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Control of transport in two-dimensional systems via dynamical decoupling of degrees of freedom
with quasiperiodic driving fields
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We consider the problem of the control of transport in higher-dimensional periodic structures by applied ac
fields. In a generic crystal, transverse degrees of freedom are coupled, and this makes the control of motion
difficult to implement. We show, both with simulations and with an analytical functional expansion on the driving
amplitudes, that the use of quasiperiodic driving significantly suppresses the coupling between transverse degrees
of freedom. This allows a precise control of the transport, and does not require a detailed knowledge of the crystal
geometry.
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I. INTRODUCTION

Periodic and quasiperiodic structures, both in time and in
space, exhibit completely different properties. For the case of
spatial quasiperiodicity, it is well established that quasiperiodic
crystals exhibit properties which are very different from their
periodic counterpart. In particular, transport properties, which
are the main focus of this work, are significantly modified in
the transition from a periodic structure to a quasiperiodic one.
The transition from a ballistic regime in a periodic crystal to
a regime of anomalous diffusion in a perfect quasicrystal well
highlights the profound difference between the two structures.
Mathematically, a quasicrystal can be treated as a periodic
structure embedded in a hyperspace of higher dimension, that
is, the effective dimensionality of the system is changed in
the transition from periodicity to quasiperiodicity. This is the
feature that, in the time domain, will be central to our analysis.

In this work we consider the problem of the control of
transport in higher-dimensional crystals via ac driving fields
[1,2]. In a generic crystal transverse degrees of freedom are
coupled, and this makes the control of motion difficult to
implement. Inspired by the above unique feature of quasiperi-
odic structures, we examine the case of a periodic spatial
lattice and a quasiperiodic driving. We demonstrate, both with
simulations and with a quite general functional expansion on
the driving amplitudes, that the use of quasiperiodic driving
leads to a dynamical decoupling of degrees of freedom,
whereby the coupling between transverse degrees of freedom
is significantly suppressed. This allows a precise control of the
transport, independently of the lattice structure.

II. MODEL AND DEFINITIONS

In the simulations, we choose as an example the dynamics
of a classical particle described by the Langevin equation,

mr̈ = −αṙ − ∇U (r) + F(t) + ξ (t), (1)

where r = (x,y) is the coordinate vector of the particle, m is
its mass, α the friction coefficient, ξ = (ξx,ξy) a fluctuating
force modeled by two independent Gaussian white noises,
〈ξi(t)ξj (t ′)〉 = 2Dδ(t − t ′)δij (i,j = x,y), F(t) an applied
time-dependent driving to be specified later on, and U (r) a
two-dimensional space-periodic potential that is also spatially

symmetric in both directions x and y. We have considered first
the potential,

U (r) = U0 cos(kx)[1 + cos(2ky)], (2)

which defines a rectangular lattice. Throughout the paper,
reduced units are assumed so that m = k = U0 = 1. In these
units, the friction coefficient and the noise strength were fixed
to α = 0.1 and D = 0.5.

This model, which includes noise, dissipation, and finite
inertia, is relevant for the description of two-dimensional (2D)
driven optical lattices which were used in Ref. [3] to investigate
the control of transport in higher-dimensional systems in
the case of periodic driving. Note however that the main
conclusions reported in this paper are supported by a general
analytical calculation based only on symmetry considerations,
and, thus, do not depend on the specific details of the dynamics
(1), or if the particle is classical or quantum.

The quantity of interest is the directed current, formally
defined as

〈v〉 = lim
t→∞

〈r(t) − r(0)〉
t

. (3)

Such a current is generated by the application of an appropriate
ac force. We consider here a driving consisting of two
orthogonal biharmonic drives along the x and y directions:

Fx(t) = Ax[cos(ω1t) + cos(2ω1t + φ1)], (4a)

Fy(t) = Ay[cos(ω2t) + cos(2ω2t + φ2)], (4b)

with φ1 = φ2 = π/2. Previous work for one-dimensional
systems has shown that the biharmonic driving, breaking all
the system symmetries, is able to produce a current, whose
amplitude and direction can be controlled via the amplitude
and the frequency of the strength of the driving [4–10]. In the
absence of coupling between transverse degrees of freedom,
ac driving of the form of Eq. (4) allows a precise control of
transport through the 2D lattice.

It is important to note that, numerically or in an experiment,
the limit (3) cannot be carried out to infinity, but to a sufficiently
large observation time Ts . This has important implications on
whether two driving frequencies ω1 and ω2 can be regarded as
commensurate (i.e., ω2/ω1 is a rational number) or effectively
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incommensurate (quasiperiodic driving) on the time scale of
the simulation. Obviously, a periodic driving with a rational
ratio ω2/ω1, specifically chosen with a period much larger than
Ts , cannot be distinguished from one with an irrational ratio.
The periodic and quasiperiodic regimes are then determined
by the observation time Ts , as we illustrate in the next section.

III. CONTROL OF TRANSVERSE COUPLING

In the absence of a coupling between the x and y direction,
a driving of the form of Eq. (4) allows a precise control
of transport through the 2D lattice. However, for a generic
lattice the transverse degrees of freedom are effectively
coupled. This can be shown by considering the minimal
case of a split biharmonic driving [3,11]: Fx(t) = A cos(ω1t),
Fy(t) = A cos(ω2t + π/2) with ω2 = 2ω1. For sufficiently
large times, the system approaches an attractor solution which
is time periodic, with period T = 2π/ω1. Invariance under the
symmetry transformation (x,y,t) → (−x,y,t + T/2) forbids
transport along the x direction. On the other hand, the y

component of the driving force breaks all symmetries of
the system [1,11], and thus directed transport is expected
along the y direction. In our simulations, with the driving
parameters A = 5, ω1 = ω2/2 = √

2, we obtained 〈vx〉 =
−0.0001 ± 0.0004 and 〈vy〉 = −0.0281 ± 0.0003, confirm-
ing the symmetry analysis. The uncertainties were estimated
from the statistics of 39 000 independent trajectories. Note that
if the system were one-dimensional, for example, along the y

direction, the single harmonic driving Fy(t) would not induce
a current, because the system would be symmetric under the
transformation (y,t) → (−y,t + π/ω2). This analysis shows
that there is a strong coupling between the x and y directions.
The particle needs to explore orbits in the x direction in order
to produce an average drift in the y direction [11].

As a central result of our analysis, we now show that the
transverse coupling can be effectively suppressed by replacing
the periodic driving considered so far by a quasiperiodic one
with the same functional form, as obtained by choosing a
driving frequency ω2 that is incommensurate with respect to
ω1. While the variation in frequency required to obtain the
transition from a periodic to a quasiperiodic driving may be
tiny (few parts per thousand in the case studies presented
in the following), the change in the type of driving has
profound effects on the dynamics. In fact, the transition
to quasiperiodicity determines an effective change in the
dimensionality of the system. Formally, the compact phase
space is extended [12] to include the variables ψ1 = ω1t and
ψ2 = ω2t . This extension removes the explicit time depen-
dence of the problem, turning the focus from time-dependent to
stationary solutions (and thus time periodic with period zero).
Since the irrationality of the frequency ratio provides ergodic
motion in the compact subspace (ψ1,ψ2) [13], it is natural to
assume [12] that the dynamics in the extended phase space is
ergodic. As a consequence, the variables ψ1 and ψ2 can be
treated as effectively independent variables in the symmetry
analysis. The system, driven by the split biharmonic force
with ω2/ω2 irrational, is symmetric under the transformation
(x,y,ψ1,ψ2) → (−x,−y,ψ1 + π,ψ2 + π ), and no directed
current should appear in any direction. The simulations con-
firm this prediction for the driving frequencies ω1 = √

2 and
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FIG. 1. (Color online) Simulation results for the y component
of the current as a function of the frequency ω2 for a system
driven by a split bi-harmonic driving with ω1 = √

2. The empty
diamonds correspond to an observation time of Ts = 105, while the
solid diamonds to Ts = 5 × 105. The horizontal error bars centered
at ω2 = 2

√
2 indicate 	ω = 2π/Ts with Ts = 105 (solid line) and

Ts = 5 · 105 (dashed line). The lines are the prediction given by (7)
with Ts = 105 (solid line) and Ts = 5 × 105 (dashed line).

ω2 = 2.82, with an observation time of Ts = 105, resulting in a
zero (within the error) current with 〈vx〉 = −0.0001 ± 0.0002
and 〈vy〉 = −0.0002 ± 0.0003. This shows that the coupling
between transverse degrees of freedom can be controlled and
suppressed by using quasiperiodic ac drivings. Remarkably,
a small variation in frequency (ω1 and ω2/2 differ in less
than 0.3%) is sufficient for the system to react as if ω2/ω1

were irrational, displaying a very different physical behavior
when compared to the rational case ω1 = ω2/2. The present
result also represents the generalization to 2D of the symmetry
analysis for 1D quasiperiodically driven systems introduced in
Refs. [14–16].

So far we only discussed the current at the exact value of the
frequency corresponding to quasiperiodicity. For finite-time
real (numerical) experiments, as the case considered here,
it is interesting to examine the dependence on the current
generated along the y direction on the frequency of the
control fields. Such a dependence is shown in Fig. 1, and
it can be precisely explained by the finite observation time
Ts . The symmetry analysis discussed earlier, which assumes
an infinite Ts , predicts that only the value ω2 = 2

√
2 of

those shown in Fig. 1 produces a current different from zero.
Correspondingly, the Fourier cosine transform of the single
harmonic F (t) = cos(ω0t) is proportional to a Dirac delta
centered at ω0,

∫ ∞

0
dt cos(ω0t) cos(ωt) = πδ(ω − ω0). (5)

However, when the finite observation time Ts is taken into
account, the Fourier transform has to be replaced by

∫ Ts

0
dt cos(ω0t) cos(ωt) = πδ1/Ts

(ω + ω0)

+ πδ1/Ts
(ω − ω0), (6)
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where δε(x) = sinc(x/ε)/(πε) is a well-known representation
of the delta function with the sinc function sinc(x) = sin(x)/x.
The first delta function of the right-hand side of (6) is irrelevant
because the frequency ω in the Fourier cosine transform is
only defined for ω � 0. Therefore, we would expect that the
system response also shows a similar frequency broadening in
the neighborhood of ω2 = 2ω1 due to the finite duration Ts ,

〈vy〉 ≈ v0 · sinc[(ω2 − 2ω1)Ts], (7)

where v0 is the value of 〈vy〉 when ω2 = 2ω1 (note that
sinc(0) = 1). The lines in Fig. 1 show that the shape is
well described by this approximation. The width 	ω of the
resonance around the value which defines quasiperiodicity
is simply the frequency resolution introduced by the finite
duration Ts of the measurement: 	ω = 2π/Ts . For a real
experiment, such a width controls the frequency window
within which the driving could be regarded approximately as
periodic (i.e., it defines the frequency jump required to move
from the periodic driving regime to the quasiperiodic one).

IV. CONTROL OF TRANSPORT IN 2D WITH
QUASIPERIODIC DRIVING

We now consider the problem of the control of transport in
2D with ac drivings. We analyze the simplest case of drivings
breaking all the relevant symmetries, the double biharmonic
driving, Eq. (4).

Previous work [3] demonstrated that it is possible to
produce directed motion along an arbitrary direction of the 2D
substrate by using ac driving forces. However, the mechanism
shown in that work lacks the essential feature of a control
protocol: predictability. Indeed, because of the coupling
between transverse degrees of freedom, and the nonlinearity
of the mechanism of rectification along each direction, it is
impossible, given the parameters of the driving, to predict
in a straightforward way the direction along which directed
motions will be produced. Only a complete calculation, which
also requires the exact knowledge of the geometry of the 2D
structure, can reveal the direction of the current which is in
general different from the direction corresponding to the vector
sum of the forces oscillating in the two directions.

As it will be shown here, the use of quasiperiodic ac fields
leads instead to a simple control protocol, which produces a
current closer to a direction corresponding to the vector sum
of the forces oscillating in the two directions, independently
of the lattice geometry.

As a starting point, we consider the 1D current, as obtained
by applying a biharmonic driving along one direction only.
Numerical results for this case are reported in Fig. 2. The
observation time was fixed to Ts = 105. Two general remarks
are in order. First, the sign of the current (negative for the
considered parameters) is not important as it can be controlled
by inverting the values of Ax and/or Ay or changing the values
of φ1 and/or φ2 to φ1 → φ1 + π and φ2 → φ2 + π . In either
case, the sign of the current component 〈vx〉 and/or 〈vy〉 would
be reversed. Second, it can be seen that for the relatively small
values of the driving amplitudes (about Ax,Ay � 2 in Fig. 2),
the current remains very small. A functional expansion on
the driving amplitude confirms that no current is generated
at the first [1] (linear response theory) and second order
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FIG. 2. (Color online) Simulation results for the one-dimensional
(1D) current, as obtained by applying a biharmonic driving along one
direction only, as a function of the amplitude of the driving for the
relevant direction. Using the notations as from Eq. (4), the parameters
of the calculations are as follows. Top panel, 〈vy〉 vs Ay for Ax = 0;
bottom panel, 〈vx〉 vs Ax for Ay = 0. In all cases ω1 = ω2 = √

2. The
solid lines are a guide to the eye. The dotted lines (red) mark a set of
reference values of Ax and Ay .

on the driving amplitude [17]. Furthermore, Fig. 2 shows
that the current in each direction presents a nonmonotonous
behavior with the driving amplitudes (showing two minima
at about Ax,Ay ∼ 8). This is also expected, because for
very large driving amplitudes the potential can be neglected
and thus, the potential’s nonlinearity, which determines the
current generation, diminishes, eventually leading to the
disappearance of the current for large enough driving. Since
we are interested in controlling the directed current through
the driving amplitudes, it will suffice to restrict ourselves to
the range of parameter values defined by 3 � Ax,Ay � 7.

If we intend to produce a current in a direction other than
along the axes, we need to simultaneously apply drivings in
both x and y directions. Figure 3 shows what happens when
this is done. The ideal situation for direction control would be
that a superposition principle would apply, so that a specific
required current direction could be obtained by applying
the corresponding driving amplitudes in each perpendicular
direction. However, Fig. 3 shows a very large deviation from
this behavior, with the directed current values (solid lines and
diamonds at the crossing between the lines) going far away
from the ideal case (dotted lines). Looking for example at
the current produced at (Ax,Ay) = (3,4), one would expect,
after observing the corresponding values at Fig. 2 (which are
indicated in Fig. 3 with dotted lines), that a current is formed
along the direction indicated in Fig. 3 by the dotted arrow.
However, the current ends up having the direction given by the
solid arrow, which forms a much larger angle with the y axis
than expected. In addition, further increasing Ay additionally
produces an unexpected nonmonotonous behavior in 〈vx〉,
which makes control of the current direction rather difficult.
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FIG. 3. (Color online) Simulation results for the rectangular
potential of Eq. (2) and the bidimensional driving of Eq. (4) with
ω1 = ω2 = √

2. The numbers on the top of the plot mark the values
of Ax for each vertical (constant Ax) solid line. The numbers on
the right axis of the plot mark the values of Ay for each horizontal
(constant Ay) solid line. The dotted (red) lines are a guide to indicate
the current values marked in Fig. 2, and thus the values that would be
obtained if we could neglect the coupling between both directions.
The dotted and solid (blue) arrows indicate the direction of the current
for (Ax,Ay) = (3,4) in the ideal and real cases, respectively.

This phenomenon is due to the strong coupling between
the x and y components at the same driving frequencies
ω1 = ω2. Remarkably, we can significantly suppress this
coupling by using two incommensurate frequencies, as shown
in Fig. 4. Note that the difference in ω2 with the case of
periodic driving shown in Fig. 2 is just less than 0.3%,
which implies that the curve shown in the top panel of this
figure is practically indistinguishable from the one obtained
with the latter frequency ω2 = 1.41. Figure 4 shows that
the deviation from an ideal behavior of uncoupled x and
y dynamics is significantly reduced, in particular for weak
driving [Ax,y � 5]. The deviation from such an ideal behavior
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FIG. 4. (Color online) Same as in Fig. 3 but for ω1 = √
2 and

ω2 = 1.41, showing a considerably reduced lattice deformation. Note
that the difference here between ω1 and ω2 is less than 0.3%.
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FIG. 5. (Color online) Simulation results for the hexagonal

potential (8) and the bidimensional driving (4) with ω1 = √
2 and

(b) ω2 = √
2 (periodic driving) and (c) ω2 = 1.41 (quasiperiodic

driving). (a) Shows the 1D current, when the biharmonic driving
is applied in one direction only (x, solid line; y, dashed line), as a
function of the amplitude of the driving in the relevant direction.

is still pronounced at larger driving fields, with driving
amplitude values close to the minima shown in Fig. 2.

A similar behavior is observed for a system with the
following potential:

U (r) = U0[cos(kx) + 2 cos(kx/2) cos(
√

3y/2)], (8)

which produces an hexagonal lattice in the XY plane, being in
addition spatially symmetric in both perpendicular directions.
Figure 5 shows that the decoupling produced by the quasiperi-
odic driving is almost perfect for small driving amplitudes,
allowing a precise control of the current direction.

We have also studied a square lattice. Figure 6 shows the
simulation results for the potential,

U (r) = U0 cos(kx) cos(ky). (9)

Due to the explicit symmetry in the potential between the x

and y directions, the directed current displays the strongest
couplings when the biharmonic driving (4) is applied in
both directions. The coupling is so strong that no significant
improvement is found even with the quasiperiodic driving for
moderate values of the driving amplitudes. Only at very small
driving amplitudes—the values indicated in Fig. 6(a) with
dotted lines—the quasiperiodic driving is able to diminish the
couplings so that a reasonable control of the current direction
is possible. Note that the current values shown in Figs. 6(a)
and 6(b) are very small, and the simulation error bars are
thus of considerable size. Still, it can be observed that the
quasiperiodic driving is able to reduce significantly the large
lattice distortion produced by the couplings.

In fact, we prove in the Appendix that this is a general
result applicable to any spatially periodic system that is also
spatially symmetric in both the x and y directions. A functional
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FIG. 6. (Color online) Simulation results for the square potential
of Eq. (9) and the bidimensional driving of Eq. (4) with ω1 = √

2
and (b) ω2 = √

2 (periodic driving) and (c) ω2 = 1.41 (quasiperiodic
driving). (a) Shows the 1D current when the biharmonic driving is
applied in one direction only as a function of the amplitude of the
driving in the relevant direction. In (b) and (c) the simulation data is
represented by diamonds, with the solid lines being a guide to the eye
connecting the data points. Each data point is estimated to have an
error bar of about 	v = 0.001 in each perpendicular direction (not
drawn for clarity).

expansion in the driving amplitudes shows that the directed
current of a system driven by the forces (4) with ω2/ω1

irrational is, in the first orders in the driving amplitudes Ax

and Ay ,

〈vx〉 = A3
xBx0 cos(φ1 − φx0) + O(5), (10a)

〈vy〉 = A3
yBy0 cos(φ2 − φy0) + O(5), (10b)

where Bx0 (By0) and φx0 (φy0) are independent of the driving
parameters Ax , Ay , φ1, φ2, and ω2 (ω1). Explicit expressions
for the fifth-order terms are given in the Appendix. Therefore,
in the lowest order on the driving amplitudes (A3

x for 〈vx〉 and
A3

y for 〈vy〉), the current contains no coupling between the x

and y directions when the quasiperiodic driving is applied.
In contrast, with the periodic driving ω1 = ω2, the current
contains additional third-order terms such as AxA

2
y in 〈vx〉 and

AyA
2
x in 〈vy〉 (see the Appendix), which makes the control

of the current direction rather difficult for any values of the
driving amplitudes. These considerations are not restricted to
the specific equation of motion (1), since the calculations rely
only on general symmetry considerations.

The observed partial loss of control at large driving
amplitudes can also be explained within the framework of
the dynamical systems theory [18,19]. The robustness of a
quasiperiodic state can be understood by considering the two
phases ψ1, ψ2 as coupled [18]. We refer to the exactly solvable
model,

ψ̇1 = ω1 + f1(ψ1,ψ2), ψ̇2 = ω2 + f2(ψ1,ψ2), (11)

with ω1, ω2 incommensurate frequencies, and f1 and f2

arbitrary coupling functions that are 2π periodic in each
argument. This model is useful to highlight the loss of
quasiperiodicity in the dynamics at large driving amplitudes
which, in our system, leads to loss of control. The key
observation is the dependence of the commensurability of
the observed frequencies �1 = 〈ψ̇1〉 and �1 = 〈ψ̇2〉 on the
coupling functions. It is known that for small coupling f1,2,
the measure of all parameter values for which periodic regimes
(i.e., �1 and �2 commensurate) are observed is small, while
the measure of the corresponding quasiperiodic states is large.
For large f1,2, the measure of the periodic regimes grows,
while that of quasiperiodic regimes decreases. These features
are in agreement with the observed behavior in the 2D driven
systems studied here.

V. CONCLUSIONS

In conclusion, in this work we consider the problem of the
control of transport in higher-dimensional periodic structures
by applied ac fields. In a generic lattice, transverse degrees
of freedom are coupled, and this makes the control of motion
difficult to implement. We show, both with a numerical and a
rather general analytical analysis, that the use of quasiperi-
odic driving significantly suppresses the coupling between
transverse degrees of freedom. Remarkably, this requires tiny
variations of the frequency of the control field, of the order
of few parts per thousand for the case studies presented
in this work. The specific minimum variation required for
quasiperiodic behavior in a real experiment or simulation is
shown to depend on the observation time, as expected.

The dynamical decoupling of degrees of freedom allows a
precise control of the transport, and does not require a detailed
knowledge of the crystal geometry. Our results are of relevance
for the control of transport in higher-dimensional systems in
which direct control, or knowledge, of the substrate geometry
is lacking, as usually encountered in solid-state systems [20].
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APPENDIX: FUNCTIONAL EXPANSION IN THE DRIVING
AMPLITUDES

We follow here the powerful method presented in Ref. [17]
for a one-dimensional spatially periodic and symmetric system
subject to the driving force,

F (t) = A[cos(pωt + ϕ1) + cos(qωt + ϕ2)], (A1)

where p and q are positive integers. The current 〈v〉 = v[F ]
has a functional dependence on F (t), and thus, it can be Taylor
expanded as

v[F ] =
∑
n�0

vn[F ],

(A2)
vn[F ] = {cn(t1, . . . ,tn)F (t1) · · · F (tn)},
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where

{f (t1, . . . ,tn)} ≡ 1

T n

∫ T

0
dt1 · · ·

∫ T

0
dtn f (t1, . . . ,tn), (A3)

T is the period of the driving, and cn functions that can be
chosen totally symmetric under any exchange of their argu-
ments. It is shown in [17] that, when the system symmetries are
taken into account, all terms in (A2) with n < p + q vanish,
giving the lowest order possible contribution at n = p + q.
Therefore, in the quasiperiodic limit, defined as p,q → ∞
and ω → 0, so that qω = ω1,pω = ω2, with ω1 and ω2 two
incommensurate (finite) frequencies, all terms in (A2) vanish,
producing the expected suppression of current.

We can apply this method to a 2D system by using the
expansion (A2) for any component of the current, and then fur-
ther Taylor expanding cn on the other component of the driving
force. We then obtain for the x component 〈vx〉 = vx[F],

vx[F] =
∑
nx�1

v
(x)
nx,0

[Fx,0] +
∑

nxny�1

v(x)
nx,ny

[F], (A4a)

v(x)
nx,ny

[F] = {cnx,ny
(t1, . . . ,tnx

; t ′1, . . . ,t
′
ny

)

×Fx(t1) · · ·Fx(tnx
)Fy(t ′1) · · · Fy(t ′ny

)}, (A4b)

where we have already used the fact that vx[0,Fy] = 0
because of the system symmetries [see Eq. (A7a)], and thus
excluded the possibility nx = 0 from (A4a). The first sum
in the right-hand side of (A4a) contains the terms which are
independent of the transverse driving component Fy(t), while
the second sum accounts for the transverse couplings.

Before continuing, let us state explicitly the basic sym-
metries that we are going to use in the calculation. First,
the potential U (x,y) must be spatially symmetric in both
directions i.e., for each y (x), there must exist a x0 (y0), such
as

U (x0 + x,y) = U (x0 − x,y) for all x, (A5a)

U (x,y0 + y) = U (x,y0 − y) for all y. (A5b)

In this situation, the current can only appear by the application
of a symmetry-breaking driving force, which thus controls the
sign of the current,

vx[−Fx, − Fy] = −vx[Fx,Fy], (A6a)

vy[−Fx, − Fy] = −vy[Fx,Fy], (A6b)

and for each component,

vx[−Fx,Fy] = −vx[Fx,Fy], (A7a)

vy[Fx, − Fy] = −vy[Fx,Fy]. (A7b)

To satisfy the condition (A6a), the functions cnx,ny
in (A4)

have to be identically zero for even values of n = nx + ny .
Similarly, (A7a) implies no contribution in (A4) from terms
with even values of nx . In addition, in dissipative systems, as
the one considered here, the current usually does not depend
on the specific choice of time origin,

vx[F(t + t0)] = vx[F(t)], (A8a)

vy[F(t + t0)] = vy[F(t)], (A8b)

for any t0. In nondissipative systems displaying a strong
dependence on the initial conditions, as in Hamiltonian ratch-
ets [1], the condition (A8) can generally be satisfied either by

averaging over the initial time [7], or by adiabatically switching
on the driving F(t). The implications of (A8) depend on the
explicit form of the driving force. Instead of (4), let us consider
the following—slightly more general—biharmonic driving:

Fx(t) = Ax[cos(ω1t + φ̂1) + cos(2ω1t + φ1)], (A9a)

Fy(t) = Ay[cos(ω2t + φ̂2) + cos(2ω2t + φ2)], (A9b)

where φ̂1 and φ̂2 are new driving phase constants. The
conditions (A8) imply that the current must be invariant under
the following transformation,

φ̂1 → φ̂1 + ω1t0, φ1 → φ1 + 2ω1t0,
(A10)

φ̂2 → φ̂2 + ω2t0, φ2 → φ2 + 2ω2t0,

for any arbitrary t0.
Expanding the cosines in (A9) in complex exponentials

yields

v(x)
nx,ny

[F] =
⊗∑

n�0

Anx

x A
ny

y C(n)ei
(n,φ), (A11)

where n = (n1,n2,n3,n4,n
′
1,n

′
2,n

′
3,n

′
4), the symbol ⊗ denotes

a restriction in the sum to the values of the tuple n such that

n1 + n2 + n3 + n4 = nx,
(A12)

n′
1 + n′

2 + n′
3 + n′

4 = ny,

n � 0 denotes a component-wise inequality,

φ = (φ̂1,φ1,φ̂2,φ2), (A13)

and


(n,φ) = [(n1 − n2)φ̂1 + (n3 − n4)φ1

+ (n′
1 − n′

2)φ̂2 + (n′
3 − n′

4)φ2]. (A14)

C is a complex function of n, ω1, and ω2 that can be traced
back to time integrals of cnx,ny

multiplied by the factors e±iω1tk

and e±iω2t
′
k . Furthermore, it satisfies C(n̂) = C(n)∗, where ∗

denotes complex conjugate, and

n̂ = (n2,n1,n4,n3,n
′
2,n

′
1,n

′
4,n

′
3). (A15)

Thus, for every term in (A11) with tuple n, there is another
term given by n̂ which is just the complex conjugate of the
former, guaranteeing that v(x)

nx,ny
[F] is real.

From Eq. (A11), it is clear that the order of v(x)
nx,ny

[F] is

given by the factor Anx
x A

ny

y , and thus by n = nx + ny .
Notice that the transformation (A10) only affects 
 in

(A11). More specifically, it implies

(n1 − n2) + 2(n3 − n4) + ω2

ω1
[(n′

1 − n′
2) + 2(n′

3 − n′
4)] = 0.

(A16)

Since ω2/ω1 is an irrational number, Eq. (A16) is only satisfied
when

(n1 − n2) + 2(n3 − n4) = 0,
(A17)

(n′
1 − n′

2) + 2(n′
3 − n′

4) = 0.

The restrictions (A17), together with (A12) and the above-
mentioned conditions in nx and n given by (A6a) and (A7a),
determine the possible terms in the expansion (A4a).
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The lowest level in the expansion satisfying the above
conditions is given by v

(x)
3,0[Fx,0], which is obviously inde-

pendent of Fy(t), having a contribution coming from the
tuple n = (2,0,0,1,0,0,0,0) (and its corresponding complex
conjugate n̂), and thus

v
(x)
3,0[Fx,0] = A3

xBx0 cos(φ1 − 2φ̂1 − φx0), (A18)

where Bx0 and φx0 depend on the driving parameters only
through ω1. This is the only third-order term satisfying (A17).
All fourth-order terms are forbidden due to the symmetry
(A6a). In the fifth order, there is one term containing
no transverse coupling, v

(x)
5,0, coming from the tuples n =

(2,0,1,2,0,0,0,0) and (3,1,0,1,0,0,0,0). Then,

v
(x)
5,0[Fx,0] = A5

x[Bx1 cos(φ1 − 2φ̂1 − φx1)

+ Bx2 cos(φ1 − 2φ̂1 − φx2)], (A19)

where Bxj and φxj , with j = 1,2, depend on ω1 only. In this
order, the only surviving coupling term is given by v

(x)
3,2, which

has contributions from the tuples n = (2,0,0,1,1,1,0,0) and
(2,0,0,1,0,0,1,1), yielding

v
(x)
3,2[Fx,Fy] = A3

xA
2
y[B ′

x1 cos(φ1 − 2φ̂1 − φ′
x1)

+ B ′
x2 cos(φ1 − 2φ̂1 − φ′

x2)], (A20)

where now B ′
xj and φ′

xj depend on ω1 and ω2.
Finally, note that when the ratio ω2/ω1 is rational (the

case of periodic driving) there are additional terms that
satisfy (A16). More specifically, for ω1 = ω2 the coupling
term v

(x)
1,2 gives a nonvanishing contribution from the tuples

n = (1,0,0,0,1,0,0,1) and (0,0,0,1,2,0,0,0),

v
(x)
1,2[Fx,Fy] = AxA

2
y

[
B

p

x1 cos
(
φ2 − φ̂1 − φ̂2 − φ

p

x1

)
+ B

p

x2 cos
(
φ1 − 2φ̂2 − φ

p

x2

)]
. (A21)

[1] P. Reimann, Phys. Rep. 361, 57 (2002).
[2] P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).
[3] V. Lebedev and F. Renzoni, Phys. Rev. A 80, 023422 (2009).
[4] F. Marchesoni, Phys. Lett. A 119, 221 (1986).
[5] D. R. Chialvo and M. M. Millonas, Phys. Lett. A 209, 26 (1995).
[6] M. I. Dykman, H. Rabitz, V. N. Smelyanskiy, and B. E.

Vugmeister, Phys. Rev. Lett. 79, 1178 (1997).
[7] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.

84, 2358 (2000).
[8] L. Machura, M. Kostur, and J. Luczka, Chem. Phys. 375, 445

(2010).
[9] D. Cubero, V. Lebedev, and F. Renzoni, Phys. Rev. E 82, 041116

(2010).
[10] A. Wickenbrock, D. Cubero, N. A. Abdul Wahab, P. Phoonthong,

and F. Renzoni, Phys. Rev. E 84, 021127 (2011).
[11] S. Denisov, Y. Zolotaryuk, S. Flach, and O. Yevtushenko, Phys.

Rev. Lett. 100, 224102 (2008).
[12] E. Neumann and A. Pikovsky, Eur. Phys. J. B 26, 219 (2002).
[13] V. I. Arnold, Mathematical Methods of Classical Mechanics

(Springer, New York, 1989).

[14] S. Flach and S. Denisov, Acta Phys. Pol. B 35, 1437
(2004).

[15] R. Gommers, S. Denisov, and F. Renzoni, Phys. Rev. Lett. 96,
240604 (2006).

[16] R. Gommers, M. Brown, and F. Renzoni, Phys. Rev. A 75,
053406 (2007).

[17] N. R. Quintero, J. A. Cuesta, and R. Alvarez-Nodarse, Phys.
Rev. E 81, 030102(R) (2010).

[18] A. Katok and B. Hasselbatt, Introduction to the Modern Theory
of Dynamical Systems (Cambridge University Press, Cambridge,
1995).

[19] U. Feudel, S. Kuznetsov, and A. Pikovsky, Strange Nonchaotic
Attractors, Dynamics between Order and Chaos in Quasiperiod-
ically Forced Systems (World Scientific Publishing, Singapore,
2006).
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