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Steady state of a fluidized granular medium between two walls at the same temperature
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The steady state of a low-density gas of inelastic hard spheres confined between two parallel walls at the
same temperature is studied. Because of the dissipation in collisions, the state is not uniform but highly
inhomogeneous with a nonlinear temperature profile. Direct Monte Carlo simulations show that in the nearly
elastic limit the pressure is uniform, but the state exhibits anisotropy of the diagonal terms of the pressure
tensor, contrary to the predictions of the Navier-Stokes equations. For larger inelasticity, the pressure becomes
nonuniform. These rheological effects, peculiar to granular systems, are explained by means of a model kinetic
equation based on the Boltzmann equation. The equation is solved by constructing a systematic perturbative
expansion in the square root of the degree of inelasticity. The theoretical predictions compare well with the
simulation results for small inelasticity, but they are in conflict for larger values of the degree of inelasticity.
The analysis provides strong evidence that this is due to the asymptotic but divergent character of the expan-
sion, similarly to what happens when the usual Chapman-Enskog expansion is applied to molecular fluids.
[S1063-651X98)10602-3

PACS numbsg(s): 81.05.Rm, 05.20.Dd, 51.18y, 47.20—k

I. INTRODUCTION here. Gradients are controlled by dissipation in collisions and

The rapid flow regime of granular media is characterize ot only by the boundary and initial conditions. In this sense,

. . o - the limit of small gradients of the hydrodynamic fields is
by the free motion of the particles between collisions. This . ; . . .
X . ; . closely related to the limit of quasielastic collisions and this
has led to the consideration of tlimacroscopit grains as

: . . must be taken into account when looking for equations de-
analogous to the particles of a molecular fluid, trying to ex-

: . scribing the hydrodynamic fields.
tend to rapid granular flows the well founded theories devel- To allow for a detailed and exact analysis of granular

oped for ordinary qujds OUF of equilibrium. In_ this coptext, a flows, it is useful to consider model kinetic equations that
;ystem of smooth inelastic hard sphere; IS cons.|dered a[ﬂeserve the critical features of the original system. Here we
ideal model to study transpc')rt. and rela>§at|on in rapid granuyii use a model for low-density inelastic gasg0], ob-
lar flows, and hydrodynamiclike equations have been progined as an approximation of the Boltzmann equation. It has
posed for this systeril,2]. The equations are similar to the previously been applied to steady shear driven states and
conventional Navier-Stokes equations, modified to accounghown to lead to results in good agreement with simulations
for dissipation in collisions. Nevertheless, the correct inC'U-of the Boltzmann equation over a wide range of values of the
sion of the effects following from the lack of energy conser-parameter characterizing dissipation in collisi¢hs].
vation is far from being trivial and a detailed derivation of ~ We will consider here the steady state reached by a sys-
the equations starting from a fundamental basis is requiredem between two infinite parallel boundaries that are kept at
Kinetic theory provides a level of description from which the constant temperature. For molecular fluids such a state is
validity of a hydrodynamic description, its form, and explicit trivial since it is the Maxwellian equilibrium one. Neverthe-
expressions for the transport coefficients can be determinetess, for granular systems space gradients are developed in
The extension to a system of inelastic hard spheres of théhe system as a consequence of dissipation in collisions and
Boltzmann equation and also of the Enskog equation is byhe steady state is highly inhomogeneous. Closely related
now well established, both by using heuristic argum¢Bts  states have been studied recently. Grossman, Zhou, and Ben-
5] and by starting from the Liouville equation of the systemNaim [12] have considered a two-dimensional system of
[6]. However, the complexity of the kinetic equations for hard disks in a box where one wall was kept at a fixed tem-
inelastic systems has required the introduction of largely unperature and the other three were reflecting. The correspond-
controlled approximations when solving them. In particular,ing one-dimensional case had been considered previously
the standard Chapman-Enskog methi@{ in which an ex- [13]. Grossmaret al. used transport equations, derived by
pansion in powers of the gradients of the hydrodynamianeans of heuristic arguments, which were expected to de-
fields is carried out, cannot be directly applied to a granulascribe both high- and low-density regions. Their analysis is
fluid. Time evolution and space gradients are coupled notestricted to first order in the gradier{tdavier-Stokes ordér
only among themselves, but also to dissipation and this haand to the quasielastic limit, leading to uniform pressure.
very significant consequences. For instance, it is known thatlere we will show that the pressure is not uniform, except in
freely evolving granular fluids do not reach a steady statethe asymptotic limit of small dissipation.
showing in addition the spontaneous formation of dense Steady states of inelastic systems in the presence of an
clusterd 8,9]. Also, when submitted to homogeneous bound-energy source also have been investigated experimentally by
ary conditions, a granular fluid can reach a steady nonunieonsidering a system of spherical particles rolling on a
form state, as it is the case in the situation to be consideresimooth rectangular surfagé4]. One of the sidewalls was
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displaced periodically, thus supplying energy to the systenried out in Sec. IV. Direct Monte Carlo simulation results are
Hydrodynamic profiles and also clustering away from thepresented in Sec. lll. It is shown that normal stress differ-
energy source, similar to those obtained in HéR|, were  €nces appear for quite small values of th(_a inelasti_city and
observed. Nevertheless, the effective coefficient of restitutiodhat, for slightly larger values, the pressure is not uniform as
was too far from unity to expect a quantitative agreement. well. The series expansion solution to the model kinetic

An important phenomenon we have found is the presencgquaﬁon developgd in sec. IV correctly descr_ibes the anﬁsot—
of normal stress differences in our system. This is a wel opy effect, but fails to give a correct prediction for the in-

known effect for both molecular and aranular sheared flows omogeneity of the pressure. The reasons for this conflict are
9 discussed. A comparison of theory and simulation is also
that shows up to Burnett ordéexpansion of the fluxes up to

d order in th di f the hvdrod i field carried out for the one-particle distribution function. The
second order in the gradients of the hydrodynamic fields o4 reement is excellent at very low dissipation and for ther-

but, to the best of our knowledge, has not been reporteg ;| \e|ocities. Finally, Sec. V provides a short summary and
before in granular systems without velocity flow. In addition, -, clusions.

normal stress differences are significant, in the sense that

they are already clearly observed for quite small values of || THE KINETIC MODEL AND THE NAVIER-STOKES

the dissipation parameter. This appears to be another unex- APPROXIMATION

pected phenomenon peculiar to rapid granular flows and as-

sociated with rheological effects and not very small dissipa- The kinetic model we will use has been introduced re-

tion. Let us point out that the components of the pressuréently as a simplification of the Boltzmann equation. Since

tensor were not considered in any of the studies of relatethe details of its motivation and derivation are described

steady states mentioned above. elsewherd6,10], we give only the results here. The model
In order to identify the origin of the anisotropy of the kinetic equation for the one-particle distribution function

diagonal terms of the pressure tensor and eventually the no(r,v,t) of a low-density granular gas of smooth hard disks

uniformity of the pressure, it is necessary to go beyond théd=2) or spheresd=3) of diameterc and massn, whose

Navier-Stokes approximation. As mentioned above, this is &ollisions are characterized by a constant coefficient of res-

very hard task for a general situation because of the comfitution a, is

plexity introduced by the energy sink terf0]. Neverthe-

less, for the state considered here, we can exploit the fact that_—f +v. Vf= — p(f — ;) — ——(

the gradients are determined by the dissipation parameterdt nkgT

and the system approaches the equilibrium state in the elastic @

limit. Therefore, an expansion in the dissipation parameter igynere

not only convenient because of practical reasons, but also the

1-a®)e(V)ol fIf]f),

only consistent way of carrying out a perturbation expansion V(r,t)=v—u(r,t), 2
of the solution of the kinetic equation for the steady state. A >

similar approach has been previously used by Sela, Goldhir- o(V)= mV 1 %)
sch, and Noskowicz for a sheared two-dimensional granular dkgT 7

gas[15]. Nevertheless, while in the steady sheared state con-
sidered by the above authors the only present gradient, tHd!
shear rate, is constant throughout the system, in the steady m 92 m\2
state we will deal with all the hydrodynamic fields, which f|(r,v,t)=n(m) exr{ - m) 4
are, in principle, highly nonuniform. Consequently, we have B B
to include in our description space derivatives of ordervioreover,v is an effective frequency given by
higher than one. 1o

We have also investigated the same state by means of the —Cnod-1 wkgT )
direct Monte Carlo simulation methdd6], which has been v 7 m '

developed to obtain numerical solutions to the Boltzmann . ) ) ) ]
equation and can be also applied to the case of inelastitvith C being a dimensionless constant to be fixed later on

collisions [11,17. The numerical results agree very well @dw[f|f] a source term describing the rate of dissipation in
with the predictions of the model kinetic equation in the limit c_oII|S|ons. It is a functional of the distribution function de-
of very small inelasticity, while the agreement is only quali- fined by
tative for larger values of the inelasticity. This is due not

only to the simplification inherent to the model kinetic equa- w[g,h]=

df, is the local equilibrium distribution

ma(d-1/2,d-1

J dv,dvy|v,— V2|39(V1)h(V2)

tion but also, and mainly, to the asymptotic character of the ar d+3
series expansion carried out. The indication following from 2
our calculations is that such an expansion is divergent, as is
=w[hl|g]. (6)

the case of the usual Chapman-Enskog exparndiéh

The structure of the paper is as follows. In Sec. Il the|n the above expressions,is the local number density is

kinetic model is br|eﬂy reviewed and the Steady state to the local flow Ve|ocity' and is the local temperature_ They

mation is discussed. We believe that this is important in or-
der to establish that it is appropriate only in the limit of very
small dissipation and to motivate the series expansions car-

n(r,t)szvf(r,v,t), (7
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'

(18

X

n(r,t)u(r,t)=f dv vf(r,v,t), (8) %q(s):_(l_az)

(9

d 1 In the remainder of this section we are going to consider the
_ — = 2
Zn(r,t)kBT(r,t) f dv 2mV (rOf(rv.b). ©) Navier-Stokes approximation, in which the pressure tensor
and heat flux are given by6,10,19
From Eq.(1) the balance equations for mass, momentum,

and energy are obtained by taking the appropriate velocity Py =pdy;— | Viu,+Viu— =8,V u, (19)
moments, d
an i=—AV;T—uVin, 20
E‘FV'(HU):O, (10) i i MV (20
wherep=nkgT is the hydrostatic pressure, the shear vis-
P cosity, A the thermal conductivity, angt a coefficient that
—u+u-Vu+(nm)‘1V- P=0, (11)  has no analog for elastic fluids and vanishes in the limit
ot =1. The values of these transport coefficients are
d 4T d , 7=27m0(2=y) "', N=\o(1-2y)7%,
=hkg—+ znkgu-VT=—P:(Vu)—-V-g—(1—- o) w.
2 a2
(12 2hoT -1 -1
p=—nv(1=2y)H(2=3y) (21)
The pressure tensé and the heat fluxy are given by h
wi
P(r,t)=f dv mVVf(v,r,t), (13 27(d4-272
y=(1—a?) . (22)
2 car(J

mV
q(r,t)=f dVT Vi(v,r,t). (14
Here no=p/v and \o=(d+2)kgp/2vm are the shear vis-

. . i nd thermal con ivity in the elastic limit, r -
Let us point out that the balance equations are preservef sity and thermal conductivity in the elastic t, respec

ely.
by the model. Not only do they h?“’e the same form as ob- Thus, in the Navier-Stokes approximation we have from
tained from the Boltzmann equation, but also the fluRes Eq. (19)

andq and the source term are given by the same function-
als of the distribution function. We want to investigate the PE=ps, (23)
properties of a steady state with no macroscopic velocity . .

field. In addition, we consider a geometry of the system sucland Eq.(17) implies that the pressure is uniform in the
that there are gradients in only one direction, chosen as the steady state. Equatiai20) leads to

axis. It is convenient to introduce a new scaldefined by

J
x ' =—alyp'® - T(s), (24
s(x)=f dx’ v(x"). (15
0
where
In terms of it, particularization of Ed1) for the steady state (d+2)(2—57)kg
reads a(y)= : (25
2m(1—-2v)(2—-3vy)
(s)
v if(s): — OO~ (1—a?) w O (W)fS. When the above expression for the heat flux is substituted
*ds NSk TE P into Eq. (18), an equation for the temperature profile is ob-
(16)  tained,
The superscrips indicates that the quantity refers to the 3? yd
el S . FP . —T(S)(S)I . (26)
steady state. Then the local equilibrium distributief is 952 2a(7)

particularized foru=0, n=n®(s), andT=TE)(s). Further-
more, when applied to this steady state, Edf) is verified

! i t In the case of elastic collisions, the right-hand side of this
identically, while Eqs(11) and(12) reduce to

equation vanishes and one recovers the linear tempera-
ture profile characteristic of molecular gases. Nevertheless,
ip@):o 17) let us note the qualitative difference between the linear and
as X the quadratic terms in the expression of the temperature pro-
file. While the coefficient of the former is determined by the
for all i and boundary conditions, the coefficient of the latter is a given
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function of the coefficient of restitutior and does not de- 0.676
pend on the nature of the boundaries of the system. As a o
consequence, the steady states of a granular fluid with van-
ishing flow velocity are intrinsically inhomogeneous. This is
closely related to the fact that the homogeneous state of an
isolated granular fluid, the homogeneous cooling state, is P,/m(O)k,T,,
characterized by a monotonically decreasing in time tem-
perature[1,9,17. An important consequence of E(R6) is 0664 |
that gradients and dissipation in collisions, measured by the
restitution coefficient, are not independent. Therefore, retain-
ing contributions up to a given order in one of them implies
a limitation also in the range of values of the other. 0.858 ¢ 3 ) 0 2 7 6
In order to fully specify the model, we have to fix the s

valueiof the_c_onstant appearing In the expression of t_he FIG. 1. Profiles of the diagonal components of the pressure ten-
effective collision freguency, Eq.(5). Since the hegt flux 'S, sor P;; in the steady state for=0.99. The crosses correspond to
the only macroscopic flux in our system, a sensible choicg anq the circles tcP,,. The solid line is the hydrodynamic

appears to be to require that the model gives the same valygessurep. Distance is measured on the scaldefined in the text.
for the Navier-Stokes thermal conductivity in the elasticThe Jowest temperature in the systeniTis,,=0.57T,,, while the

limit «=1 as the Boltzmann equation. This leadsQe-1 highest density i$1,,,~1.151(0).
for d=2 andC=32/15 ford=3 [7].
. Grossmaret gl.[lZ] have stud|ed.a ;ystem of nearly eI"’I‘c"dicular to the thermal walls. The system was split ilo
tic hard disks in a steady state similar to the one we are’ )
) . . e . =M,M, square cells of the same size. We took advantage of
dealing with here. By using heuristic arguments, they obtalr}he s rﬁ/metr of the svstem and the number of cells irvthe
an equation for the density profile, which in the Iow-densitydirecgOn M ywas sm?’:/lller than in the direction. M Tﬂyé
limit is equivalent in our notation to o A M
initial state was taken to be homogeneous, i.e., all cells had
8(1— a?)g2p(92 the same number of particléé.=N/M, and the velocities
= —p. (27)  were distributed according to a Maxwellian with temperature
Ik3 Tw. Reduced units defined bjn=1, kgTyw=1/2, and/
. _ - =1, where/=[2/2n(0)o] ! is the initial mean free path,
Herel IS an UnknOWn parameter Whose Value IS determ”’]e%ere used_ The t|me Step over Wh|Ch it iS assumed in the
by the authors by fitting molecular-dynamics simulation datasjmylation that free motion and collisions are not correlated

* P_/n(O),T,,

0870 | © P_/n(00,T, o |

T(S)ZI.IZi( T(s)llzi T
X

X

obtained fore=0.99. They get=6.03. was taken to bext=0.2. In all the simulations the values of
It is easily verified that Eq(26) can also be written in the he parameters weré =30, M,=120, M,=10, and N,
form of Eq. (27) with =130.
After an initial transient time, the system reached a steady
| = 16(2—57) (29) state in which the averages over different trajectories of the
Cm(1-2y)(2-3y)’ properties of the system became time independent. The re-

. . sults we will report in the following correspond to time av-
which for 0.99<a<1 andC=1 leads to values df in the  grages over a number of trajectories once the system was in
interval 5.08<1=5.30, which are close to the value found in {he steady state. Let us first consider the limitofery close
Ref. [12]. Nevertheless, in the present calculation, which is, ynity, namely,a=0.99. In Figs. 1 and 2 we present the
not restricted to the quasielastic limit, depends quite yegyits obtained for the pressure tensor and the temperature
strongly on the value of the restitution coefficient for «=0.99, as a function of the scaled coordinateThe

[ll. DIRECT MONTE CARLO SIMULATION 02

To test the theoretical predictions obtained in the preced- ;
ing section, we have carried out direct Monte Carlo simula- o1 b i
tions of the Boltzmann equation for an inelastic gas. This
simulation method has been applied extensively in the case
of molecular gasegl6] and can be easily extended to granu- aT/3s oo |
lar flows[11,17]. We refer the reader to the literature for the
details of the method.

We considered a dilute system fsmooth inelastic hard ot
disks between two infinite plates perpendicular tothexis
and separated by a distariceThe two plates were treated as

diffusive thermal walls at a temperatufg,. This is imple- “-6 4 2 0 2 4 6
mented in the simulation by assigning to the particles, after :
collision with the walls, a velocity drawn from the Maxwell- FIG. 2. Slope of the temperature profile as a function of the

Boltzmann distribution at temperatufigy [20,21]. Periodic  position for the same state as in Fig. 1. Quantities are measured in
boundary conditions were applied in tiedirection, perpen- the reduced units defined in the main text.
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FIG. 3. Second derivative of the temperature with respect to the FIG. 4. Same as Fig. 1 far=0.95. Now it isT;=0.14Ty and
scaled positiors as a function of the dissipation parameter1  Nmax=1.18(0).
— a?. The crosses are values obtained from simulation by fitting the
bulk data as in Fig. 2 and the solid line is the prediction of theclose to the prediction of Eq26). This is easily understood
Navier-Stokes approximatio(26). Quantities are measured in the Since the temperature gradient is still very small in the bulk
reduced units defined in the text. of the system.

We have investigated the behavior of the system up to

results have been averaged over 100 trajectories. The origig=0.8 and in all cases a steady state similar to thatafor
for x (and fors) has been taken at the same distance from=0.95 is reached. The main effect of decreasing the value of
both walls. Therefore, the system is symmetric arosnd ¢ is to increase the anisotropy of the pressure tensor and also
=0. Itis seen that, outside the boundary layers, the pressuke influence of higher-order terms in the temperature profile.
is uniform and the temperature profile is accurately describe¢h the simulations we have also computed the one-particle
by a parabola, as predicted by Eg6). The solid line in Fig.  distribution function of the system. The results will be dis-
2 is the numerical fit used to determine the value ofcyssed in Sec. IV.
9°TO/3s? in the bulk. Nevertheles() is clearly larger In the above figures we have presented the hydrodynamic
than Pgsy’ contrary to the prediction of the Navier-Stokes profiles as functions of the scaled varialsleThis is a con-
approximation(23). Although the boundary layers can be venient representation in order to carry out a comparison
studied in detail by applying the same methods as developedith the predictions of our model kinetic equation. Of
for molecular gases, they will not be discussed here. course, it is possible to relateto the spatial coordinate by

As a quantitative test, we have plotted in Fig. 3 the simu-means of the definition of the former, EG.5). This can be
lation values of3?T(®/4s? and also the theoretical expres- done using the hydrodynamic profiles obtained from the
sion, i.e., the right-hand side of E¢R6), as a function of simulation and evaluating the integral numerically. Alterna-
y(a), for «=0.99. This will be referred to as the quasielas-tively, we can use the theoretical profiles provided by Egs.
tic region in the following. The simulation values have been(23) and(26). In this latter case we only need the values of
obtained by fitting the numerical data faiT®/ds to a  the temperature at the origifi(0) and the pressure in the
straight line as indicated in Fig. 2. It is seen that the agreebulk p. In Fig. 6 we have plotted as a function ok for the
ment is excellent. Nevertheless, let us note that over theystem witha=0.99. It is seen that the predictions of the
range of values ofy shown, they dependence of the factor theory match very well the numerical data over all the size
a(y) appearing in Eq(26) is negligible and the curves ob- the system. To avoid misunderstandings, let us note that the
tained witha(y) and a(0) are indistinghishable over the variables is measured from the center of the system and
scale of the figure. In other words, the right-hand side of Eqtherefore the influence of the boundary layers is reduced.
(26) can be accurately approximated by a linear function of Due the complexity of the hydrodynamic profiles in the
v in the quasielastic region. What happens when the value diteady state, we have not been able to construct an exact
a is decreased below the quasielastic region? The anisotropy
of the diagonal terms of the pressure tensor increases as ex-
pected, but, in addition, the hydrodynamic pressure becomes o4 *
nonuniform in the bulk of the system. The nonuniformity '

0.6

comes from theP{?) component, while thé{;) component 0zl
remains homogeneous, as required by the exact balance of
momentum(17). As an example, we present in Fig. 4 the aT/ds o0 |
components of the pressure tensor as functions of the scaled
positions for «=0.95. The slope of the temperature for the 02

same situation is shown in Fig. 5. There is a small but per-
ceptible curvature, indicating that the Navier-Stokes approxi-
mation is no longer valid for the temperature either. Never- . ‘ ‘
theless, let us mention that if the slope of the temperature in A S
the bulk is approximated by a straight line, the resulting nu-

merical value for the second derivative of the temperature is FIG. 5. Same as Fig. 2 fox=0.95.
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8
(;—2 =eY29,n+ edn+ eoan+ - - . (33
The expansion in powers af'? is motivated by the re-
sults obtained in the Navier-Stokes approximation discussed
in Sec. I, which are expected to be valid in the asymptotic
limit e—0. There it was foundsee Eq.(26)] that 3°T/Js?
~€, i.e., dT/ds~ €2 Moreover, the pressure was uniform,
so that the leading contribution tn/Js is also of the same
order €*2. Then, from Eq.(29) it follows that a balance to
ordere?is possible only iff has contributions of that order.
8 ~ : 5 In any case, the verification of the consistency conditions to
x be discussed below will indicate whether the expansions are
_ _ _ _ correct, at least up to the order considered in the calculations.
FIG. 6. Scaled variable as a function of the spatial coordinate ¢ course, a different question is the convergence of the
x (both in reduced unijsfor «=0.99. The symbols are simulation expansion. We will return to this point at the end of this
results and the solid line is the prediction of the theory. section.
] o ] o When the expansion in Eq30) is introduced into the
solution to the model kinetic equation describing the state f%xpression ofv, Eq. (6), one gets
arbitrary values of the restitution coefficient. Therefore, in

order to try to understand the origin of the rheological effects o[ f[f]= wo+ €%w; + ew,+ e¥ 2wyt - -, (34
observed in the simulation, it seems worthwhile to look for aith
perturbative solution. Given that in the steady state we are
considering the gradients of the hydrodynamic fields are in- wo=o[folfol, w1=20[fg|f1],
duced by the inelasticity in collisions, an expansion in the
latter seems the more appropriate one. This will be the sub- wo= o[ f1|f1]+2w[folf2], . ... (35
ject of the next section. Substitution of Eqs(30), (31), and (34) into Eq. (29) and
equating coefficients of the same poweredf leads to the
IV. EXPANSION IN THE DISSIPATION PARAMETER equations
The distribution function of the steady state is given by fo=f, (36)
the solution of Eq.(16), which can be we written in the
equivalent form fi=—wv,d:1f|, (37)
D it 29 e
Uxog = T € dnkgy T 1 (29 é 20, 0
fr=—vy2 dqfr—q—5— =i (38
wheree=1— «? is the degree of inelasticity. In addition, in a=1 dnkgv dT

order to simplify the notation we have omitted the superor =2 From Eq.(36) it follows that to zeroth order the
scripts and here and in the following/JT (d/4n) is under-  gjstribution function is the local equilibrium one and the cor-

stood to be taken at constant denstigmperaturg responding contributions to the pressure tensor and heat flux
We are going to use a modified Chapman-Enskog exparnjefined by Eqs(13) and(14) are

sion method to get a solution of E(R9) in the form of a
series expansion arourd=0. The physical reason is that we Pojj=Pdij, Qo=0. (39

are interested in a system whose boundaries are kept at con- gjnce the local equilibrium distribution reproducésy
stant temperature. In such a situation, we know that, neglechefinition the exact values of the hydrodynamic fields, we
ing boundary effects, the only steady state for an elastic gagaye the consistency conditions
corresponds touniform) equilibrium given by the Maxwell-

Boltzmann distribution. Therefore, the gradients present in J’ i :j dv v :f dvo2f.—0
the steady state of a granular fluid must be functions of ' r '
vanishing in the limite—0. Then we formally expand

(40)

for r=1. When applied td;, given by Eq.(37), these con-

f=fo+ 2, +efyt e¥hqt- .. (30)  ditions require
and nd;T+Tdn=0, (41)
i.e., d.p=0. Then one gets
d 1/2 3/2
%ZE ﬁl+€a2+f ﬁ3+ (31) J 1
fl(S,V):_UXalT ﬁ_? f| (42)
In particular, for the temperature and the density we c:onsideglnd
Tl 25, T4 e, T+ €395+ (32 (d+2)nkgT
s ! 2 3 ’ P1jj=0, Qj=8x——5——d1T. (43

2m
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To obtainf, we needw, defined in Eq.(35). A simple
calculation gives

d-

Wo=5YPY, (44)

where we have introduceg= y/ €, with y given by Eq.(22).
Then, from Eq.(38) with r=2 we get

d fi o, L, (o 1
fz(S,V)Z—UxﬁzTﬁﬁ—vx(é’zn)ﬁ+vx(31T) TT f)
2T2a22a 2f~Taf
+tui(d1T) 2 Tar ) h Tyt
(45)

The consistency conditions to this order read

‘ymd

2
AT= G 2ks

92p=0, (46)
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FIG. 7. Ratio of normal stressd3,,/P,, as a function of the
dissipation parametey=1— 2. The solid line corresponds to the
present theory and the crosses are results from the Monte Carlo
simulation. The dotted line is a linear fit of the data.

When these expressions for the fluxes are used in the con-
servation lawq17) and(18), the following equations deter-

In fact, the above equation for the temperature gradiengnining the hydrodynamic profiles are obtained:
can also be obtained by substituting the expression of the

heat flux to first ordef43) into the energy conservation law

(18) and by restricting ourselves to first orderdnA similar

test can be carried out to each perturbation order to verify the
self-consistency of the calculations. The results for the pres-

sure tensor and heat flux contributions are

kg ~ 2kgp
P2jj= 6 p(mﬁﬁ_ Y|+ 8 5ixT’ﬁT
Y
=—5ijpm(1—5ixd), (47)
(d+2)nk3T
U2i= =05 92T (48)

Upon writing Eq.(47) we have used Eqg46). Therefore,

ap T md
35~ 0 2TV AT ke (52)
Since the theory still predicts uniform pressure at this or-
der, it is clear that the range of applicability of the above
results is restricted to values eflying in the quasielastic
region as characterized in Sec. lll, i.&=0.99. The equa-
tion for the temperature profile coincides with the lineariza-
tion in vy of the one derived in the Navier-Stokes approxima-
tion (26). Therefore, we already know from the discussion in
Sec. Ill that it accurately fits the simulation results in the
limit of quasielasticity. In Fig. 7 the rati®,,/P,, is plotted

as a function ofy. The crosses correspond to the direct
Monte Carlo simulation results and have been obtained by
space averaging in the bulk. The values of the simulation
parameters are the same as in the previous figures. The con-

anisotropy of the diagonal terms of the pressure tensor aRmyous line is the theoretical prediction given by Eg). It
pears to ordee. Note that it is associated with a contribution js seen that the theory describes qualitatively well the asym-
of second order in the temperature gradient to the pressui@etry of the diagonal components of the pressure tensor, but
tensor. Hence a deSCI’Iptlon at the IeVel Of the NaV|er'StOkeﬁ]ere is a C|ear quantitative discrepancy_ Th|S iS not surpris_
approximation cannot predict the normal stress differencesng sincey is proportional to the inverse of the constaht
in agreement with the results obtained in Sec. Il. Combinagppearing in the expression of the effective collision fre-
tion of Egs.(39), (43), (47), and (48) provides expressions quency, Eq.(5). We have fixed its value by requiring the
for the pressure tensor and the heat flux, valid up to firsinodel to reproduce the Boltzmann heat conductivity in the
order ine, absence of dissipation and then taki@g=1. If we would
2y have choserC to give the same value as the Boltzmann
Pij=8;p|1—(1— 5ixd)m i (490  equation for the shear viscosity, it should 6e=2 and we
would have a much better agreement for the components of
the pressure tensor. Nevertheless, it is clear from (B8).
that the agreement for the temperature profile should be
worse in this case. This is a well known limitation of single
relaxation models of the Boltzmann equation. They cannot
Therefore, the normal stress ratio in this approximation igeproduce simultaneously the correct shear viscosity and the
given by correct heat conductivity.
Let us now consider the distribution function. Figure 8
depicts the marginal velocity distribution foy,, the compo-
nent of the velocity parallel to the thermal walls. The coef-

| (d+2)nk3T 4T

0= — Oix om % (50

Pex 2d

=) 1+ ’yd+—2. (51)

yy
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FIG. 8. Marginal distributions for the velocity componen FIG. 10. Same as Fig. 9, but the marginal distribution is scaled

perpendicular to the gradients. The symbols are simulation data arlith the Maxwellian defined by the local density and temperature.
the solid line results of the present theory. The coefficient of resti-

tution is «=0.99 and we have considered the gas layer located aare found in other cases, although the asymmetry increases
Xx=-—12.62. Quantities are measured in the reduced units defined Ias the distance from the center of the System increases and
the text. also as the coefficient of restitution decreases.

o o Given the accuracy of our model to describe the behavior
ficient of restitution ise=0.99 and the results shown COITe- of the system in the quasielastic limit, it is tempting to try to
spond to the layer located at=—4.59 (x=—12.62). This  aytend the above calculations to the case of stronger dissipa-
position has been chosen such that it is as far as possibig), |n particular, it should be interesting to explain the ori-
from the center of th_e system, but _stlll |ns_|d_e the bulk regiongin of the inhomogeneity of the pressure. Therefore, we have
where the pressure is constasiee Fig. 1 Similar results are  oy/a)yated the third- and fourth-order contributions in é4&
obtained at other positions in the bulk. The solid line corre-gypansion of the distribution function. The derivation is
sponds to the |ntegrat|o(r21)W|th relslg)ex;; of the solution of  gyraightforward but lengthy and tedious, and we only quote
the model up to orde, f'“/=f,+ e"f, + €f,. Itis seen that  the results here. Some details of the calculations are given in
the agreement is excellent in the velocity range shown. Ofhe Appendix. The final expressions for the pressure tensor

quired by the own symmetry of the system. On the other

hand, the marginal distribution for the velocity, perpen-

dicular to the thermal walls is asymmetiigee Fig. 9. This Pij= 5ijp{ 1-(1-6,d)
reflects that particles coming from the nearest wall have

more energy that those coming from the most distant one.

2y +3yz(24d2+d+2)
d+2 2(d+2)8

The asymmetry of the distribution function can be more —(1-86, d)w(ﬂ)z (53)
clearly appreciated by plotting the ratio between the mar- 7 1ed(d+2)mTl gs/ |

ginal distribution and the corresponding local equilibrium

distribution f, ,(v4), as shown in Fig. 10. There it is also nkgT{djLz 4y(2d2+8d—1)]dT

seen that the agreement between theory and simulation be- gi= — dix m L > + d+2 s (59

comes much worse when large velocities are considered.

This is to be expected since in our model kinetic equation th%quations for the pressure and the temperature follow by

evolution of the o_ne-p_article di_stribution func;io_n is gov- substituting the above expressions into E43) and(18). Of
erned by only the first five velocity moments. Similar reSUItScourse, terms of order higher thar¥’2 have to be consis-

tently neglected. The result is

06 r
w__ 2)E-Dke 2[1TNE
Js P dm ds| T\ ds] |’
fx/:A 7 02T_ b 1/4T\? 56
E—C(V)ﬂL Ml 75] (56)
02 r
where
00 , . b( ) = 3(15+4d) 5
) -1 ‘Z 1 2 (7)_7 32(d+2) ’ ( 7)
FIG. 9. Marginal velocity distribution in the direction of the 3 2
gradients. The system and location of the layer considered are the c(y)=|y d —? 64d™+253d" - 3&d E (58)
same as in Fig. 8. d+2 4(d+2)3 Kg
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A comparison of the terms of orderwith those of order?,  description of low-density granular fluids with strong inelas-
for instance, in the expression ofy), shows that the nu- ticity, but that we must look for solutions that are valid in the
merical coefficients of the latter are much larger than thos@onperturbative regime. In fact, this procedure has proved to
of the former. This clearly indicates that the expansion webe very fruitful for molecular gasd23].

have carried out, although probably asymptotic, is divergent-inally, let us stress that although our study has been re-
In fact, if one compares the predictions of E6s5) and (56) stricted to a low density granular fluid, there. is no reason to
with the simulation results for=0.99, worse agreement €XPect that the reported effects are negligible for high-
than by using thes approximation is obtained. Similar be- density granular fluids. In fact, the presence of highly inho-

havior has been found in the usual Chapman-Enskog expaﬂjﬁgerﬁig]us S dpatialt)dilgtribLitri]o?fhalready haf be(fe?hnoted eI:T‘e-
sion applied to a molecular fluid under uniform shear flow\V"ere and we believe that the asymmetry of the horma
[18]. components of the pressure tensor is also present and can be

analyzed both theoretically, by means of the extension of the

Equatlon(55) deserves s_everal com_ments. A s!mple esti- resent model to the revised Enskog kinetic thd@ly and
mation of the terms appearing on the right-hand side leads t ; ) . .
y using molecular-dynamics simulation.

ap/ds=s, with a negative constant of proportionality. There-
fore, it_ prgdicts a pressure profile _with a curvature th«_at has ACKNOWLEDGMENTS
opposite sign to the one observed in the simulatises Fig.
4). Although the origin of this strong discrepancy is not The authors want to thank M.J. Ruiz Montero for stimu-
clear, we think that it is due to the divergent character of thdating discussions and a critical reading of the manuscript.
"2 expansion and not to the inaccuracy of the model kineticThis research was partially supported by Grant No. PB96-
equation. This is a point that deserves future work. 0534 from the Direccio General de InvestigaaioCientfica

y Tecnica(Spain.

V. CONCLUSIONS APPENDIX: THIRD- AND FOURTH-ORDER

L . . NTRIBUTION
The objective of this work has been to study an inhomo- co UTIONS

geneous steady state of a granular fluid with homogeneous The expression fof; containsw;. Using Eq.(42) in the
boundary conditions. The existence of such a state is a comxpression ofv; given by Eq.(35) we have
sequence of the inelastic character of collisions and has no 41 (d-1)2
analog in molecular fluids. By means of direct Monte Carlo SR p Tf dv f Avylv,— vyl
simulations, it has been shown that the system exhibits an- ! d+3 ! 1 271 72
isotropy of the diagonal elements of the pressure tensor. This o
rather unexpected effect for a system without velocity flow
appears even in the low dissipation limit, in which the pres- 1
sure is uniform in the bulk, i.e., outside the boundary layers. Xf'(vl)UZX(ﬁ_ T fi(vz2)=0 (A1)
The observation of the normal stress differences and the
identification of its origin is one of the central physical re- since the integrand is odd with respect to the change,
sults presented here. We have also studied the velocity dis= —V1,— V2. This is an expected result sineeis a scalar
tribution function, which is non-Gaussian and asymmetricthat cannot couple linearly té,, which is a vector. Then,
presenting an overpopulation of particles coming from thefrom Eq. (38) we get
nearest wall with large velocities.

In the quasielastic region, roughly defined by a coefficient
of restitution larger than 0.99, the simulation results are ac- = —Uxa3f|+vi(,9231+ 919,
curately described, both qualitatively and quantitatively, by a
simple model kinetic equation proposed recefiyl0]. This
refers not only to the hydrodynamic fluxes and fields, but
also to the more detailed information provided by the veloc-
ity distribution, at least in the region of thermal velocities. Although the above expression can be written in a more ex-
Nevertheless, this requires going beyond the Navier-StokeRlicit form, we have found it more suitable for calculations.
approximation. In fact, the peculiarity of the state under conL-et us consider the consistency conditida$). For the first
sideration makes more appropriate an expansion in powef@1e we have
of the inelasticity parameter than the usual Chapman-Enskog
expansion in the gradients of the hydrodynamic fields. This f dv f3(s,v)=(93] dv v, f+ (9,0, + alaz)f dv vif.
is a consequence of the strong coupling between gradients

2

f3(S,V)= _UX(93f|_UX(92f1_UX£71f2

3.3 - J
—Uxélf|+yvx<91 Tﬁﬁ . (AZ)

and dissipation or, more precisely, of the fact that gradients . e~ 9

are induced by the inelastic character of collisions. In the —%J dv v, f|+ yd; T—J dv f,

T . - L . JaT

limit of zero inelasticity the equilibrium solution of the Bolt-

zmann equation is recovered. This renders a perturbative ap- nksT

proach in powers o&'? possible. =(9201+ 9192)— —, (A3)

However, it must be pointed out that the usefulness of this
kind of expansion can be limited since our results stronglywhich vanishes identically since we have previously ob-
suggest that they are asymptotic but divergent. This does nédinedd;p=d,p=0 [see Eqs(41) and (46)]. Similarly, we
mean that the model kinetic equation is not relevant for theyet
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nkgT ,3NKET? 374 V20 UGPTHE 4ydmT
[ avuitson =0 st ol folfal= ’ R
32dr(—) m?*/2
2
nkgT
= — 5ix(93_ (A4)
+(7+ 2d)(ﬁlT)2}, (A12)
because
and hence
A(nk3T2) =nkgTdT=nkgT9,92T=0,  (A5) B
_~ 3dy  3(15+4d)kg )
where we have used again thatp=0 and also thaﬂiT, @2= YPY 8(d+2) * 64mT (04T (AL3)

given by Eq.(46) is a constant. Therefore, the second con-
sistency condition requires thagp=0, i.e., the pressure is Once the expression ab, is known we can construdt,

also uniform to this order. Finally, we have

2
k3T?
m2

f dv U2f3(S,V):(52(91+ 3152)(d+2)

nkaT

=(d+2)

m
and the condition for the temperature yields

(a2(91+ 071&2)T= 0.

B
5 (9201+3197) T (AB)

using Eq.(38) and from it determine the consistency condi-
tions and the contributions to the heat flux and the pressure
tensor. The consistency conditions are

dsp=0, (Al9)

, _, (64d2+ 2531 38)dm
(0301+ 95+ 0193)T=—y

The meaning of this condition is clear when one considers

T
E = (61/2(91+ €dy+ 63/2(93+ cee )(61/2(91+ €d,
+ €95+ )T
= €T+ €34 910,+ 9p0,) T

+ €2(9103+ 5+ d301) T+ O(%?).

4(d+2)%kg
~3015+4d)
+7m(ﬁl )5, (A1D)
(A7)
while the result for the fluxes is
B ~,3(24d*+d+2)
Pajj=—6ij(1—ddsi,)p| v W
,~3015+4dks L6
Yed(d+2mT 11| (AL8)
nkgT[d+2 _4(2d?+8d—1)
(A8) 04;= — Oix m [ 2 4T+ 7y d+2 9T .
(A17)

It follows that Eq.(A7) is equivalent to saying that there is

no contribution of ordee®? to 9?T/9s?. Calculations of the

same type as shown above lead to the results

To obtain the expression for the pressure tensor valid up
to ordere* we only have to collect the terms given by Egs.
(39), (43), (47), (A9), and(A16),

P5i: =0, (A9)
3] P'] = PO,ij + 61/2P11ij + GPZ,ij + 63/2P3,ij + €2P4,ij + O( 65/2)
nk3T[d+2 4(2d%+8d—1)y 2y
931~ Oix |72 93T+ a2 Tl =6;j(1=dds)p 1‘@(1_%(1)6
(A10)
~,| 3(24d*+d+2) _3(15+4d)kg Ll 5
To obtain the expression @b,, defined in Eq.(35), one - 2(2+d)3 716d(d+2)mT(ﬁlT) €
has to evaluate a rather large number of Gaussian integrals.
This can be done quite efficiently by using a computer pack-
age of symbolic calculation. In particular, we have used +0(e?) . (A18)
MATHEMATICA [22]. The results are

Finally, using the relatiory=ye and taking into account the
form of the expansion of the gradient31) and (32), the
above expressions are seen to be equivalent to(Bgsand
(54) to fourth order ine'.

(d-1)/2n2 d— 1} 5/2T1/2
37 n“o" kg T

(91T),

w[f4]f]= (A11)

17
32dF( 2) m
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