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Steady state of a fluidized granular medium between two walls at the same temperature
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The steady state of a low-density gas of inelastic hard spheres confined between two parallel walls at the
same temperature is studied. Because of the dissipation in collisions, the state is not uniform but highly
inhomogeneous with a nonlinear temperature profile. Direct Monte Carlo simulations show that in the nearly
elastic limit the pressure is uniform, but the state exhibits anisotropy of the diagonal terms of the pressure
tensor, contrary to the predictions of the Navier-Stokes equations. For larger inelasticity, the pressure becomes
nonuniform. These rheological effects, peculiar to granular systems, are explained by means of a model kinetic
equation based on the Boltzmann equation. The equation is solved by constructing a systematic perturbative
expansion in the square root of the degree of inelasticity. The theoretical predictions compare well with the
simulation results for small inelasticity, but they are in conflict for larger values of the degree of inelasticity.
The analysis provides strong evidence that this is due to the asymptotic but divergent character of the expan-
sion, similarly to what happens when the usual Chapman-Enskog expansion is applied to molecular fluids.
@S1063-651X~98!10602-5#

PACS number~s!: 81.05.Rm, 05.20.Dd, 51.10.1y, 47.20.2k
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I. INTRODUCTION

The rapid flow regime of granular media is characteriz
by the free motion of the particles between collisions. T
has led to the consideration of the~macroscopic! grains as
analogous to the particles of a molecular fluid, trying to e
tend to rapid granular flows the well founded theories dev
oped for ordinary fluids out of equilibrium. In this context,
system of smooth inelastic hard spheres is considered
ideal model to study transport and relaxation in rapid gra
lar flows, and hydrodynamiclike equations have been p
posed for this system@1,2#. The equations are similar to th
conventional Navier-Stokes equations, modified to acco
for dissipation in collisions. Nevertheless, the correct inc
sion of the effects following from the lack of energy conse
vation is far from being trivial and a detailed derivation
the equations starting from a fundamental basis is requi
Kinetic theory provides a level of description from which th
validity of a hydrodynamic description, its form, and explic
expressions for the transport coefficients can be determi

The extension to a system of inelastic hard spheres of
Boltzmann equation and also of the Enskog equation is
now well established, both by using heuristic arguments@3–
5# and by starting from the Liouville equation of the syste
@6#. However, the complexity of the kinetic equations f
inelastic systems has required the introduction of largely
controlled approximations when solving them. In particul
the standard Chapman-Enskog method@7#, in which an ex-
pansion in powers of the gradients of the hydrodynam
fields is carried out, cannot be directly applied to a granu
fluid. Time evolution and space gradients are coupled
only among themselves, but also to dissipation and this
very significant consequences. For instance, it is known
freely evolving granular fluids do not reach a steady sta
showing in addition the spontaneous formation of de
clusters@8,9#. Also, when submitted to homogeneous boun
ary conditions, a granular fluid can reach a steady non
form state, as it is the case in the situation to be conside
571063-651X/98/57~2!/2019~11!/$15.00
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here. Gradients are controlled by dissipation in collisions a
not only by the boundary and initial conditions. In this sen
the limit of small gradients of the hydrodynamic fields
closely related to the limit of quasielastic collisions and th
must be taken into account when looking for equations
scribing the hydrodynamic fields.

To allow for a detailed and exact analysis of granu
flows, it is useful to consider model kinetic equations th
preserve the critical features of the original system. Here
will use a model for low-density inelastic gases@10#, ob-
tained as an approximation of the Boltzmann equation. It
previously been applied to steady shear driven states
shown to lead to results in good agreement with simulati
of the Boltzmann equation over a wide range of values of
parameter characterizing dissipation in collisions@11#.

We will consider here the steady state reached by a
tem between two infinite parallel boundaries that are kep
constant temperature. For molecular fluids such a stat
trivial since it is the Maxwellian equilibrium one. Neverthe
less, for granular systems space gradients are develope
the system as a consequence of dissipation in collisions
the steady state is highly inhomogeneous. Closely rela
states have been studied recently. Grossman, Zhou, and
Naim @12# have considered a two-dimensional system
hard disks in a box where one wall was kept at a fixed te
perature and the other three were reflecting. The corresp
ing one-dimensional case had been considered previo
@13#. Grossmanet al. used transport equations, derived b
means of heuristic arguments, which were expected to
scribe both high- and low-density regions. Their analysis
restricted to first order in the gradients~Navier-Stokes order!
and to the quasielastic limit, leading to uniform pressu
Here we will show that the pressure is not uniform, excep
the asymptotic limit of small dissipation.

Steady states of inelastic systems in the presence o
energy source also have been investigated experimentall
considering a system of spherical particles rolling on
smooth rectangular surface@14#. One of the sidewalls was
2019 © 1998 The American Physical Society
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2020 57J. J. BREY AND D. CUBERO
displaced periodically, thus supplying energy to the syst
Hydrodynamic profiles and also clustering away from t
energy source, similar to those obtained in Ref.@12#, were
observed. Nevertheless, the effective coefficient of restitu
was too far from unity to expect a quantitative agreemen

An important phenomenon we have found is the prese
of normal stress differences in our system. This is a w
known effect for both molecular and granular sheared flo
that shows up to Burnett order~expansion of the fluxes up t
second order in the gradients of the hydrodynamic field!,
but, to the best of our knowledge, has not been repo
before in granular systems without velocity flow. In additio
normal stress differences are significant, in the sense
they are already clearly observed for quite small values
the dissipation parameter. This appears to be another u
pected phenomenon peculiar to rapid granular flows and
sociated with rheological effects and not very small dissi
tion. Let us point out that the components of the press
tensor were not considered in any of the studies of rela
steady states mentioned above.

In order to identify the origin of the anisotropy of th
diagonal terms of the pressure tensor and eventually the
uniformity of the pressure, it is necessary to go beyond
Navier-Stokes approximation. As mentioned above, this
very hard task for a general situation because of the c
plexity introduced by the energy sink term@10#. Neverthe-
less, for the state considered here, we can exploit the fact
the gradients are determined by the dissipation param
and the system approaches the equilibrium state in the el
limit. Therefore, an expansion in the dissipation paramete
not only convenient because of practical reasons, but also
only consistent way of carrying out a perturbation expans
of the solution of the kinetic equation for the steady state
similar approach has been previously used by Sela, Gold
sch, and Noskowicz for a sheared two-dimensional gran
gas@15#. Nevertheless, while in the steady sheared state c
sidered by the above authors the only present gradient,
shear rate, is constant throughout the system, in the st
state we will deal with all the hydrodynamic fields, whic
are, in principle, highly nonuniform. Consequently, we ha
to include in our description space derivatives of ord
higher than one.

We have also investigated the same state by means o
direct Monte Carlo simulation method@16#, which has been
developed to obtain numerical solutions to the Boltzma
equation and can be also applied to the case of inela
collisions @11,17#. The numerical results agree very we
with the predictions of the model kinetic equation in the lim
of very small inelasticity, while the agreement is only qua
tative for larger values of the inelasticity. This is due n
only to the simplification inherent to the model kinetic equ
tion but also, and mainly, to the asymptotic character of
series expansion carried out. The indication following fro
our calculations is that such an expansion is divergent, a
the case of the usual Chapman-Enskog expansion@18#.

The structure of the paper is as follows. In Sec. II t
kinetic model is briefly reviewed and the steady state to
studied is introduced. In addition, the Navier-Stokes appro
mation is discussed. We believe that this is important in
der to establish that it is appropriate only in the limit of ve
small dissipation and to motivate the series expansions
.
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ried out in Sec. IV. Direct Monte Carlo simulation results a
presented in Sec. III. It is shown that normal stress diff
ences appear for quite small values of the inelasticity a
that, for slightly larger values, the pressure is not uniform
well. The series expansion solution to the model kine
equation developed in Sec. IV correctly describes the ani
ropy effect, but fails to give a correct prediction for the i
homogeneity of the pressure. The reasons for this conflict
discussed. A comparison of theory and simulation is a
carried out for the one-particle distribution function. Th
agreement is excellent at very low dissipation and for th
mal velocities. Finally, Sec. V provides a short summary a
conclusions.

II. THE KINETIC MODEL AND THE NAVIER-STOKES
APPROXIMATION

The kinetic model we will use has been introduced
cently as a simplification of the Boltzmann equation. Sin
the details of its motivation and derivation are describ
elsewhere@6,10#, we give only the results here. The mod
kinetic equation for the one-particle distribution functio
f (r ,v,t) of a low-density granular gas of smooth hard dis
(d52) or spheres (d53) of diameters and massm, whose
collisions are characterized by a constant coefficient of r
titution a, is

]

]t
f 1v•¹f 52n~ f 2 f l !2

1

nkBT
~12a2!w~V!v@ f u f # f l ,

~1!

where

V~r ,t !5v2u~r ,t !, ~2!

w~V!5
mV2

dkBT
21, ~3!

and f l is the local equilibrium distribution

f l~r ,v,t !5nS m

2pkBTD d/2

expS 2
mV2

2kBTD . ~4!

Moreover,n is an effective frequency given by

n5Cnsd21S pkBT

m D 1/2

, ~5!

with C being a dimensionless constant to be fixed later
andv@ f u f # a source term describing the rate of dissipation
collisions. It is a functional of the distribution function de
fined by

v@g,h#5
mp~d21!/2sd21

8GS d13

2 D E dv1dv2uv12v2u3g~v1!h~v2!

5v@hug#. ~6!

In the above expressions,n is the local number density,u is
the local flow velocity, andT is the local temperature. The
are defined in terms off (r ,v,t) in the usual way,

n~r ,t !5E dv f ~r ,v,t !, ~7!
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57 2021STEADY STATE OF A FLUIDIZED GRANULAR MEDIUM . . .
n~r ,t !u~r ,t !5E dv vf ~r ,v,t !, ~8!

d

2
n~r ,t !kBT~r ,t !5E dv

1

2
mV2~r ,t ! f ~r ,v,t !. ~9!

From Eq.~1! the balance equations for mass, momentu
and energy are obtained by taking the appropriate velo
moments,

]n

]t
1¹•~nu!50, ~10!

]u

]t
1u•¹u1~nm!21¹•P50, ~11!

d

2
nkB

]T

]t
1

d

2
nkBu•¹T52P:~¹u!2¹•q2~12a2!v.

~12!

The pressure tensorP and the heat fluxq are given by

P~r ,t !5E dv mVV f ~v,r ,t !, ~13!

q~r ,t !5E dv
mV2

2
V f ~v,r ,t !. ~14!

Let us point out that the balance equations are prese
by the model. Not only do they have the same form as
tained from the Boltzmann equation, but also the fluxesP
andq and the source termv are given by the same function
als of the distribution function. We want to investigate t
properties of a steady state with no macroscopic velo
field. In addition, we consider a geometry of the system s
that there are gradients in only one direction, chosen as tx
axis. It is convenient to introduce a new scales defined by

s~x!5E
0

x

dx8n~x8!. ~15!

In terms of it, particularization of Eq.~1! for the steady state
reads

vx

]

]s
f ~s!52 f ~s!1 f l

~s!2~12a2!
v~s!

n~s!kBT~s!n~s!
w~s!~v ! f l

~s! .

~16!

The superscripts indicates that the quantity refers to th
steady state. Then the local equilibrium distributionf l

(s) is
particularized foru50, n5n(s)(s), andT5T(s)(s). Further-
more, when applied to this steady state, Eq.~10! is verified
identically, while Eqs.~11! and ~12! reduce to

]

]s
Pxi

~s!50 ~17!

for all i and
,
ty

ed
-

y
h

]

]s
qx

~s!52~12a2!
v~s!

n~s!
. ~18!

In the remainder of this section we are going to consider
Navier-Stokes approximation, in which the pressure ten
and heat flux are given by@6,10,19#

Pi j 5pd i j 2hS ¹iuj1¹jui2
2

d
d i j ¹•uD , ~19!

qi52l¹iT2m¹in, ~20!

wherep5nkBT is the hydrostatic pressure,h the shear vis-
cosity, l the thermal conductivity, andm a coefficient that
has no analog for elastic fluids and vanishes in the limita
51. The values of these transport coefficients are

h52h0~22g!21, l5l0~122g!21,

m5
2l0T

n
g~122g!21~223g!21, ~21!

with

g5~12a2!
2p~d22!/2

CdGS d

2D . ~22!

Here h05p/n and l05(d12)kBp/2nm are the shear vis-
cosity and thermal conductivity in the elastic limit, respe
tively.

Thus, in the Navier-Stokes approximation we have fro
Eq. ~19!

Pi j
~s!5p~s!d i j ~23!

and Eq. ~17! implies that the pressure is uniform in th
steady state. Equation~20! leads to

qx
~s!52a~g!p~s!

]

]s
T~s!~s!, ~24!

where

a~g!5
~d12!~225g!kB

2m~122g!~223g!
. ~25!

When the above expression for the heat flux is substitu
into Eq. ~18!, an equation for the temperature profile is o
tained,

]2

]s2
T~s!~s!5

gd

2a~g!
. ~26!

In the case of elastic collisions, the right-hand side of t
equation vanishes and one recovers the linear ins tempera-
ture profile characteristic of molecular gases. Neverthel
let us note the qualitative difference between the linear
the quadratic terms in the expression of the temperature
file. While the coefficient of the former is determined by th
boundary conditions, the coefficient of the latter is a giv
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2022 57J. J. BREY AND D. CUBERO
function of the coefficient of restitutiona and does not de
pend on the nature of the boundaries of the system. A
consequence, the steady states of a granular fluid with
ishing flow velocity are intrinsically inhomogeneous. This
closely related to the fact that the homogeneous state o
isolated granular fluid, the homogeneous cooling state
characterized by a monotonically decreasing in time te
perature@1,9,17#. An important consequence of Eq.~26! is
that gradients and dissipation in collisions, measured by
restitution coefficient, are not independent. Therefore, ret
ing contributions up to a given order in one of them impli
a limitation also in the range of values of the other.

In order to fully specify the model, we have to fix th
value of the constantC appearing in the expression of th
effective collision frequencyn, Eq. ~5!. Since the heat flux is
the only macroscopic flux in our system, a sensible cho
appears to be to require that the model gives the same v
for the Navier-Stokes thermal conductivity in the elas
limit a51 as the Boltzmann equation. This leads toC.1
for d52 andC.32/15 ford53 @7#.

Grossmanet al. @12# have studied a system of nearly ela
tic hard disks in a steady state similar to the one we
dealing with here. By using heuristic arguments, they obt
an equation for the density profile, which in the low-dens
limit is equivalent in our notation to

T~s!1/2
]

]xS T~s!1/2
]

]x
T~s!D5

8~12a2!s2p~s!2

lkB
2

. ~27!

Here l is an unknown parameter whose value is determi
by the authors by fitting molecular-dynamics simulation d
obtained fora*0.99. They getl .6.03.

It is easily verified that Eq.~26! can also be written in the
form of Eq. ~27! with

l 5
16~225g!

Cp~122g!~223g!
, ~28!

which for 0.99<a<1 andC51 leads to values ofl in the
interval 5.09& l &5.30, which are close to the value found
Ref. @12#. Nevertheless, in the present calculation, which
not restricted to the quasielastic limit,l depends quite
strongly on the value of the restitution coefficienta.

III. DIRECT MONTE CARLO SIMULATION

To test the theoretical predictions obtained in the prec
ing section, we have carried out direct Monte Carlo simu
tions of the Boltzmann equation for an inelastic gas. T
simulation method has been applied extensively in the c
of molecular gases@16# and can be easily extended to gran
lar flows @11,17#. We refer the reader to the literature for th
details of the method.

We considered a dilute system ofN smooth inelastic hard
disks between two infinite plates perpendicular to thex axis
and separated by a distanceL. The two plates were treated a
diffusive thermal walls at a temperatureTW . This is imple-
mented in the simulation by assigning to the particles, a
collision with the walls, a velocity drawn from the Maxwel
Boltzmann distribution at temperatureTW @20,21#. Periodic
boundary conditions were applied in they direction, perpen-
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dicular to the thermal walls. The system was split intoM
5MxM y square cells of the same size. We took advantag
the symmetry of the system and the number of cells in thy
direction,M y , was smaller than in thex direction,Mx . The
initial state was taken to be homogeneous, i.e., all cells
the same number of particlesNc5N/M , and the velocities
were distributed according to a Maxwellian with temperatu
TW . Reduced units defined bym51, kBTW51/2, and l

51, wherel 5@2A2n(0)s#21 is the initial mean free path
were used. The time step over which it is assumed in
simulation that free motion and collisions are not correla
was taken to beDt50.2. In all the simulations the values o
the parameters wereL530, Mx5120, M y510, and Nc
530.

After an initial transient time, the system reached a ste
state in which the averages over different trajectories of
properties of the system became time independent. The
sults we will report in the following correspond to time a
erages over a number of trajectories once the system wa
the steady state. Let us first consider the limit ofa very close
to unity, namely,a>0.99. In Figs. 1 and 2 we present th
results obtained for the pressure tensor and the tempera
for a50.99, as a function of the scaled coordinates. The

FIG. 1. Profiles of the diagonal components of the pressure
sor Pi i in the steady state fora50.99. The crosses correspond
Pxx and the circles toPyy . The solid line is the hydrodynamic
pressurep. Distance is measured on the scales defined in the text.
The lowest temperature in the system isTmin.0.57TW , while the
highest density isnmax.1.15n(0).

FIG. 2. Slope of the temperature profile as a function of
position for the same state as in Fig. 1. Quantities are measure
the reduced units defined in the main text.
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57 2023STEADY STATE OF A FLUIDIZED GRANULAR MEDIUM . . .
results have been averaged over 100 trajectories. The o
for x ~and for s) has been taken at the same distance fr
both walls. Therefore, the system is symmetric arounds
50. It is seen that, outside the boundary layers, the pres
is uniform and the temperature profile is accurately descri
by a parabola, as predicted by Eq.~26!. The solid line in Fig.
2 is the numerical fit used to determine the value
]2T(s)/]s2 in the bulk. Nevertheless,Pxx

(s) is clearly larger
than Pyy

(s) , contrary to the prediction of the Navier-Stoke
approximation~23!. Although the boundary layers can b
studied in detail by applying the same methods as develo
for molecular gases, they will not be discussed here.

As a quantitative test, we have plotted in Fig. 3 the sim
lation values of]2T(s)/]s2 and also the theoretical expre
sion, i.e., the right-hand side of Eq.~26!, as a function of
g(a), for a>0.99. This will be referred to as the quasiela
tic region in the following. The simulation values have be
obtained by fitting the numerical data for]T(s)/]s to a
straight line as indicated in Fig. 2. It is seen that the agr
ment is excellent. Nevertheless, let us note that over
range of values ofg shown, theg dependence of the facto
a(g) appearing in Eq.~26! is negligible and the curves ob
tained with a(g) and a(0) are indistinghishable over th
scale of the figure. In other words, the right-hand side of
~26! can be accurately approximated by a linear function
g in the quasielastic region. What happens when the valu
a is decreased below the quasielastic region? The anisot
of the diagonal terms of the pressure tensor increases a
pected, but, in addition, the hydrodynamic pressure beco
nonuniform in the bulk of the system. The nonuniformi
comes from thePyy

(s) component, while thePxx
(s) component

remains homogeneous, as required by the exact balanc
momentum~17!. As an example, we present in Fig. 4 th
components of the pressure tensor as functions of the sc
positions for a50.95. The slope of the temperature for t
same situation is shown in Fig. 5. There is a small but p
ceptible curvature, indicating that the Navier-Stokes appro
mation is no longer valid for the temperature either. Nev
theless, let us mention that if the slope of the temperatur
the bulk is approximated by a straight line, the resulting n
merical value for the second derivative of the temperatur

FIG. 3. Second derivative of the temperature with respect to
scaled positions as a function of the dissipation parameterg51
2a2. The crosses are values obtained from simulation by fitting
bulk data as in Fig. 2 and the solid line is the prediction of t
Navier-Stokes approximation~26!. Quantities are measured in th
reduced units defined in the text.
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close to the prediction of Eq.~26!. This is easily understood
since the temperature gradient is still very small in the b
of the system.

We have investigated the behavior of the system up
a50.8 and in all cases a steady state similar to that foa
50.95 is reached. The main effect of decreasing the valu
a is to increase the anisotropy of the pressure tensor and
the influence of higher-order terms in the temperature pro
In the simulations we have also computed the one-part
distribution function of the system. The results will be di
cussed in Sec. IV.

In the above figures we have presented the hydrodyna
profiles as functions of the scaled variables. This is a con-
venient representation in order to carry out a compari
with the predictions of our model kinetic equation. O
course, it is possible to relates to the spatial coordinatex by
means of the definition of the former, Eq.~15!. This can be
done using the hydrodynamic profiles obtained from
simulation and evaluating the integral numerically. Altern
tively, we can use the theoretical profiles provided by E
~23! and ~26!. In this latter case we only need the values
the temperature at the originT(0) and the pressure in th
bulk p. In Fig. 6 we have plotteds as a function ofx for the
system witha50.99. It is seen that the predictions of th
theory match very well the numerical data over all the s
the system. To avoid misunderstandings, let us note that
variable s is measured from the center of the system a
therefore the influence of the boundary layers is reduced

Due the complexity of the hydrodynamic profiles in th
steady state, we have not been able to construct an e

e

e

FIG. 4. Same as Fig. 1 fora50.95. Now it isTmin.0.14TW and
nmax.1.18n(0).

FIG. 5. Same as Fig. 2 fora50.95.
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2024 57J. J. BREY AND D. CUBERO
solution to the model kinetic equation describing the state
arbitrary values of the restitution coefficient. Therefore,
order to try to understand the origin of the rheological effe
observed in the simulation, it seems worthwhile to look fo
perturbative solution. Given that in the steady state we
considering the gradients of the hydrodynamic fields are
duced by the inelasticity in collisions, an expansion in t
latter seems the more appropriate one. This will be the s
ject of the next section.

IV. EXPANSION IN THE DISSIPATION PARAMETER

The distribution function of the steady state is given
the solution of Eq.~16!, which can be we written in the
equivalent form

vx

]

]s
f 52 f 1 f l2e

2v

dnkBn

]

]T
f l , ~29!

wheree[12a2 is the degree of inelasticity. In addition, i
order to simplify the notation we have omitted the sup
scripts and here and in the following]/]T (]/]n) is under-
stood to be taken at constant density~temperature!.

We are going to use a modified Chapman-Enskog exp
sion method to get a solution of Eq.~29! in the form of a
series expansion arounde50. The physical reason is that w
are interested in a system whose boundaries are kept at
stant temperature. In such a situation, we know that, negl
ing boundary effects, the only steady state for an elastic
corresponds to~uniform! equilibrium given by the Maxwell-
Boltzmann distribution. Therefore, the gradients presen
the steady state of a granular fluid must be functions oe
vanishing in the limite→0. Then we formally expand

f 5 f 01e1/2f 11e f 21e3/2f 31••• ~30!

and

]

]s
5e1/2]11e]21e3/2]31•••. ~31!

In particular, for the temperature and the density we cons

]T

]s
5e1/2]1T1e]2T1e3/2]3T1•••, ~32!

FIG. 6. Scaled variables as a function of the spatial coordina
x ~both in reduced units! for a50.99. The symbols are simulatio
results and the solid line is the prediction of the theory.
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]s
5e1/2]1n1e]2n1e3/2]3n1•••. ~33!

The expansion in powers ofe1/2 is motivated by the re-
sults obtained in the Navier-Stokes approximation discus
in Sec. II, which are expected to be valid in the asympto
limit e→0. There it was found@see Eq.~26!# that ]2T/]s2

;e, i.e., ]T/]s;e1/2. Moreover, the pressure was uniform
so that the leading contribution to]n/]s is also of the same
order e1/2. Then, from Eq.~29! it follows that a balance to
ordere1/2 is possible only iff has contributions of that order
In any case, the verification of the consistency conditions
be discussed below will indicate whether the expansions
correct, at least up to the order considered in the calculati
Of course, a different question is the convergence of
expansion. We will return to this point at the end of th
section.

When the expansion in Eq.~30! is introduced into the
expression ofv, Eq. ~6!, one gets

v@ f u f #5v01e1/2v11ev21e3/2v31•••, ~34!

with

v05v@ f 0u f 0#, v152v@ f 0u f 1#,

v25v@ f 1u f 1#12v@ f 0u f 2#, . . . . ~35!

Substitution of Eqs.~30!, ~31!, and ~34! into Eq. ~29! and
equating coefficients of the same power ofe1/2 leads to the
equations

f 05 f l , ~36!

f 152vx]1f l , ~37!

and

f r52vx(
q51

r

]qf r 2q2
2v r 22

dnkBn

]

]T
f l ~38!

for r>2. From Eq.~36! it follows that to zeroth order the
distribution function is the local equilibrium one and the co
responding contributions to the pressure tensor and heat
defined by Eqs.~13! and ~14! are

P0,i j 5pd i j , q050. ~39!

Since the local equilibrium distribution reproduces,by
definition, the exact values of the hydrodynamic fields, w
have the consistency conditions

E dvf r5E dv vf r5E dvv2f r50 ~40!

for r>1. When applied tof 1, given by Eq.~37!, these con-
ditions require

n]1T1T]1n50, ~41!

i.e., ]1p50. Then one gets

f 1~s,v!52vx]1TS ]

]T
2

1

TD f l ~42!

and

P1,i j 50, q1,i5d ix

~d12!nkB
2T

]1T. ~43!

2m
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To obtain f 2 we needv0 defined in Eq.~35!. A simple
calculation gives

v05
d

2
g̃pn, ~44!

where we have introducedg̃[g/e, with g given by Eq.~22!.
Then, from Eq.~38! with r 52 we get

f 2~s,v!52vx]2T
]

]T
f l2vx~]2n!

f l

n
1vx

2~]1
2T!S ]

]T
2

1

TD f l

1vx
2~]1T!2S ]2

]T2
2

2

T

]

]T
1

2

T2D f l2 g̃T
]

]T
f l .

~45!

The consistency conditions to this order read

]2p50, ]1
2T5

g̃md

~d12!kB
. ~46!

In fact, the above equation for the temperature grad
can also be obtained by substituting the expression of
heat flux to first order~43! into the energy conservation law
~18! and by restricting ourselves to first order ine. A similar
test can be carried out to each perturbation order to verify
self-consistency of the calculations. The results for the p
sure tensor and heat flux contributions are

P2,i j 5d i j pS kB

m
]1

2T2 g̃ D1d i j d ix

2kBp

m
]1

2T

52d i j p
2g̃

~d12!
~12d ixd!, ~47!

q2,i52d ix

~d12!nkB
2T

2m
]2T. ~48!

Upon writing Eq. ~47! we have used Eqs.~46!. Therefore,
anisotropy of the diagonal terms of the pressure tensor
pears to ordere. Note that it is associated with a contributio
of second order in the temperature gradient to the pres
tensor. Hence a description at the level of the Navier-Sto
approximation cannot predict the normal stress differenc
in agreement with the results obtained in Sec. II. Combi
tion of Eqs.~39!, ~43!, ~47!, and ~48! provides expression
for the pressure tensor and the heat flux, valid up to fi
order ine,

Pi j 5d i j pF12~12d ixd!
2g

d12G , ~49!

qi52d ix

~d12!nkB
2T

2m

]T

]s
. ~50!

Therefore, the normal stress ratio in this approximation
given by

Pxx

Pyy
511g

2d

d12
. ~51!
nt
e

e
s-

p-

re
s
s,
-

t

s

When these expressions for the fluxes are used in the
servation laws~17! and ~18!, the following equations deter
mining the hydrodynamic profiles are obtained:

]p

]s
50,

]2T

]s2
5g

md

~d12!kB
. ~52!

Since the theory still predicts uniform pressure at this
der, it is clear that the range of applicability of the abo
results is restricted to values ofe lying in the quasielastic
region as characterized in Sec. III, i.e.,a*0.99. The equa-
tion for the temperature profile coincides with the lineariz
tion in g of the one derived in the Navier-Stokes approxim
tion ~26!. Therefore, we already know from the discussion
Sec. III that it accurately fits the simulation results in t
limit of quasielasticity. In Fig. 7 the ratioPxx /Pyy is plotted
as a function ofg. The crosses correspond to the dire
Monte Carlo simulation results and have been obtained
space averaging in the bulk. The values of the simulat
parameters are the same as in the previous figures. The
tinuous line is the theoretical prediction given by Eq.~51!. It
is seen that the theory describes qualitatively well the as
metry of the diagonal components of the pressure tensor,
there is a clear quantitative discrepancy. This is not surp
ing sinceg is proportional to the inverse of the constantC
appearing in the expression of the effective collision f
quency, Eq.~5!. We have fixed its value by requiring th
model to reproduce the Boltzmann heat conductivity in
absence of dissipation and then takingC.1. If we would
have chosenC to give the same value as the Boltzma
equation for the shear viscosity, it should beC.2 and we
would have a much better agreement for the component
the pressure tensor. Nevertheless, it is clear from Eq.~52!
that the agreement for the temperature profile should
worse in this case. This is a well known limitation of sing
relaxation models of the Boltzmann equation. They can
reproduce simultaneously the correct shear viscosity and
correct heat conductivity.

Let us now consider the distribution function. Figure
depicts the marginal velocity distribution forvy , the compo-
nent of the velocity parallel to the thermal walls. The coe

FIG. 7. Ratio of normal stressesPxx /Pyy as a function of the
dissipation parameterg512a2. The solid line corresponds to th
present theory and the crosses are results from the Monte C
simulation. The dotted line is a linear fit of the data.



e-

sib
io

re

O

he

v
n
re
a
m
o
b

re
th
v-
lts

ases
and

ior
to
ipa-
ri-
ave

is
ote
n in
sor

by

a
st
d
d

e
t

led
re.

2026 57J. J. BREY AND D. CUBERO
ficient of restitution isa50.99 and the results shown corr
spond to the layer located ats524.59 (x5212.62). This
position has been chosen such that it is as far as pos
from the center of the system, but still inside the bulk reg
where the pressure is constant~see Fig. 1!. Similar results are
obtained at other positions in the bulk. The solid line cor
sponds to the integration with respectvx of the solution of
the model up to ordere, f (2)5 f l1e1/2f 11e f 2. It is seen that
the agreement is excellent in the velocity range shown.
course, the distributions is symmetric aroundvy50, as re-
quired by the own symmetry of the system. On the ot
hand, the marginal distribution for the velocityvx perpen-
dicular to the thermal walls is asymmetric~see Fig. 9!. This
reflects that particles coming from the nearest wall ha
more energy that those coming from the most distant o
The asymmetry of the distribution function can be mo
clearly appreciated by plotting the ratio between the m
ginal distribution and the corresponding local equilibriu
distribution f l ,x(vx), as shown in Fig. 10. There it is als
seen that the agreement between theory and simulation
comes much worse when large velocities are conside
This is to be expected since in our model kinetic equation
evolution of the one-particle distribution function is go
erned by only the first five velocity moments. Similar resu

FIG. 8. Marginal distributions for the velocity componentvy

perpendicular to the gradients. The symbols are simulation data
the solid line results of the present theory. The coefficient of re
tution is a50.99 and we have considered the gas layer locate
x5212.62. Quantities are measured in the reduced units define
the text.

FIG. 9. Marginal velocity distribution in the direction of th
gradients. The system and location of the layer considered are
same as in Fig. 8.
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are found in other cases, although the asymmetry incre
as the distance from the center of the system increases
also as the coefficient of restitution decreases.

Given the accuracy of our model to describe the behav
of the system in the quasielastic limit, it is tempting to try
extend the above calculations to the case of stronger diss
tion. In particular, it should be interesting to explain the o
gin of the inhomogeneity of the pressure. Therefore, we h
evaluated the third- and fourth-order contributions in thee1/2

expansion of the distribution function. The derivation
straightforward but lengthy and tedious, and we only qu
the results here. Some details of the calculations are give
the Appendix. The final expressions for the pressure ten
and the heat flux, valid up to ordere2, are

Pi j 5d i j pH 12~12d ixd!F 2g

d12
1

3g2~24d21d12!

2~d12!3 G
2~12d ixd!

3g~1514d!kB

16d~d12!mTS ]T

]sD 2J , ~53!

qi52d ix

nkB
2T

m Fd12

2
1

4g~2d218d21!

d12 G]T

]s
. ~54!

Equations for the pressure and the temperature follow
substituting the above expressions into Eqs.~17! and~18!. Of
course, terms of order higher thang5/2 have to be consis-
tently neglected. The result is

]p

]s
52p

2b~g!~d21!kB

dm

]

]sF1

TS ]T

]sD 2G , ~55!

]2T

]s2
5c~g!1b~g!

1

TS ]T

]sD 2

, ~56!

where

b~g!5g
3~1514d!

32~d12!
, ~57!

c~g!5Fg
d

d12
2g2

64d31253d2238d

4~d12!3 G m

kB
. ~58!
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FIG. 10. Same as Fig. 9, but the marginal distribution is sca
with the Maxwellian defined by the local density and temperatu
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A comparison of the terms of orderg with those of orderg2,
for instance, in the expression ofc(g), shows that the nu-
merical coefficients of the latter are much larger than th
of the former. This clearly indicates that the expansion
have carried out, although probably asymptotic, is diverge
In fact, if one compares the predictions of Eqs.~55! and~56!
with the simulation results fora50.99, worse agreemen
than by using thee approximation is obtained. Similar be
havior has been found in the usual Chapman-Enskog ex
sion applied to a molecular fluid under uniform shear flo
@18#.

Equation~55! deserves several comments. A simple e
mation of the terms appearing on the right-hand side lead
]p/]s}s, with a negative constant of proportionality. Ther
fore, it predicts a pressure profile with a curvature that
opposite sign to the one observed in the simulations~see Fig.
4!. Although the origin of this strong discrepancy is n
clear, we think that it is due to the divergent character of
e1/2 expansion and not to the inaccuracy of the model kine
equation. This is a point that deserves future work.

V. CONCLUSIONS

The objective of this work has been to study an inhom
geneous steady state of a granular fluid with homogene
boundary conditions. The existence of such a state is a
sequence of the inelastic character of collisions and has
analog in molecular fluids. By means of direct Monte Ca
simulations, it has been shown that the system exhibits
isotropy of the diagonal elements of the pressure tensor.
rather unexpected effect for a system without velocity fl
appears even in the low dissipation limit, in which the pre
sure is uniform in the bulk, i.e., outside the boundary laye
The observation of the normal stress differences and
identification of its origin is one of the central physical r
sults presented here. We have also studied the velocity
tribution function, which is non-Gaussian and asymmet
presenting an overpopulation of particles coming from
nearest wall with large velocities.

In the quasielastic region, roughly defined by a coeffici
of restitution larger than 0.99, the simulation results are
curately described, both qualitatively and quantitatively, b
simple model kinetic equation proposed recently@6,10#. This
refers not only to the hydrodynamic fluxes and fields, b
also to the more detailed information provided by the vel
ity distribution, at least in the region of thermal velocitie
Nevertheless, this requires going beyond the Navier-Sto
approximation. In fact, the peculiarity of the state under c
sideration makes more appropriate an expansion in pow
of the inelasticity parameter than the usual Chapman-Ens
expansion in the gradients of the hydrodynamic fields. T
is a consequence of the strong coupling between gradi
and dissipation or, more precisely, of the fact that gradie
are induced by the inelastic character of collisions. In
limit of zero inelasticity the equilibrium solution of the Bolt
zmann equation is recovered. This renders a perturbative
proach in powers ofe1/2 possible.

However, it must be pointed out that the usefulness of
kind of expansion can be limited since our results stron
suggest that they are asymptotic but divergent. This does
mean that the model kinetic equation is not relevant for
e
e
t.
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description of low-density granular fluids with strong inela
ticity, but that we must look for solutions that are valid in th
nonperturbative regime. In fact, this procedure has prove
be very fruitful for molecular gases@23#.
Finally, let us stress that although our study has been
stricted to a low density granular fluid, there is no reason
expect that the reported effects are negligible for hig
density granular fluids. In fact, the presence of highly inh
mogeneous spatial distributions already has been noted
where@12# and we believe that the asymmetry of the norm
components of the pressure tensor is also present and ca
analyzed both theoretically, by means of the extension of
present model to the revised Enskog kinetic theory@6#, and
by using molecular-dynamics simulation.
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APPENDIX: THIRD- AND FOURTH-ORDER
CONTRIBUTIONS

The expression forf 3 containsv1. Using Eq.~42! in the
expression ofv1 given by Eq.~35! we have

v152
msd21p~d21!/2

4GS d13

2 D ]1TE dv1E dv2uv12v2u3

3 f l~v1!v2xS ]

]T
2

1

TD f l~v2!50 ~A1!

since the integrand is odd with respect to the changev1 ,v2
→2v1 ,2v2. This is an expected result sincev is a scalar
that cannot couple linearly tof 1, which is a vector. Then,
from Eq. ~38! we get

f 3~s,v!52vx]3f l2vx]2f 12vx]1f 2

52vx]3f l1vx
2~]2]11]1]2! f l

2vx
3]1

3f l1 g̃vx]1S T
]

]T
f l D . ~A2!

Although the above expression can be written in a more
plicit form, we have found it more suitable for calculation
Let us consider the consistency conditions~40!. For the first
one we have

E dv f 3~s,v!5]3E dv vxf l1~]2]11]1]2!E dv vx
2f l

2]1
3E dv vx

3f l1 g̃ ]1S T
]

]TE dv f l D
5~]2]11]1]2!

nkBT

m
, ~A3!

which vanishes identically since we have previously o
tained]1p5]2p50 @see Eqs.~41! and ~46!#. Similarly, we
get
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E dv v i f 3~s,v!52d ix]3

nkBT

m
2d ix]1

3
3nkB

2T2

m2

52d ix]3

nkBT

m
~A4!

because

]1
3~nkB

2T2!5nkBT]1
3T5nkBT]1]1

2T50, ~A5!

where we have used again that]1p50 and also that]1
2T,

given by Eq.~46! is a constant. Therefore, the second co
sistency condition requires that]3p50, i.e., the pressure i
also uniform to this order. Finally, we have

E dv v2f 3~s,v!5~]2]11]1]2!~d12!
nkB

2T2

m2

5~d12!
nkB

2T

m2
~]2]11]1]2!T ~A6!

and the condition for the temperature yields

~]2]11]1]2!T50. ~A7!

The meaning of this condition is clear when one conside

]2T

]s2
5~e1/2]11e]21e3/2]31••• !~e1/2]11e]2

1e3/2]31••• !T

5e]1
2T1e3/2~]1]21]2]1!T

1e2~]1]31]2
21]3]1!T1O~e5/2!. ~A8!

It follows that Eq.~A7! is equivalent to saying that there
no contribution of ordere3/2 to ]2T/]s2. Calculations of the
same type as shown above lead to the results

P3,i j 50, ~A9!

q3,15d ix

nkB
2T

m
Fd12

2
]3T1

4~2d218d21! g̃

d12
]1TG .

~A10!

To obtain the expression ofv2, defined in Eq.~35!, one
has to evaluate a rather large number of Gaussian integ
This can be done quite efficiently by using a computer pa
age of symbolic calculation. In particular, we have us
MATHEMATICA @22#. The results are

v@ f 1u f 1#5
3p~d21!/2n2sd21kB

5/2T1/2

32dGS d

2Dm3/2

~]1T!2, ~A11!
-

ls.
-

d

v@ f 0u f 2#5
3p~d21!/2n2sd21kB

5/2T1/2

32dGS d

2Dm3/2

F 4g̃dmT

~d12!kB

1~712d!~]1T!2G , ~A12!

and hence

v25 g̃pnF 3dg̃

8~d12!
1

3~1514d!kB

64mT
~]1T!2G . ~A13!

Once the expression ofv2 is known we can constructf 4
using Eq.~38! and from it determine the consistency cond
tions and the contributions to the heat flux and the press
tensor. The consistency conditions are

]4p50, ~A14!

~]3]11]2
21]1]3!T52 g̃2

~64d21253d238!dm

4~d12!3kB

1 g̃
3~1514d!

32~21d!T
~]1T!2, ~A15!

while the result for the fluxes is

P4,i j 52d i j ~12dd ix!pF g̃2
3~24d21d12!

2~21d!3

1 g̃
3~1514d!kB

16d~d12!mT
~]1T!2G , ~A16!

q4,i52d ix

nkB
2T

m Fd12

2
]4T1 g̃

4~2d218d21!

d12
]2TG .

~A17!

To obtain the expression for the pressure tensor valid
to ordere4 we only have to collect the terms given by Eq
~39!, ~43!, ~47!, ~A9!, and~A16!,

Pi j 5P0,i j 1e1/2P1,i j 1eP2,i j 1e3/2P3,i j 1e2P4,i j 1O~e5/2!

5d i j ~12dd ix!pH 12
2g̃

d12
~12d ixd!e

2 g̃2F3~24d21d12!

2~21d!3
1 g̃

3~1514d!kB

16d~d12!mT
~]1T!2Ge2

1O~e5/2!J . ~A18!

Finally, using the relationg5 g̃ e and taking into account the
form of the expansion of the gradients~31! and ~32!, the
above expressions are seen to be equivalent to Eqs.~53! and
~54! to fourth order ine1/2.
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