BREATHERS IN FPU SYSTEMS, NEAR AND FAR FROM THE PHONON BAND

B. SÁNCHEZ-REY \dagger, JFR. ARCHILLA \dagger, G JAMES \ddagger, AND J. CUEVAS \dagger
\dagger Nonlinear Physics Group, University of Sevilla, Spain \ddagger Département de Génie Mathématique, INSA de Toulouse, France
Email:bernardo@us.es

Introduction. This work is motivated by a recent breathers existence proof in the one dimensional FPU system, given by the equations:

$$
\begin{equation*}
\ddot{x}_{n}=V^{\prime}\left(x_{n+1}-x_{n}\right)-V^{\prime}\left(x_{n}-x_{n-1}\right), \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where V is a smooth interaction potential satisfying $V^{\prime}(0)=0$ and $V^{\prime \prime}(0)>$ 0 . Using a center manifold technique ${ }^{2}$, one can prove the existence of small amplitude breathers (SAB) with frequencies ω_{b} slightly above the phonon band if $B=\frac{1}{2} V^{\prime \prime}(0) V^{(4)}(0)-\left(V^{(3)}(0)\right)^{2}>0$, and their non-existence for $B<0$. Our aim is to test numerically the range of validity of this theoretical result and to explore new phenomena. For this purpose we shall fix $V(u)=$ $u^{2} / 2+a u^{3}+\frac{1}{4} u^{4}$, which yields $B=3\left(1-12 a^{2}\right)$.

We work with the difference variables $u_{n}=x_{n}-x_{n-1}$ more suitable for the use of our numerical method. We also use periodic boundary conditions $u_{n+2 p}(t)=u_{n}(t)$ so that the maximum frequency of the linear phonons is exactly 2 as in the infinite lattice. Our computations are performed using a numerical scheme based on the anti-continuous limit and Newton method ${ }^{3}$.

Test and range of validity. First, we have computed numerically SAB (i.e. breathers whose amplitudes go to zero when $w_{b} \rightarrow 2^{+}$) in the case when $B>0$. We have obtained breathers with symmetries $u_{n}(t)=u_{-n}(t)$ (Page mode) and $u_{n}(t)=u_{-n-1}\left(t+T_{b} / 2\right)$ (Sievers-Takeno mode), where $T_{b}=2 \pi / \omega_{b}$ is the breather period. The force $y_{n}=V^{\prime}\left(u_{n}\right)$ is the variable used in reference ${ }^{2}$. In Fig. 1 (left) it is shown that the maxima of the force are of order $\mu^{1 / 2}$ when $\mu=w_{b}-2 \rightarrow 0^{+}$, as predicted by the theory, up to relatively large values. Thus if $B>0$ breathers exist for any small value of energy in our FPU system (1).

Another property of these SAB is that their width diverges when $w_{b} \rightarrow$ 2^{+}. More precisely the theory predicts that their spatial extend is of order $\mu^{-1 / 2}$, which is in accordance with our numerical observations.

Other numerical observations. For $B>0$, we have numerically continued the SAB as ω_{b} goes away from the phonon band. We have found that the maxima amplitudes of the oscillations, $\sup \left|u_{n}\right|$, are also approximately linear functions of $\mu^{1 / 2}$. This is expected for small μ, since $\left.u_{n}=y_{n}+O\left(y_{n}^{2}\right)\right)$, but it occurs surprisingly far from the phonon band, at least until values of $\mu \approx 1$ (see fig.1, left). We have also checked that the Page mode fits very well to the NLS soliton $u_{n}(t)=\alpha \sqrt{\mu}(-1)^{n} \cos \left(\omega_{b} t\right)[\cosh (\beta \sqrt{\mu} n)]^{-1}$, even far from the top of the phonon band.

Figure 1. Left: Force (squares) and amplitudes (circles) maxima versus $\mu^{1 / 2}$. The cubic coefficient in V is $a=-0.1(B=2.64)$. Right: Comparison between a SAB (full circles) for $a=-0.1$ and a LAB (blank squares) for $a=-1 / 3(B=-1)$ having the same frequency $w_{b}=2.01$. The dashed line represents the linear phonon with frequency 2.

For $B<0$ and V strictly convex $\left(\frac{1}{\sqrt{12}}<|a|<\frac{1}{\sqrt{3}}\right)$, breathers exist near the top of the phonon band but they are large amplitude breathers ${ }^{1}$ (LAB), i.e. their amplitudes do not go to zero when $w_{b} \rightarrow 2^{+}$. As a consequence there is an energy gap for breathers creation in these FPU systems. In figure 1 (right) we compare a SAB and a LAB having the same frequency $w_{b}=2.01$. We have found LAB with the same symmetries as SAB (Page and Sievers-Takeno modes). The Page mode fits very well to an exponential profile having the form $u_{n}(t)=\alpha\left(\omega_{b}\right)(-1)^{n} \cos \left(\omega_{b} t\right)\left|\sigma\left(\omega_{b}\right)\right|^{|n|}$ where $\sigma\left(\omega_{b}\right)=1-\left(\omega_{b}^{2}\right) / 2+\left(\omega_{b} / 2\right)\left(\omega_{b}^{2}-4\right)^{1 / 2} \in(-1,0)$. As (1) is formulated as a mapping in a loop space ${ }^{2}$ and $\omega_{b}>2$, the linearized operator has a purely hyperbolic spectrum and the constant $\sigma\left(\omega_{b}\right)$ is the closest eigenvalue to -1 (with $\sigma(2)=-1$). Consequently, for $\omega_{b} \approx 2$ one can ask if the iterated map admits a global center manifold containing these LAB.

References

1. S Aubry, G Kopidakis, and V Kadelburg. Discrete and Continuous Dynamical Systems, serie B (DCDS-B) 1 (2001) 271-298.
2. G James. C. R. Acad. Sci. Paris, 332(1):581-586, 2001.
3. JL Marin and S Aubry. Nonlinearity 9 (1996), p. 1501-1528.
