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We study the phenomenon of nonlinear stochastic resonance �SR� in a complex noisy system formed by a
finite number of interacting subunits driven by rectangular pulsed time periodic forces. We find that very large
SR gains are obtained for subthreshold driving forces with frequencies much larger than the values observed in
simpler one-dimensional systems. These effects are explained using simple considerations.
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The phenomenon of stochastic resonance �SR� seems to
be important in a wide variety of contexts in physics, chem-
istry, and the life sciences �1�. A lot of work has been de-
voted to the study of SR both in simple �2� and complex
systems �3�, such as in ion channel assemblies �4� or globally
coupled networks of noisy neural elements �5�, to name a
few examples. In this work, we consider a complex system
formed by a finite number of N coupled noisy bistable sub-
systems, the attention to finite sets being inspired by the fact
that certain processes in neuroscience seem to involve a
rather small number of subsystems �6�.

The signal-to-noise ratio �SNR� and the SR gain are two
common quantifiers used to characterize the SR response of
noisy systems driven by time-periodic forces. We will study
SR effects on a collective variable of finite sets of interacting
subunits driven by periodic rectangular pulses. Our results
show a tremendous enhancement of SR effects in this collec-
tive variable with respect to those observed in single unit
systems.

Let us consider a set of N interacting subsystems, each
one of them characterized by a single degree of freedom xi
�i=1, . . . ,N�, whose dynamics is governed by the Langevin
equations �7–9�

ẋi = xi − xi
3 +

�

N
�
j=1

N

�xj − xi� + �i�t� + F�t� , �1�

where �i�t� are Gaussian white noises with zero average and
��i�t�� j�s��=2D�ij��t−s�, � is the parameter defining the
strength of the interaction between subsystems, and F�t� is
an external driving force of period T. In this work, we will
restrict ourselves to forces of the type �10�

F�t� = �
A; 0 � t � tc,

0; tc � t � T/2,

− A; T/2 � t � T/2 + tc,

0; T + tc � t � T .
	 �2�

The parameter r=2tc /T, usually called duty cycle, measures
the fraction of a period during which this driving force has a
nonvanishing value. In addition, we will only consider sub-
threshold amplitudes A, so that the driving force �2� cannot
induce sustained oscillations between dynamical attractors in
the absence of noise. The model described by Eq. �1� �with-

out the external periodic driving� was used years ago by
Kometani and Shimizu �7� as an empirical model to describe
muscle contraction. Later on, Desai and Zwanzig �8� gave a
more detailed statistical mechanical description in the
asymptotic N→� limit and used it to model order-disorder
transitions. The addition of an external driving can, in prin-
ciple, be used to describe the phenomenology of a forced
contracting muscle.

We focus on the collective variable S�t� defined as

S�t� =
1

N
�
i=1

N

xi�t� , �3�

which has previously been used �9� in the global analysis of
coupled bistable systems. It might be considered as the total
output process of a parallel array of N identical interacting
subunits, subject to independent noise sources �i�t� and the
same external forcing F�t�. Its signal-to-noise ratio �Rout� is
defined in the usual way as

Rout =
Qu

Ql
, �4�

with

Qu =
2

T



0

T

d� Ccoh���cos�	�� , �5�

Ql =
2






0

�

d� Cincoh���cos�	�� , �6�

where 	=2
 /T, Ccoh���= 1
T�0

Tdt�S�t+�����S�t��� and
Cincoh���=C���−Ccoh��� with C���= 1

T�0
Tdt�S�t+��S�t���.

For a set of N coupled linear oscillators driven by the
external driving force F�t� and subject to the noise terms �i�t�
as in Eq. �1�, the SNR of the corresponding collective pro-
cess Rout

�L� coincides with that of the random process formed
by the arithmetic mean of the individual noise terms �i�t�
plus the deterministic driving force F�t�, namely, F�t�+��t�
with ��t�=N−1�i=1

N �i�t�. The process ��t� is a Gaussian white
noise of effective strength D /N. Then, it is easy to prove that
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Rout
�L� =

2A2N�1 − cos�
r��

D

. �7�

Thus, for our nonlinear case, it seems convenient to analyze
the SR gain G defined as �9�

G =
Rout

Rout
�L� , �8�

which compares the SNR of a non linear system with that of
a linear system subject to the same stochastic and determin-
istic forces.

We have carried out extensive simulations of the Lange-
vin equations �1� with the external driving �2�. In all cases
reported here the coupling strength is fixed to �=0.5 and the
subthreshold driving amplitude to A=0.3. There is nothing
special about this particular � value. The qualitative results
would be the same for any other value of ��0.

In Fig. 1 we show the collective signal-to-noise ratio and
SR gain as a function of the noise strength D for a set of
N=10 identical subsystems, a driving fundamental frequency
	=0.01 and several values of the duty cycle r. It can be seen
that, while the SNR curves are nearly identical for r�0.4,
the SR gain increases drastically, reaching a very large value
for r=0.1. This dramatic increase is easily understood by
taking into account the observed almost constant behavior of
Rout and the fact that Rout

�L�, Eq. �7�, decreases monotonically
with r. However, for sufficiently small r, Rout must decrease
faster than Rout

�L�, because the interval tc becomes smaller than
the time it takes for the system to react to a constant force of
amplitude A, and thus, the driving produces almost no effect
in the system. This behavior is shown in the inset of Fig. 1,
where it can be seen that the SR gain decreases for r
�0.08. Also, as seen in Fig. 1, when r=1 �rectangular driv-
ing signal�, G reaches a peak at a noise value D�0.2. Even

though Rout
�L� is as large as it can be, the huge increase of Rout

is enough to overcome the increase in Rout
�L�, yielding a sub-

stantial value for the SR gain.
The very large gain values in Fig. 1 for pulses with short

duty cycles are observed only for a small range of noise
strengths around D�0.08. In Fig. 2 we present the behavior
of Ql and Qu with D. Notice that around D�0.08 there is a
strong reduction of two orders of magnitude in the level of
fluctuations of the collective variable as measured by Ql.
Therefore, the large SR effects quantified by the SNR and the
SR gains are essentially due to the very large reduction of the
fluctuation spectrum of the output signal at the fundamental
driving frequency for a range of noise values.

We have also analyzed the SNR and the SR gain for dif-
ferent values of 	. Our results for Rout and G as a function of
D are depicted in Fig. 3 for a set of N=10 interacting iden-
tical subunits driven by rectangular pulses with duty cycle
r=0.1 and several values of the fundamental driving fre-
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FIG. 1. Dependence of the signal-to-noise ratio Rout and the SR
gain G for a set of N=10 identical subsystems and an external
driving of frequency 	=0.01 for several values of the duty cycle r:
0.1 �open circles�, 0.2 �crosses�, 0.3 �triangles�, 0.4 �squares�, and 1
�stars�. Inset shows the SR gain as a function of r for a fixed noise
strength D=0.08. The lines have been drawn as a guide to the eye.
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FIG. 2. Dependence of the denominator and the numerator of
the collective signal-to-noise ratio for the same parameter values as
in Fig. 1. The lines have been drawn as a guide to the eye.
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FIG. 3. Dependence of the signal-to-noise ratio and the SR gain
for a set of N=10 identical subsystems and duty cycle r=0.1 for
several values of the driving frequency 	: 0.015 �open circles�,
0.02 �crosses�, 0.03 �triangles�, and 0.04 �squares�. Solid lines have
been drawn as a guide to the eye. The horizontal dashed line marks
the unity for the SR gain.
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quency 	: 0.015 �open circles�, 0.02 �crosses�, 0.03
�triangles�, and 0.04 �squares�. As we increase the driving
frequency 	, the SR gain is gradually reduced. For a suffi-
ciently large driving frequency �pulses of very short dura-
tion�, gains larger than unity are not observed for any value
of the noise strength.

As mentioned above, the large SNR values observed in
Fig. 1 are related to the existence of a sharp minimum of Ql
at a certain noise value. As observed in Fig. 2, this value is
D�0.08 for a driving signal with short duty cycle, amplitude
A=0.3 and fundamental frequency 	=0.01. For other ampli-
tude and frequency, the location of the minimum will
change, although the mechanisms leading to the existence of
this minimum will be qualitatively the same.

To understand the Ql dependence on D, it is important to
analyze in detail the dynamics imposed by the external driv-
ing force in Eq. �2�. For the D and � values of interest to the
present discussion, simulations show that when the driver is
absent, the collective variable S�t� performs a noise induced
random movement between the two symmetric attractors of
the dynamics, which we will regard as located at ±S0. During
a time interval of duration tc, the external force F�t�=A fa-
vors the positive attractor. Thus, if S�t� was at the negative
attractor at the beginning of the interval, the external forcing
will drive it to the positive one in a random time that we will
denote by �1. Certainly, different realizations of the noise
will yield different values of �1. Running simulations with
many independent trajectories, we have computed the prob-
ability Prob��1���= f��� that the variable S�t� has jumped
before a time � to the attractor favored by a constant driving
of amplitude A. In Fig. 4�a� we present f��� for the set of
parameters relevant to the discussion: A=0.3, D=0.08, and

N=10 �solid line�. It can be seen that for the case r=0.1 and
	=0.01 �thus, tc�31.4�, a transition between the attractors
for �= tc is performed with probability almost unity. Then,
during the rest of the half-period, an interval of duration
T /2− tc, the external force is zero and the system is free to
jump between the attractors due solely to noise. Let us now
denote by �2 the random time it takes to jump from one
attractor to the opposite one when F�t�=0. Figure 4�b� shows
the probability Prob��2���=g��� that this jump has taken
place before a time � vs �. Since for r=0.1 and 	=0.01 we
have T /2− tc�282.7, it can be checked in Fig. 4�b� that al-
most no transitions take place during this time interval under
these conditions. We can carry out the same analysis for the
symmetric situation during the second half-period of the
driving force. Consequently, S�t� performs a neat trajectory
between its attractors with transitions induced systematically
every half-period by the external driving when it has a non-
vanishing value. As a result, we would expect Cincoh�0�, itself
an average of the second cumulant of S�t� over a period, to
be of the order of the effective noise D /N, and Cincoh���
short-lived. This is, in fact, what is observed in Fig. 5
�see inset�.

The curves in Fig. 4�a� indicate that the probability of
transitions between the attractors before tc out of the most
unstable attractor is smaller for D=0.04 than for D=0.08.
This is to be expected as the probability of transitions out of
an attractor goes to zero when D→0 with subthreshold driv-
ing amplitudes. As a result, Cincoh�0� and the decay time of
Cincoh��� increase as D gets smaller than D=0.08. Conse-
quently, noticing its definition in Eq. �6�, Ql has to increase
as D is reduced from D=0.08.

Figure 2 shows that for noise values larger than D
�0.08 the Ql dependence on D for inputs with short duty
cycles is rather different from the one observed for a rectan-
gular input �r=1�. This fact indicates that for short duty
cycles and these larger noise values, the time intervals during
which F�t�=0 are crucial for the system response. By com-
paring the g��� curves for D=0.08 and D=0.16 in Fig. 4�b�,
we see that the probability of transitions between attractors
during the time interval T /2− tc is negligible, whereas there
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FIG. 4. �a� Probability that the collective variable S�t� has
jumped before a time � to the attractor favored by an external con-
stant driving of amplitude A=0.3 starting from the opposite attrac-
tor. The solid line corresponds to a system with D=0.08 and N
=10, the dotted line to D=0.08 and N=1, and the dashed line to
D=0.04 and N=10. �b� Probability that S�t� jumps before a time �
to the opposite attractor in the absence of driving. The solid line
corresponds to a system with D=0.08 and N=10 �being almost zero
for the range of times shown�, the dotted line to D=0.08 and N
=1, and the dashed line to D=0.16 and N=10.
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FIG. 5. Temporal behavior of the incoherent part of the correla-
tion function of the collective variable for a system of N=10 iden-
tical subsystems with D=0.08 and r=0.1. The solid lines corre-
spond to 	=0.01 and the dashed line to 	=0.03. The inset is a
magnification of the case 	=0.01 displayed for the sake of clarity.
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is a non-negligible probability for D=0.16. Therefore, the
bimodal character of the probability distribution for S�t� is
enhanced as D increases from D�0.08 to D�0.16 and one
can then conclude that Cincoh�0� and the decay time of
Cincoh��� increase as D increases. Consequently, for short
duty cycles, Ql also increases as D increases within the in-
terval D�0.08 to 0.16. On the other hand, for r=1 and this
same range of noise values, the situation is different because
the driving signal never vanishes. Then, transitions out of the
most unstable attractor happen more frequently as noise in-
creases �f��� saturates at 1 earlier�, and this leads to a de-
crease of both Cincoh�0� and the decay time of Cincoh��� as D
increases, with the corresponding decrease in Ql.

Similarly, raising the driving fundamental frequency has a
drastic effect on the behavior of Cincoh��� with respect to its
optimal behavior discussed above for D=0.08 and r=0.1, as
depicted in Fig. 5 for two frequency values: 	=0.01 and
0.03. The picture that emerges for 	=0.03, differs consider-
ably from that observed for 	=0.01. For the higher fre-
quency case, with tc�10.4, the value of the solid line at �
=10.4 in Fig. 4�a� indicates that, for a considerable number
of trajectories, the driving force is not able to induce a tran-
sition during the time interval tc. Consequently, the second
cumulant of S�t� becomes of the order of the distance be-
tween the attractors. On the other hand, for the lower fre-
quency, transitions occur for the corresponding �= tc�31.4
with almost total certainty. This leads to a Cincoh�0� for 	
=0.03 much larger than for 	=0.01. Additionally, since still

almost no transitions occur at the intervals when the driving
is absent, as shown in Fig. 4�b�, nor obviously when the
driving favors the initial attractor, any unsuccessful transition
is carried on until the next period, and we would expect a
long-lived Cincoh���. Namely, noise induced correlations per-
sist during a few driving periods. These observations justify
the full behavior observed in Fig. 5.

In conclusion, we have analyzed the enhancement of SR
effects in a collective variable characterizing the response of
finite sets of interacting noisy subsystems. The cooperative
effect of noise and nonlinearity in finite sets of interacting,
driven, bistable subunits reflects in a substantial decrease in
the noise level of the collective output S�t� with respect to
that observed in the output of a single independent unit. Very
large values of the SR gain can be achieved for trains of
short rectangular pulses of the type defined by Eq. �2�. Even
though the results presented here have been obtained with
external pulses with very brisk changes of their amplitudes at
certain instants of time, similar results can also be observed
when the pulse amplitude changes continuously, as long as
there are time intervals within a period where the amplitude
changes very slowly, followed by short time intervals where
the amplitude changes very drastically.
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