport phenomena. Here complicated refers to both
from a conceptual and from a computational point of view.
Self-diffusion has also been investigated in granular flows.
Experimental studies include both systems with macroscopic
flows5 and vertically vibrated systems.6 Campbell7 has cal-
culated the diffusion coefficient in a sheared cell using mo-
lecular dynamics simulations.

Granular systems do not have a time-independent homo-
geneous state similar to the equilibrium one for molecular
systems. The simplest state of a granular fluid is the so-called
homogeneous cooling state~HCS!, in which the system is
homogeneous but the temperature uniformly decreases in

time as a consequence of dissipation in collisions. This will
be the state we will consider. In this context, it is important
to notice that the HCS is known to be unstable with respect
to long-wavelength perturbations, tending to form particle
clusters. This has been observed in dense systems8 and also
in low-density gases described by the~inelastic! Boltzmann
equation.9 The analysis of self-diffusion we will present here
will be restricted to short time intervals, before the system
can develop density clusters.

The extension of the concept of self-diffusion for time-
dependent states like the HCS is not trivial. For equilibrium
states of molecular fluids, there are several equivalent defi-
nitions of the self-diffusion coefficient, e.g., through a diffu-
sion equation, as the time integral of the velocity correlation
function, and from the slope of the mean-square displace-
ment. In time-dependent states, all these quantities depend
on time and the relationships between them may be rather
involved.

The starting point of our study will be the Boltzmann–
Lorentz equation for a dilute gas of inelastic smooth hard
spheres or disks. Dissipation in collisions is characterized as
usual by means of a constant~velocity-independent! coeffi-
cient of normal restitution. The kinetic equation is particu-
larized for a gas in the HCS and solved by means of the
Chapman–Enskog procedure in Sec. II. Some details of the
calculations are given in the Appendix. The analytical
method we follow parallels in many points a previous work
on the derivation of the Navier–Stokes transport coefficient
for a simple fluid.4 The main result we obtain is a diffusion
equation with a transport coefficient depending on dissipa-
tion explicitly through the restitution coefficient and implic-
itly through the time-dependent temperature of the system.

The Chapman–Enskog procedure is based on the exis-
tence of time and length scales over which there is a normal
solution to the Boltzmann or Boltzmann–Lorentz equations.
This is closely related with the validity of a hydrodynamic
description of the system, once the accuracy of the kinetic
equation has been assumed. In order to check this in the
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context of self-diffusion in an inelastic dilute gas, in Sec. III
we present numerical solutions of the Boltzmann–Lorentz
equation obtained by means of the direct simulation Monte
Carlo method.10 The agreement between the numerical solu-
tion and the results derived by means of the Chapman–
Enskog procedure strongly supports the existence of a nor-
mal solution and, therefore, of a hydrodynamic description.
The final section contains some concluding remarks and pos-
sible generalizations.

II. CHAPMAN–ENSKOG SOLUTION OF THE
BOLTZMANN–LORENTZ EQUATION

A dilute gas of smooth hard spheres (d53) or disks
(d52) of massm and diameters is considered. Collisions
between particles are inelastic and characterized by a con-
stant coefficient of normal restitutiona. Some of the par-
ticles are labeled, but they are mechanically identical to the
other ones. The one-particle distribution function of the the
tagged particles will be denoted byf s(r ,v,t), while f (r ,v,t)
will be used for the complete system.

The time evolution off s(r ,v,t) is given by the extension
to the case of smooth inelastic collisions of the Boltzmann–
Lorentz equation,11

~] t1v"“ ! f s~r ,v,t !5L~r ,v,t ! f s~r ,v,t !, ~1!

whereL is the Boltzmann–Lorentz collision operator,

L~r ,v,t ! f s~r ,v,t ![J@r ,v,tu f s , f #

5sd21E dv1E dŝQ~g"ŝ!g"ŝ

3@a22f s~r ,v8,t ! f ~r ,v18 ,t !

2 f s~r ,v,t ! f ~r ,v1 ,t !#. ~2!

Here ŝ is a unit vector along the line joining the center of
particle 1 to the center of the tagged particle at contact, away
from the former,g5v2v1 is the relative velocity,Q is the
Heaviside step function, andv8, v18 are the precollisional
velocities leading after collision tov, v1 . They are given by

v85v2
11a

2a
~g"ŝ!ŝ, v185v11

11a

2a
~g"ŝ!ŝ. ~3!

Since the distribution functionf (r ,v,t) obeys an independent
equation, namely the~inelastic! nonlinear Boltzmann equa-
tion, the Boltzmann–Lorentz operator, and Eq.~1! are linear
in f s(r ,v,t).

Tagged particles may freely exchange momentum and
energy with the rest of the fluid and, therefore, these are not
invariants of the collision operatorJ@ f s , f #. Only the number
of tagged particles is conserved. More concretely, the density

ns~r ,t !5E dvf s~r ,v,t ! ~4!

obeys the conservation law

]ns~r ,t !

]t
1“"Js~r ,t !50, ~5!

with the flux of tagged particlesJs , defined by

Js~r ,t !5E dvvf s~r ,v,t !. ~6!

The above conservation law becomes a closed hydrodynamic
equation for the density of tagged particles onceJs is ex-
pressed as a functional of it, and also of the macroscopic
fields defining the state of the gas as a whole. The aim here
will be to obtain the lowest order in the density gradient of
Js , by applying the Chapman–Enskog procedure to solve the
Boltzmann–Lorentz equation. It is assumed that in the long
time limit there is a normal solution to the kinetic equation
~1! of the form

f s~r ,v,t !5 f s@vuns~r ,t !,$Bi%#, ~7!

where the set$Bi(r ,t)% denotes the hydrodynamic fields de-
fining the macroscopic state associated tof (r ,v1 ,t), which is
assumed to also have a normal form. Although the formalism
can be developed, in principle, for any state of the gas, we
will restrict ourselves in the following to the so-called homo-
geneous cooling state~HCS!. This state is described by a
homogeneous solution of the nonlinear Boltzmann equation,
f H(v1 ,t), in which all the time dependence takes place
through the temperature of the gasTH(t).1 Therefore, it
obeys the equation

]TH

]t

]

]TH
f H~v,t !5J@v1 ,tu f H , f H#. ~8!

An evolution equation for the temperature is easily obtained
from the own Boltzmann equation,

]TH~ t !

]t
52zH~TH!TH~ t !, ~9!

where the cooling ratezH(TH) is given by

zH5
mp~d21!/2sd21~12a2!

4dGS d13

2 DnkBTH

E E dv1 ,dv2uv12v2u3

3 f H~v1 ,t ! f H~v2 ,t !, ~10!

kB being the Boltzmann constant andn the uniform density
of the gas. The explicit form off H(v1 ,t) is only known in
the first Sonine approximation,1,12

f H~v1 ,t !5 f M~v1 ,t !H 11
c* ~a!

4 F S m

2kBTH
D 2

v1
4

2
~21d!m

2kBTH
v1

21
~21d!d

4 G J , ~11!

c* ~a!5
32~12a!~122a2!

9124d1~8d241!a130a2~12a!
. ~12!

Here f M is the Maxwellian,

f M~v1!5nS m

2pkBTH~ t ! D
d/2

e2mv1
2/2kBTH~ t !. ~13!

In the same approximation,
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zH5~12a2!
2p~d21!/2

dG~d/2!
nsd21S kBTH

m D 1/2S 11
3c* ~a!

32 D .

~14!

Now we proceed with the application of the Chapman–
Enskog algorithm to Eq.~1!. The distribution function is
written as a series expansion in a formal parametere mea-
suring the ‘‘uniformity’’ of the system,

f s5 f s
~0!1e f s

~1!1e2f s
~2!1¯ . ~15!

Since in the present case the only possible hydrodynamical
inhomogeneity is in the densityns , each factor ofe implies
an implicit“ns factor. Consistently, the balance equation for
the density, Eq.~5!, is expanded as

]ns~r ,t !

]t
5(

j 50

`

e j 11] t
~ j !ns~r ,t !, ~16!

with

] t
~ j !ns~r ,t !52“"Js

~ j !~r ,t !,
~17!

Js
~ j !~r ,t !5E dvvf s

~ j !~r ,v,t !.

Then, to zeroth order ine the kinetic equation~1! becomes

]TH

]t

]

]TH
f s

~0!5L f s
~0!5J@ f s

~0! , f H#. ~18!

We have taken into account that, as indicated in Eq.~7!,
there is a time dependence through the temperature of the
systemTH(t). This dependence is not associated to any gra-
dient in the system and, therefore, it is considered as being of
zeroth order ine. A comparison of Eqs.~8! and ~18! shows
that f s

(0)(r ,v,t) must be proportional tof H(v,t). Then, be-
cause of normalization,

f s
~0!~r ,v,t !5

ns~r ,t !

n
f H~v,t !. ~19!

It follows that the flux of tagged particles vanishes to zeroth
order, i.e.,Js

(0)50. To first order in the density gradient, Eq.
~1! leads to an equation forf s

(1) ,

~] t
~0!ns!

]

]ns
f s

~0!1
]TH

]t

]

]TH
f s

~1!1~v"“ns!
]

]ns
f s

~0!5L f s
~1! .

~20!

The zeroth-order results imply

] t
~0!ns50,

]

]ns
f s

~0!5
1

n
f H , ~21!

and, therefore, Eq.~20! becomes

S zH~ t !TH~ t !
]

]TH~ t !
1L D f s

~1!5
1

n
~v"“ns! f H . ~22!

The solution to this equation is proportional to“ns , i.e., it
has the form

f s
~1!~r ,v,t !5B~v!"“ns~r ,t !. ~23!

The vectorB(v) will also depend on time throughTH(t), but
this will not be indicated explicitly. Substitution of this into
Eq. ~22! yields

S zH~ t !TH~ t !
]

]TH~ t !
1L DB~v!5

1

n
vf H . ~24!

The contribution to the particle flux of first order in the den-
sity gradient is given by

Js
~1!52D“ns~r ,t !, ~25!

with

D52
1

d E dvv"B~v!. ~26!

Upon deriving the above expression we have made use of
symmetry considerations. An equation for the self-diffusion
coefficientD is easily derived from Eq.~22!,

FzH~ t !TH~ t !
]

]TH
2nDGD52

kBTH~ t !

m
, ~27!

wherenD is a functional ofB(v),

nD5
*dvv"LB~v!

*dvv"B~v!
. ~28!

SincezH}TH
1/2, dimensional analysis requires that also

D}T1/2 and

]D

]TH
5

D

2TH
, ~29!

so that Eq.~27! leads to

D5
kBTH~ t !

m S nD2
zH

2 D 21

. ~30!

In order to get an explicit expression forD we have
considered a first Sonine approximation, in which only the
leading term in the expansion ofB(v) in Sonine polynomials
is kept. Then we approximateB(v)}vf M(v), with f M being
the Maxwellian defined in Eq.~13!. Details of the analysis
are given in the Appendix, where also the explicit form of
f s

(1) is derived. The result is

D* ~a![
D~a!

D0
5

4

~11a!22
c* ~a!

32
~41a23a2!

.

~31!

HereD0 is the elastic limit (a→1) of the self-diffusion co-
efficient at equilibrium, but with a time-dependent tempera-
ture TH(t),

D05
dG~d/2!

4p~d21!/2

1

nsd21 S kBTH

m
D 1/2

. ~32!

In summary, we have derived the self-diffusion equation for
a low-density granular gas in the HCS,

]

]t
ns~r ,t !52D~ t !¹2ns~r ,t !, ~33!
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whereD(t) is given by Eq.~31!. As it is the case for the
other Navier–Stokes transport coefficients,4 D has a double
dependence on the coefficient of restitutiona. First, there is
the explicit dependence given by the factorD* (a) in Eq.
~31!, and, second, there is an intrinsic dependence through
the time evolution of the temperatureTH , which is also gov-
erned by the coefficienta.

An expression for the self-diffusion coefficient in a sys-
tem of smooth inelastic hard spheres has been derived before
independently by Hsiau and Hunt13 and by Savage and Dai.14

In our notation, their result reads as

D* ~a!5
2

11a
, ~34!

and differs from the one obtained here, except in the limit
a51.

Figure 1 shows the reduced diffusion coefficientD* as a
function of the coefficient of restitutiona in the interval
0.5<a<1 for d53. It is seen that the deviation from the
elastic functional form is quite relevant, even for values ofa
close to unity. On the other hand, let us point out that if the
distribution function of the gas as a whole is approximated
by a Gaussian, i.e., we formally putc* (a)50 in Eq. ~31!,
the discrepancy with the curve plotted in the figure cannot be
observed on the scale used.

III. DIRECT SIMULATION MONTE CARLO METHOD

The direct simulation Monte Carlo~DSMC! method pro-
vides an algorithm to obtain numerical solutions of the Bolt-
zmann equation. The general idea is to mimic the dynamical
processes involved in the kinetic equation.10 Its extension to
deal with inelastic collisions is straightforward. Since the
method has been discussed extensively many times in the
literature, only some specific details will be given here. An

important peculiarity to be stressed is that we are considering
the Boltzmann–Lorentz equation and not the general nonlin-
ear Boltzmann equation. That means that the distribution
function of the system,f H(v,t), is given, i.e., it is a needed
input to solve the kinetic equation. We do not investigate
whether or not a given system would actually remain in the
homogeneous cooling state for the time interval considered;
it is just assumed that this is the case. Of course, this avoids
by construction the possibility that the system develops ve-
locity and density instabilities that are known to occur in a
freely evolving granular system.

The time dependence of the diffusion coefficient in Eq.
~33! can be eliminated through a change in the time and
space variables. Let us introduce the Boltzmann collision
frequency,n0(t), corresponding to a dilute gas with a Max-
wellian distribution function at temperatureTH(t),

n0~ t !5
2p~d21!/2

G~d/2!
nsd21S kBTH~ t !

m D 1/2

. ~35!

We define dimensionless time and space variables by

t5
1

2 E0

t

dt8n0~ t8!, l5
n0~ t !

2 S m

kBTH~ t ! D
1/2

r . ~36!

The time scalet provides an accurate estimation of the av-
erage number of collisions per particle in the time interval
between 0 andt, while the unit of length introduced above is
proportional to the mean-free path of the particles. In terms
of the above variables, the self-diffusion equation reads as

]

]t
rs~ l,t!5

d

4
D* ~a!¹ l

2rs~ l,t!, ~37!

where¹ l
2 is the Laplace operator inl space, and we have

scaled the density of tagged particles with the average den-
sity of the system, i.e.,rs5ns /n. Equation~37! is a diffu-
sion equation with a constant diffusion coefficient
D* (a)d/4. It follows that the mean square deviation of the
‘‘position’’ l of the tagged particles after a ‘‘time’’ intervalt
is11

^~D l!2;t&5
d2

2
D* ~a!t. ~38!

This extends to the case of dissipative collisions the well-
known relationship between the mean square displacement
of the particles and the self-diffusion coefficient in elastic
systems. Equation~38! is equivalent to

]

]t
^~Dr !2;t&52dD~a,t !, ~39!

and also to

^~Dr !2;t&5
d2G2~d/2!

2pd21n2s2~d21!
D* ~a!t. ~40!

The first method we have used to measure the diffusion
coefficient numerically is directly based in Eq.~38!. In the
simulations we have consideredN52.53105 tagged hard
spheres. These particles did not see each other, so that we
could say equivalently that we generatedN52.53105 inde-

FIG. 1. The reduced self-diffusion coefficientD* as a function of the co-
efficient of restitutiona. The solid line is the theoretical prediction given by
Eq. ~31!, while the symbols have been obtained from the direct Monte Carlo
simulation of the Boltzmann equation for a system of hard spheres by using
the mean square displacement of the particles~circles!, and the time evolu-
tion of a sine perturbation in density of tagged particles~squares!.
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pendent trajectories of a single tagged particle. Only the po-
sition of the tagged particles was recorded along the simula-
tion, since, as already discussed, the distribution of the
complete system was not generated by the simulation, but
introduced as an input. Every time there was a collision of
the tagged particle, the velocity of the other particle involved
in the collision was generated from the distribution function
corresponding to the HCS in the first Sonine approximation,
Eq. ~11!. As a consequence, there is no need either to divide
the system into cells, since the ‘‘bath’’ seen by the tagged
particles does not depend on their position. For the same
reason, it is not necessary to specify the size of the system
nor any kind of boundary conditions. In other words, the
system is considered as infinite and homogeneous in all di-
rections. Finally, let us mention that the time interval over
which it is assumed that there are not correlations between
free motion and collisions is Dt5531022l
3@2kBT(0)/m#1/2, wherel5(&pns2)21 is the mean-free
path of the particles andT(0) is the initial temperature of the
system. This time interval must be chosen such that it re-
mains small as compared with the average time between col-
lisions. As the temperature of our system decreases mono-
tonically in time, the above choice guarantees that this
condition is verified all along the simulation.

In Fig. 2 we have plotted̂(D l)2& as a function of the
cumulative number of collisions per particle, measured by
the time scalet defined in Eq.~36!. Several values of the
coefficient of restitution in the interval 0.6<a<0.99 have
been considered. It it observed that, after a short transient
period in which each tagged particle has collided about five
times, the scaled mean square displacement becomes a linear
function of t, as predicted by Eq.~38!. From each value of
the slope in the linear regions, we have computedD* by
dividing the slope by9

2. The comparison with the Chapman–
Enskog value, Eq.~31! is presented in Fig. 1. The agreement
is very good in all the range of values ofa considered, al-
though the discrepancy increases as the value ofa decreases.

It must be realized that the value of the scaled diffusion
coefficient D* (a) changes by an amount of the order of
50%.

A second way of measuring the diffusion coefficient nu-
merically follows as a consequence of the linear character of
the self-diffusion equation. If we introduce the Fourier trans-
formed of the density of tagged particlesns,k , the diffusion
equation~37! leads to

ns,k~t!5ns,k~0!exp~2sDt!, ~41!

where

sD5
d

4
D* k2. ~42!

We have considered a system of sizeL550l in the x direc-
tion, which is the direction along which the density gradient
will be studied. Consequently, periodic boundary conditions
are introduced in this direction. On the other hand, no den-
sity gradient of tagged particles is allowed in they and z
directions.

Suppose an initial distribution of tagged particles, given
by

ns~x,0!5n0~11sinqmx!, ~43!

with n0 being a constant andqm52p/L. This density profile
is compatible with the periodic boundary conditions and,
therefore, Eq.~41! predicts that

Dns~x,t ![ns~x,t !2n05nt sinqmx,
~44!

nt5n0 exp~2sD,mt!.

Here sD,m5dD* km
2 /4, wherekm is the dimensionless wave

number corresponding toqm , i.e.,km52vH(t)qm /nH(t). To
analyze the density distribution in thex direction, the system
was split into 100 layers of the same width perpendicular to
the x axis. Of course, this was to the only effect of coarse
graining the density of tagged particles, since the distribution
function of all particles was again given byf H in Eq. ~11!. In
the simulations we have verified that the profile is well fitted
by a sine function with wavelengthL in all the time intervals
considered. As an example, the values obtained for the am-
plitude of the density perturbation fora50.8 are plotted in
Fig. 3 as a function of time. They decay exponentially, in
agreement with the theory, and from the slope of the loga-
rithm, the reduced self-diffusion coefficientD* (a) can be
computed. The values obtained in this way for different val-
ues of the coefficient of restitution have been included in Fig.
1. As expected, they are practically the same as those ob-
tained from the mean square displacement, then providing a
self-consistent test for both the theory and the numerical
method. Let us mention that the use of a sine perturbation of
the hydrodynamic fields has been recently employed to mea-
sure the Navier–Stokes transport coefficients of a dilute
granular gas in the linear approximation.15

IV. MOLECULAR DYNAMICS RESULTS

The results discussed in the previous sections rely on the
validity of the Boltzmann equation to describe a low-density
granular gas. Also, the possibility of observing a system in

FIG. 2. Mean square displacement of the particles as a function of time for
several values of the restitution coefficient. Both quantities are measured in
the dimensionless units defined in the main text.
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the HCS for a time period long enough as to reach the self-
diffusion regime, i.e., the existence of a time window in
which the diffusion equation applies, was taken for granted.
This is not at all evident due to the cluster instability exhib-
ited by systems composed by inelastic hard particles.8,9 For
these reasons, here we present and discuss some results ob-
tained by means of molecular dynamics simulation.

Of course, when using molecular dynamics, the density
of the system is not asymptotically small, as required by the
Boltzmann equation, and density effects can, in general, be
expected. The Enskog equation provides a useful generaliza-
tion of the Boltzmann equation to higher densities for a gas
of hard spheres or disks.11,2 Applied to the self-diffusion
problem in an inelastic gas in the HCS it has the form

~] t1v"“ ! f s~r ,v,t !5ge~n!J@r ,v,tu f s , f H#, ~45!

where the collision operatorJ is still defined by Eq.~2! and
ge(n) is the equilibrium pair correlation function at the den-
sity n of the system and a distances. It follows directly that
the self-diffusion coefficient from the Enskog equation is
still given by Eq.~31!, except for an obvious factorge

21(n)
in the expression ofD0 , i.e.,

D0
E5

dG~d/2!

4p~d21!/2

1

nsd21ge~n! S kBTH

m D 1/2

. ~46!

Also, it is evident that, when properly scaled, the solutions of
the Boltzmann–Lorentz equation and Eq.~45! coincide.
Therefore, the numerical results in the previous section can
be directly translated to the Enskog equation. Let us stress
that this is due to the homogeneity of the state we are con-
sidering

We have simulated a system of hard disks in a square
domain with doubly periodic boundary conditions. The ini-
tial condition was a uniform distribution of particles and an
isotropic and homogeneous velocity distribution. Simula-
tions were run with elastic collisions (a51) for a period of

time large enough for the system to reach a Maxwellian ve-
locity distribution. In this way the initial conditions for the
simulation of the inelastic gas (a,1) was generated. The
simulations typically involvedN56400 particles and the re-
sults we will present were averaged over 30 trajectories. The
simulation technique was based on the ‘‘event driven’’
algorithm.16 A discussion of the application of the method to
granular fluids is given in Ref. 17.

In Fig. 4 we present results obtained in a very dilute
system with a solid fraction 531024, that is equivalent to a
number densityns256.2531024. For this density it is
ge(n).1.0008.18 The figure shows mD[(4D0

E)21

3] t^(Dr )2& as a function oftn0(0) for several values of the
coefficient of restitution in the interval 0.70<a<1. Heren0

is the initial value of the Boltzmann collision frequency de-
fined in Eq.~35!. After a short transient time, of the order of
a few collision times, the curves reach a time-independent
plateau. In the simulations, two quantities were recorded to
verify whether the system stayed in the HCS, namely the
root mean square of the local density and the ratio of the
total macroscopic kinetic energy to the total thermal energy.
In all the reported simulations both quantities remained with
very low values, indicating that no significant density or mo-
mentum organization was present.19 It was also checked that
the time evolution of the temperature was accurately de-
scribed by the solution of Eq.~9!.

According with the theoretical prediction, Eq.~39!, the
steady values in Fig. 4 should correspond toD* (a), as
given by Eq.~31!. The comparison between the latter and the
simulation values is presented in Fig. 5. Again, a very good
agreement is observed. Moreover, it is interesting to notice
that the slight deviations here go in the same way as for the
numerical solution of the Boltzamnn equation. For small dis-
sipation ~a very close to unity! the theoretical curve lies
below the simulation data and there is a crossover as the
value of a decreases. This seems to indicate that the small
discrepancy is in both cases due to the approximate character
of the Chapmann–Enskog solution we have obtained,

FIG. 3. Time evolution of the amplitude of a sine density perturbation of
tagged particles fora50.8. The density is reduced by the initial amplitude,
and the time is measured in the reduced units defined in the text. The dashed
line is the best fit to a straight line~exponential behavior!.

FIG. 4. Time evolution of the reduced slopemD5(4D0
E)21] t^(Dr )2& for

a50.7,0.8,0.9,1, from top to bottom. The steady values determine the re-
duced self-diffusion coefficient. The data have been obtained by molecular
dynamic simulations of a system of hard disks.
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namely to the use of the first Sonine approximation. In fact,
if the values for the self-diffusion coefficient obtained from
the numerical solution of the Boltzmann–Lorentz equation
are compared directly with those following from the molecu-
lar dynamics simulation, an excellent agreement is found.
This happens in spite of the fact that while in Fig. 1 we
considered a system of hard spheres (d53) now we are
dealing with hard disks (d52). The reason is that all the
dependence ofD* (a) on d comes throughc* (a), and this
quantity gives a negligible contribution.

V. DISCUSSION AND CONCLUSION

In this paper we have discussed the simplest example of
transport in a granular gas, namely self-diffusion in the ho-
mogeneous cooling state. We have combined several differ-
ent approaches: numerical solutions of the kinetic equations
obtained by the direct simulation Monte Carlo method,
Chapman-Enskog solution of the same equations, and mo-
lecular dynamics simulations. The very good agreement
found over quite a wide interval of values of the coefficient
of restitution, provides a strong test of the validity and use-
fulness of the different approaches. It shows that kinetic
theory and a hydrodynamic description are accurate to de-
scribe some states of granular fluids. In particular, the mo-
lecular dynamic results we have presented indicate that there
is a relevant time interval in which the hydrodynamic limit is
attained while the system stays in the HCS or, at least, very
close to it, in the sense that the possible instability effects are
small.

The self-diffusion process in a granular fluid in the HCS
can be described at a macroscopic level by a hydrodynamic
equation of the same form as in the case of ordinary fluids.
The main difference is in the time dependence, through the
temperature of the system, of the self-diffusion coefficient.
Also, there is an explicit dependence on the restitution coef-
ficient characterizing dissipation.

The results presented here are restricted to a low-density,
small gradient in the density of tagged particles and to a
system in the HCS. Moreover, the time must be large enough

to reach the hydrodynamic regime. The extension to higher
densities, beyond the range of validity of the Enskog equa-
tion, requires the use of the pseudo-Liouville equation along
the lines discussed in Ref. 2. An analysis of short times and
large gradients can be carried out by means of model kinetic
equations, such as those discussed in Ref. 4.
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APPENDIX: EVALUATION OF nD AND f s
„1…

In this appendix some of the calculations leading to Eq.
~31! are detailed. In order to evaluate velocity integrals in-
volving the linear collision operatorL, it is convenient to use
the relationship

E dvY~v!L@X~v! f M~v!#

5sd21E dvE dv1E dŝQ~g"ŝ!~g"ŝ!Y~v!

3@a22X~v8! f M~v8! f H~v18!2X~v! f M~v! f H~v1!#

5sd21E dvE dv1E dŝQ~2g"ŝ!ug"ŝuX~v! f M~v!

3 f H~v1! @Y~v* !2Y~v!#, ~A1!

wherev* is the after-collision velocity of the tagged particle,

v* 5v2
11a

2
ŝ"gŝ. ~A2!

Use of Eq.~A1! into Eq. ~28! after approximatingB(v) by
the first term in the Sonine polynomials expansion,

B~v!}vf M~v!, ~A3!

leads to

nD52
msd21

ndkBTH

11a

2 E dvE dv1f M~v! f H~v1!

3E dŝQ~2g"ŝ!~g"ŝ!2ŝ"v. ~A4!

The angular integration overŝ can be easily carried out with
the result

nD5
msd21

ndkBTH

11a

2

p~d21!/2

GS d13

2 D
3E dvE dv1f M~v! f H~v1!g~g"v!. ~A5!

Using Eq.~11! for f H , the velocity integrations can be trans-
formed into the product of Gaussian integrals by changing
variables tog andG5(v1v1)/2. The integrals are straight-
forward although lengthy, and the final result is

FIG. 5. A comparison of the reduced self-diffusion coefficient for a system
of hard disks obtained from molecular dynamics simulations~symbols! with
the theoretical prediction given by Eq.~31! ~solid line!.
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nD5
2~11a!p~d21!/2

dG~d/2! S kBTH~ t !

m D 1/2

nsd21S 12
c* ~a!

64 D .

~A6!

Substitution of this expression and Eq.~14! into Eq. ~30!
leads to Eq.~31! directly.

The first order in the gradient contribution to the distri-
bution function is given by Eq.~23!, that in the first Sonine
polynomial approximation takes the form

f s
~1!~r ,v,t !5cDf M~v!v"“ns~r ,t !. ~A7!

The coefficientcD can be expressed in terms of the self-
diffusion coefficient by use of this expression into Eq.~26!,

D52
cD

d E dvv2f M~v!52
cDnkBTH~ t !

m
. ~A8!

The distribution function is, therefore,

f s
~1!~r ,v,t !52

Dm

nkBTH~ t !
f M~v!v"“ns~r ,t !. ~A9!
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