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PACS. 05.20.Dd – Kinetic theory.

PACS. 81.05.Rm – Porous materials; granular materials.

Abstract. – It is shown that the Boltzmann equation for smooth inelastic hard disks or
spheres admits a solution describing a steady state characterized by uniform pressure and linear
temperature profile. Such a state has been observed previously both in numerical solutions of
the Boltzmann equation and in molecular dynamics simulations. Quite peculiarly, pressure
and temperature gradient are not independent but their ratio is a function of the coefficient of
restitution. Several properties of the solution are discussed. In particular, it is shown that a
linear Fourier-like law is verified for arbitrary temperature gradient.

The Boltzmann equation, modified to account for inelastic two-particle collisions, is often
used as an idealized description of dilute rapid granular flows [1]. Nevertheless, very little
is known about its solutions. Even for the simplest possible state, corresponding to a freely
evolving homogeneous system, the velocity distribution is only known in some approxima-
tion [2]. For inhomogeneous situations, the available solutions are restricted to systems with
small spatial gradients or to the quasielastic limit [3–5].

Most of the experimental situations deal with a granular system to which energy is con-
tinuously supplied in order to keep it fluidized and, eventually, in a steady state. Often, this
is done by means of a vibrating wall. The steady state reached by the system is far from
equilibrium and also from the time-dependent homogeneous cooling state (HCS) describing
the free evolution of a granular system. Except in the limit of very small inelasticity, a direct
extension of the hydrodynamic description obtained by expanding around the HCS is not ex-
pected to apply. In fact, it is known that inelasticity and gradients are coupled for a granular
gas in the presence of a wall providing energy to the system [6,7].

Although the boundary layer next to the vibrating wall must be taken into account for
a complete description of the system, far away from the wall the state of the granular flow
may be characterized in a simple way, without explicit reference to the wall. This state is the
so-called normal state and corresponds to the thermodynamic limit of the system [8]. Starting
from a hydrodynamic description, it has recently been shown [9] that this macroscopic state
exists in the bulk of a system confined between a vibrating wall and a steady one, at least
in the limit of small gradients (and inelasticity). This was already implicit in the molecular
dynamics results presented in ref. [6]. In this paper, we investigate the extension of the above
state for higher inelasticities by means of the inelastic Boltzmann equation.
c© EDP Sciences
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The normal steady state we will consider is quite peculiar. A first point to realize is that it
has no analogous in molecular systems. In the elastic limit, the gradients vanish and the state
of the system becomes the usual thermodynamic equilibrium. For non-vanishing dissipation,
the pressure of the gas and the temperature gradient are uniform, but they cannot take
arbitrary values. Their ratio is determined by the degree of inelasticity of the collisions. This
coupling between the gradient of a hydrodynamic field and the value of another (uniform)
field is characteristic of granular gases, and a similar behaviour has been found for sheared
systems [10, 11]. The interest of this state is not purely formal, since it is the one observed
in molecular dynamics simulations [6], in numerical solutions of the Boltzmann equation by
means of the direct Monte Carlo simulation method [9], and qualitatively in experiments [12].

Although we have not been able to explicitly construct the solution of the Boltzmann
equation for the state, some general features can be discussed. In particular, it will be shown
to exhibit an algebraical tail for large velocities in the direction of decreasing temperature,
indicating an overpopulation of particles with large velocities, as compared with the Gaussian
distribution. This seems to be a quite general feature of granular systems [2].

The Boltzmann equation for the one-particle distribution function f(r,v, t) of a dilute gas
of smooth inelastic hard spheres (d = 3) or disks (d = 2) of mass m and diameter σ is

(∂t + v · ∇) f = σd−1

∫
dv1

∫
dσ̂ θ(g · σ̂)(g · σ̂)(α−2b−1 − 1)f(r,v, t)f(r,v1, t), (1)

where g = v − v1, σ̂ is a unit vector along the line of centers of the two colliding particles,
θ is the Heaviside step function, and b−1 is an operator transforming all the velocities v
and v1 to its right into their precollisional values defined by momentum conservation and
g′ = g−(1+α)(g ·σ̂)σ̂. Inelasticity in collisions is characterized through a constant coefficient
of normal restitution α, in the range 0 < α ≤ 1. The local number density n(r, t), flow velocity
u(r, t), and granular temperature T (r, t) are given by

n =
∫

dv f, nu =
∫

dv vf,
d

2
nT =

m

2

∫
dvV 2f, (2)

where V (r, t) = v−u. Balance equations for these quantities are obtained by taking velocity
moments in the Boltzmann equation (1),

∂tn + ∇ · (nu) = 0, (3)

∂tu + u · ∇u + (mn)−1∇ · P = 0, (4)

∂tT + u · ∇T + 2(dn)−1 (P : ∇u + ∇ · q) + Tζ = 0. (5)

In the above equations the pressure tensor P and the heat flux q are the same functional of f
as for molecular fluids, P = m

∫
dv V V f , q = m

2

∫
dv V 2V f , while the cooling rate ζ, which

vanishes in the elastic limit, is given by

ζ(r, t) =
mπ

d−1
2 σd−1(1 − α2)

4dΓ
(

d+3
2

)
nT

∫
dv1

∫
dv2 |v1 − v2|3f(r,v1, t)f(r,v2, t). (6)

We will search for a solution fs to the Boltzmann equation verifying the following condi-
tions: a) it is time independent; b) there is no macroscopic flow velocity; c) there are gradients
only in the direction of the x-axis; d) it scales in the form

fs(x,v) = n(x)
[

m

2T (x)

]d/2

ϕ(ξ), ξ =
[

m

2T (x)

]1/2

v. (7)
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This solution is similar to the one found by Goldshtein and Shapiro [13], describing the
evolution of a homogeneous freely evolving granular fluid. Because of eq. (2), the function ϕ
must verify the conditions∫

dξ ϕ(ξ) = 1,

∫
dξ ξϕ(ξ) = 0,

∫
dξ ξ2ϕ(ξ) =

d

2
. (8)

For the state we are considering, eq. (3) becomes an identity, while eq. (4) together with
eq. (7) imply that the pressure tensor is uniform. Finally, from the energy balance equation
(5) we get

1
2

dT

dx

∫
dξ ξ2ξxϕ(ξ) = −(1 − α2)

π
d−1
2 σd−1p

4Γ
(

d+3
2

) ∫
dξ1

∫
dξ2 |ξ1 − ξ2|3ϕ(ξ1)ϕ(ξ2), (9)

where p = d−1
∑

i Pii = nT is the constant pressure. Since the right-hand side of this equation
does not depend on x, consistency requires that dT (x)

dx = a = const, i.e. the temperature profile
must be linear in x.

Equation (9) establishes a relationship between the temperature gradient and pressure
that can be expressed in the form

a

pσd−1
= I[ϕ] ≡ − (1 − α2)π

d−1
2

2Γ
(

d+3
2

) ∫
dξ1

∫
dξ2 |ξ1 − ξ2|3ϕ(ξ1)ϕ(ξ2)∫

dξ ξ2ξxϕ(ξ)
. (10)

For symmetry considerations, the distribution function fs must be an even function of the
velocity components perpendicular to the x-direction. This property, of course, is preserved
by the Boltzmann equation. Then, in particular, there is no heat flux perpendicular to the
temperature gradient. Substitution of eq. (7) into eq. (1) and use of eq. (10) leads to

−I[ϕ]
{

ξxϕ(ξ) +
1
2
ξx

∂

∂ξ
· [ξϕ(ξ)]

}
=

∫
dξ1

∫
dσ̂ θ(χ · σ̂)|χ · σ̂|(α−2b−1 − 1)ϕ(ξ)ϕ(ξ1), (11)

where χ = ξ − ξ1. The structure of this equation is consistent with our assumption on the
existence of a solution of the Boltzmann equation of the form (7). Then, ϕ and also I depend
only on the coefficient of restitution α and eq. (10) implies that, for given α, pressure and the
gradient of temperature are not independent, but their ratio has a fixed value in the steady
state we are considering. A similar behaviour has been found for the uniform shear flow state,
for which the temperature and the shear rate are related [10,11].

The component of the heat flux in the x-direction is

qx =
(

2T (x)
m

)1/2

p

∫
dξ ξ2ξxϕ(ξ). (12)

Taking into account eq. (10) it follows that this flux is proportional to the temperature gradient
a, namely it can be written in the form

qx = −Φ(α)κ0a, (13)

where Φ is an unknown function of the coefficient of restitution and κ0 is the Boltzmann
elastic heat conductivity. Therefore, we have obtained that the heat flux is linearly coupled
to the temperature gradient. An approximated expression for Φ(α) can be obtained by means
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of the Chapman-Enskog expansion. Using the results obtained in refs. [4] and [14] it is found
that

Φ(α) = κ∗(α) − µ∗(α), (14)

where κ∗(α) and µ∗(α) are functions only of the restitution coefficient and their explicit
expressions can be found in [9, 14].

It is worth mentioning that for molecular systems (α = 1) the Boltzmann equation also
has an exact solution for Maxwell molecules, representing a steady state in which the Fourier
law is obeyed for arbitrary temperature gradient [15].

There is no reason to expect that the distribution function fs has a simple dependence on
the temperature gradient. Even more, calculations based on model kinetic equations for the
nonlinear Boltzmann equation and applied to analogous states [16] seem to indicate that the
distribution function has a quite complicated form. Nevertheless, from the results obtained in
refs. [4] and [14], the expression of fs linearized in a, i.e. in the first Chapman-Enskog order,
and evaluated in the first Sonine approximation can be written down. We will concentrate on
the marginal velocity distribution ϕx(ξx) =

∫
dξ⊥ ϕ(ξ), where the integration is carried out

over the d− 1 components of ξ perpendicular to the x-axis. For this function it is found that

ϕx(ξx) = π−1/2e−ξ2
x

{
1 −

[
4d2ζ∗(κ∗ − µ∗)
(d + 2)(d − 1)

]1/2 (
ξ2
x − 3

2

)
ξx

}
. (15)

Upon deriving this expression, it has been assumed, without loss of generality, that ∂T/∂x =
a > 0. Otherwise, ξx must be changed into −ξx. A factor of a/pσd−1 has been eliminated
by using the Navier-Stokes equation for the temperature (see also eq. (10)), so that eq. (15)
is written in a form which is consistent with eq. (11). We stress again that eq. (15) is, in
principle, useful only in the small-gradient limit, that for the state we are dealing with is
equivalent to small inelasticity. Moreover, it is restricted to values of |ξx| of the order of
unity. In fig. 1 we compare eq. (15) with numerical results obtained from direct Monte Carlo
simulation of the Boltzmann equation of a vibrated system [9, 17] for d = 2. Data from two
different positions in the bulk of the system have been plotted (circles and squares). The
relative difference of temperatures between both positions is about 30%. The data overlap
consistently with the scaling law in eq. (7). There is a quite good agreement with eq. (15) for
small velocities and low dissipation, the deviations becoming more significant as the value of
α decreases.

It is possible to obtain some information about the asymptotic form for high velocities
of the solution of the Boltzmann equation by means of a method introduced by Krook and
Wu [18] in the elastic case, and employed for homogeneous granular systems by Esipov and
Pöschel [19] and by van Noije and Ernst [2]. From eq. (11) one obtains

−I[ϕ]
[

3
2
ξxϕx(ξx) +

1
2
ξ2
x

∂

∂ξx
ϕx(ξx)

]
= J (+)

x [ϕ] − J (−)
x [ϕ]. (16)

Here J
(+)
x and J

(−)
x denote the contributions from the gain and loss terms of the Boltzmann

collision operator, respectively, i.e.

J (−)
x =

∫
dξ⊥

∫
dξ1

∫
dσ̂ θ(χ · σ̂)|χ · σ̂|ϕ(ξ)ϕ(ξ1) (17)

and similarly J
(+)
x . Again, we assume that a > 0, so that particles arriving at a given position

with positive ξx come from cooler regions. Therefore, particles with large and positive ξx
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Fig. 1 – Marginal velocity distribution in the direction of the temperature gradient for α = 0.99 and
α = 0.975 in a two-dimensional vibrated system. The continuous line is the theoretical prediction
given in the main text, the symbols are from direct Monte Carlo simulation of the Boltzmann equation
and correspond to two different positions (squares and circles) in the bulk, and the dotted line is the
Gaussian, plotted for reference.

at a given location are mostly generated as an effect of collisions with other particles in the
same region. On the other hand, particles with large |ξx| but ξx < 0 might come from regions
corresponding to higher temperatures and the probability they are generated as an effect of
collisions at the given location is low. For the latter particles, i.e. those with ξx < 0 and
|ξx| � 1, the gain term is negligible as compared with the loss one. The dominant contribution
to the collision integral corresponds to collisions where the velocity of particle 1 is typically
in the thermal region, so that |χ| can be replaced by |ξ|. Since the same kind of reasoning
can be applied to the integral over the normal component ξ⊥, |ξ| can in turn be replaced by
|ξx|. Equation (17) can be approximated by

J (−)
x ≈ π

d−1
2

Γ
(

d+1
2

) |ξx|ϕx(ξx), (18)

so that eq. (16) can be simplified to

−I[ϕ]
(

3
2
ξxϕx(ξx) +

1
2
ξ2
x

∂

∂ξx
ϕx(ξx)

)
=

π
d−1
2

Γ
(

d+1
2

)ξxϕx(ξx), (19)

whose solution has the form
ϕx(ξx) = A|ξx|−b(α), (20)

where A is an undetermined integration constant and

b(α) =
2π

d−1
2

Γ
(

d+1
2

)
I

+ 3. (21)

Note that for a > 0, it is I[ϕ] > 0, as is seen from eq. (10). In the same first Sonine
approximation used to derive eq. (14), one obtains

I =

[
32(d − 1)πd−1(1 − α2)

d(d + 2)2Γ (d/2)2 (κ∗ − µ∗)

]1/2

. (22)
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Then, we have obtained that for large component of the velocity in the opposite direction to
the increase of the temperature, there is an algebraic tail in the marginal velocity distribution.
This corresponds to an overpopulation for those velocities when compared with the Gaussian
distribution. As already mentioned, this seems to be a quite general feature of systems of
particles with dissipative interactions.

Since in most of the previous theoretical analysis of velocity distribution functions for
granular gases, an exponential rather than algebraical decay has been found [2], it could be
argued whether the result presented here is an artifact of the asymptotic analysis we have
carried out. Nevertheless, a careful inspection of each of the steps leading to eq. (20) shows
that it represents in any case the fastest possible decay of the marginal velocity distribution
for large negative values of ξx. Therefore, in particular, such decay cannot be exponential. Of
course, there is no contradiction here, as the previous studies correspond to different physical
situations, in which the system was either evolving freely or driven by a stochastic force acting
on all the particles. Moreover, the algebraical decay is compatible with the existence of the
first moments of the velocity distribution, since the exponent of the power law is always larger
that three and it is expected to grow very fast as α approaches unity (see eq. (10)). For large
component of the velocity in the direction of positive gradient of the temperature, i.e. ξx � 1,
the dominant part of the collision integral is the gain term J

(+)
x , and the reasoning developed

above does not apply.
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